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Abstract: Alopecia and gray hair are common hair abnormalities affecting physical appearance and
causing psychological problems. Chemical treatments partially restore hair disorders but have dis-
tressing side effects. Bioactive plant compounds constitute promising sources of potential medicinal
substances instead of chemical agents, producing high side effects. In this study, we focused on the
waste of local rice cultivars: Bue Bang 3 CMU (BB3CMU) and Bue Bang 4 CMU (BB4CMU) from
the north of Thailand. The rice bran oil (RBO), defatted rice bran extract (DFRB), and rice husk (H)
were determined for in vitro hair revitalization in melanin production, nitric oxide (NO) secretion,
and steroid 5α-reductase inhibition. The results indicated that BB4CMU-RBO with high contents of
iron, zinc, and free fatty acids showed a comparable induction of melanin production on melanocytes
(130.18 ± 9.13% of control) to the standard drug theophylline with no significant difference (p > 0.05).
This promising melanin induction could be related to activating the NO secretion pathway, with the
NO secretion level at 1.43 ± 0.05 µM. In addition, BB4CMU-RBO illustrated a significant inhibitory
effect on both steroid 5α-reductase genes (SRD5A) type 1 and type 2, which relates to its primary
source of tocopherols. Hence, rice bran oil from the Thai rice variety BB4CMU could be applied as
a promising hair revitalizing candidate, from natural resources, to help promote hair growth and
re-pigmentation effects.

Keywords: androgenetic alopecia; Bue Bang 3 CMU; Bue Bang 4 CMU; rice by-products; hair graying;
hair growth promotion; melanin production; Oryza sativa; 5α-reductase
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1. Introduction

Plant-based substances have been recently developed for current global trends in
the cosmeceutical industry, depending on customer behaviors and demands [1]. Further-
more, active compounds from plant resources, especially agricultural by-products, are
environmentally-friendly with health benefits [2,3]. Modifying agricultural residues into
value-added products is a sustainable development method for effectively using natural
resources while reducing harmful environmental impacts [4]. It also complies with the
Sustainable Development Goals (SDGs), such as SDG 3: Good health and well-being and
SDG 12: Responsible consumption and production.

Oryza sativa L. (rice) is a cereal grain used for worldwide consumption. Polished
rice is derived from whole grain rice and is used to prepare many kinds of food [5]. Rice
bran and rice husk are major by-products generated from the rice milling process. Many
studies have shown that high-value components in rice waste can be used in a variety of
applications, including construction materials [6], nutritional supplements [7], and skin
care products [8,9]. Similarly, we previously reported on both rice bran and rice husk
extracts from the Thai rice variety, Bue Bang 3 CMU (BB3CMU), which possesses hair
growth properties with high tocopherol contents [10]. Our current phytochemical studies
of northern Thai rice cultivars demonstrated that oryzanol and tocopherol were profoundly
enriched in BB3CMU and Bue Bang 4 CMU (BB4CMU) rice brans [11]. Taken together, both
rice varieties may constitute potential sources for hair care applications. In our previous
work, the extracts from rice by-products were separated into three distinct parts: non-
polar rice bran oil extracts, rice bran residue extracts, and rice husk extracts. We further
elucidated the phytochemical quantification of oryzanols, tocopherols, free fatty acids, and
polyphenols [12].

The global market size of hair care was around USD 75.06 billion in 2020. This market
is predicted to be worth USD 112.97 billion by 2028 [13]. Furthermore, hair loss treatment
products and hair dyes accounted for 30–35% of the total market share among hair care
products [14]. The demand for hair loss treatment products and hair colorants has rapidly
increased because hair baldness and hair graying are recognized signs of aging. Visible
hair problems mainly cause low self-confidence and affect general well-being as well as
mental health [15,16]. Androgenetic alopecia (AGA) comprises chronic hair miniaturization
affecting both male and female hair patterns. Higher levels of serum sex hormone, 5α-
reductase, and androgen receptors in hair follicles are associated with premature baldness.
The pathogenesis of AGA can be related to cystic acne, hirsutism, or virilization among
females [17,18]. Therapeutic agents, such as topical minoxidil and antiandrogens are
approved for AGA treatment [19]. The clinical evidence implicated adverse events with
long-term medication. Itching, redness, and hypertrichosis on body areas are the common
side effects of topical minoxidil. Moreover, sexual dysfunction, metabolic syndromes, and
depression are related to an alteration in androgens [20,21].

Hair graying is visualized as a loss of pigment in the hair shaft. Melanin pigments
play a crucial role in hair photoprotection, especially black eumelanin. Melanin production
is regulated by various proteins, such as tyrosinase and tyrosinase-related proteins [22].
An earlier study found that inherited mutations of melanogenic proteins can cause cuta-
neous hypopigmentation with canities [23]. Moreover, diet and nutritional status have a
considerable impact on premature hair graying. A dietary supplement is partially effective
in reversing hypopigmented hair [24,25]. Hair dying is another option for covering gray
hair [26]. Additionally, excipient ingredients, such as p-phenylenediamine, preservatives,
or surfactants in hair colorants, may cause allergies and cancer [27,28].

Therefore, this study aimed to determine the biological activities of three different
rice by-products (BB3CMU and BB4CMU) as botanical therapeutic agents in terms of
antioxidant properties, melanin production, nitric oxide production, and any inhibitory
effects on steroid 5α-reductase isoenzymes.
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2. Results and Discussion
2.1. Extraction Process

Both Thai rice varieties BB3CMU and BB4CMU were successfully registered as new
plant varieties through Plant Breeder’s Rights (PBR) under the Department of Agricul-
ture, Thailand, in November 2020 and February 2022, respectively. Both rice cultivars
have white non-glutinous grains with brown husks. The distinct morphological char-
acteristics of these varieties are based on stem and leaf features. The stem diameter of
BB3CMU is approximately 10.19 mm, and the leaf dimensions are 1.55 cm and 42.34 cm.
In contrast, the rice stem diameter of BB4CMU is about 8.05 mm, with a larger leaf
size (1.59 cm and 58.90 cm) and a hairy surface on the leaf blade and leaf sheath. Ac-
cording to our previous experiment, the proximate analysis indicated that rice variety
BB3CMU possessed the highest crude fat content of 18.68 ± 0.11%, followed by that of
BB4CMU at 18.55 ± 0.19%, among eleven rice varieties. Moreover, Wisetkomolmat et al.
reported that BB3CMU and BB4CMU showed high contents of crude fiber and crude
protein. For the mineral content analysis, both BB3CMU and BB4CMU demonstrated
high contents of K (1.98 ± 0.00 and 2.13 ± 0.00 g/100 g sample), Mg (0.63 ± 0.00 and
0.72 ± 0.02 g/100 g sample), Ca (288.93 ± 35.96 and 310.63 ± 13.26 mg/kg sample), Fe
(71.62 ± 0.74 and 83.17 ± 1.09 mg/kg sample), Mn (112.88± 5.76 and 136.50± 0.60 mg/kg
sample), Zn (66.07 ± 1.73 and 73.57 ± 3.98 mg/kg sample), and Na (33.10 ± 0.78 and
39.00 ± 0.63 mg/kg sample), respectively [11].

After the screw press process, augmented with dichloromethane extraction, rice bran
oils (RBO) from BB3CMU and BB4CMU are dark brown viscous oils with extraction yields
of 20.12% and 19.17% w/w based on rice bran materials, respectively. The screw press is a
favored oil extraction method without heat treatment [29]. Moreover, dichloromethane is an
effective inorganic solvent for plant oil production [30]. Thus, mechanical extraction with
an inorganic solvent was conducted to refine the crude oil from rice bran samples. Then,
the defatted residues were macerated with an ethanol solution to obtain other semi-polar
and polar compounds in defatted rice bran extracts (DFRB), comprising light brown greasy
pastes. The extraction yields of both BB3CMU-DFRB and BB4CMU-DFRB were 7.67%
and 7.13% w/w of de-oiled rice bran samples, respectively. For rice husk (H) portions, the
physical attributes of both BB3CMU-H and BB4CMU-H were non-glossy crude extracts
with extraction yields of 2.09% and 2.00% w/w, based on the dry husk mass [12].

2.2. In Vitro Antioxidant Activities

The antioxidant activities of O. sativa by-product extracts were demonstrated by the 2,2-
diphenyl-1-picrylhydrazyl radical (DPPH) assay, the 2,2′-azino-bis (3-ethylbenzothiazoline-
6-sulfonic acid) radical (ABTS) assay, and metal chelation. DPPH is a stable radical and
can be scavenged by antioxidants in lipophilic samples, whereas the ABTS assay is used to
examine both lipophilic and hydrophilic compounds [31]. Metal chelation is used to deter-
mine the chelating process with an ion-substrate complex in the system, such as ferrous-
ferrozine formation [32]. The antioxidant capacity obtained from these methods correlated
to biomolecules in medicinal plants, e.g., flavonoids and phenolic compounds [33,34].

The results of the present study showed that rice husk extracts possessed antioxi-
dant properties (Table 1), which were higher than those of rice bran oil and rice bran
extracts. In vitro scavenging activities using the DPPH and ABTS methods were observed
for BB3CMU-H (334.70 ± 4.64 and 196.13 ± 10.09 mg TE/g extract), and BB4CMU-H
(198.04 ± 2.75 and 164.10 ± 8.45 mg TE/g extract), respectively. The highest chelating
activity determined using iron chelation was found for BB3CMU-H with 283.22 ± 55.35 mg
EDTAE/g extract. The antioxidant effects of both BB3CMU-H and BB4CMU-H agreed with
those of the high phenolic content in the rice husk portion. The bioactive compositions of
the rice husk extracts were performed using the high-performance liquid chromatography
(HPLC) analysis, as reported in our previous work. The rice husk extracts of O. sativa
cv. BB3CMU and BB4CMU were found to be high in polyphenols, such as phytic acid,
p-coumaric acid, and kaempferol [12]. In biochemical systems, phytic acid with a strong
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chelating activity can prevent the formation of hydroxyl radicals [35]. The previous studies
showed that p-coumaric acid was involved in the promotion of hair growth by reducing
oxidative stress [36,37]. Additionally, numerous reports revealed that kaempferol had a
potent scavenging ability and regulated inflammatory responses [10,38].

Table 1. Antioxidant potential of Oryza sativa L. cv. BB3CMU and BB4CMU extracts.

Extracts DPPH Radical Scavenging Activity
(mg TE/g Extract)

ABTS Radical Scavenging Activity
(mg TE/g Extract)

Iron Chelating Activity
(mg EDTAE/g Extract)

BB3CMU−RBO 70.14 ± 0.97 a 5.45 ± 0.28 a 28.79 ± 5.63 a

BB3CMU−DFRB 147.65 ± 2.05 b 51.83 ± 2.67 b 65.47 ± 12.79 a

BB3CMU−H 334.70 ± 4.64 c 196.13 ± 10.09 c 283.22 ± 55.35 b

BB4CMU−RBO 37.05 ± 0.51 d 3.84 ± 0.20 a 24.28 ± 4.74 a

BB4CMU−DFRB 117.84 ± 1.63 e 47.03 ± 2.42 b 71.78 ± 14.03 a

BB4CMU−H 198.04 ± 2.75 f 164.10 ± 8.45 d 61.12 ± 11.94 a

BB3CMU-RBO, rice bran oil of Oryza sativa L. cv. Bue Bang 3 CMU; BB3CMU-DFRB, defatted rice bran extract of
Oryza sativa L. cv. Bue Bang 3 CMU; BB3CMU-H, husk extract of Oryza sativa L. cv. Bue Bang 3 CMU; BB4CMU-
RBO, rice bran oil of Oryza sativa L. cv. Bue Bang 4 CMU; BB4CMU-DFRB, defatted rice bran extract of Oryza sativa
L. cv. Bue Bang 4 CMU; BB4CMU-H, husk extract of Oryza sativa L. cv. Bue Bang 4 CMU; TE, Trolox equivalent;
EDTAE, EDTA equivalent. Different letters within each treatment indicate significant difference at p-value < 0.05.

2.3. Cell Viability

The cytotoxic effects of rice extracts were performed on RAW 264.7 (murine macro-
phage), B16F10 (mouse melanoma), and DU-145 (human prostate cancer) cells. The maxi-
mum non-cytotoxic concentration (>80% cell viability) [39] of each extract was considered
as the treatment concentration for subsequent experiments. The viability of RAW 264.7 cells
was not altered over the concentration range of 0.0001 to 0.10 mg/mL of rice bran oils and
rice husk extracts for 24 h. However, defatted rice bran extracts illustrated a higher toxicity
than rice bran oil and husk fractions. The defatted rice bran extracts at 0.0001 mg/mL
revealed no cytotoxicity on macrophage cells. Therefore, 0.10 mg/mL of both rice bran oils
and rice husk extracts and 0.0001 mg/mL of the defatted rice bran extracts were selected
for RAW 264.7 cell exposure. Moreover, all extracts at a concentration of 0.01 mg/mL
showed non-cytotoxic effects on melanoma cells after 48 h of incubation. Thus, the melanin
content assay would be tested with 0.01 mg/mL of all rice fractions. On prostate cancer
cells, no cytotoxic effect was noticed after exposure to 0.50 mg/mL of the defatted rice
bran extracts, 0.25 mg/mL of the rice bran oils, and 0.10 mg/mL of the rice husks after
24 h of incubation. These concentrations were used to further evaluate using DU-145 cells.
Moreover, rice extracts were evaluated for cytotoxicity in human fibroblasts and dermal
papilla cells from human hair follicles (HFDPC). The non-cytotoxic effects of extracts may
not affect scalp cells. The rice extracts at 0.25 mg/mL did not show any toxicity to human
fibroblasts or HFDPC (>80% cell viability of control). It could be assured that rice extracts
at high concentrations might be suitable for human scalp application.

2.4. Effects of Oryza sativa L. Extracts on Melanin Production in Melanoma Cells

Melanin pigments in hair shafts are synthesized by the melanocytes in the hair bulb,
interacting with the melanin precursors in the bulb keratinocytes [40]. Hair pigmentation
is modulated by melanogenic regulatory factors, such as tyrosinase, tyrosinase-related
proteins, melanocyte-stimulating hormone, and melanocortin receptor. The conversion of
L-tyrosine to L-3,4-dihydroxyphenylalanine (L-DOPA) by the copper-dependent tyrosinase
enzyme is the rate-limiting process in melanin biosynthesis [41–43]. Chelating with copper
ions in the active site can inhibit this enzyme, whereas L-DOPA, superoxide anion, and
nitric oxide (NO) as electron donors can activate enzyme activity [23,44]. Pigmented hair
shafts are produced notably during the late anagen phase then regress and diminish in
catagen to the resting stage of the hair cycle [45].
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However, the lack of melanogenic melanocytes during the anagen phase is the primary
cause of hair graying. The failure of melanogenic activity is a consequence of reactive
oxygen species (ROS) damage along with the impairment of the antioxidative defense
system due to the effects of UV radiation, smoking, and pollution [46,47]. According
to the previous research, the natural antioxidant properties from Eurotium cristatum [48],
Melissa officinalis [49], Cannabis sativa [50], and Bixa orellana [51] promoted melanogenesis
and can be used as potential preventive and therapeutic agents for skin and hair hypopig-
mentation. Hence, the phenolic profile of rice husk extracts with scavenging effects may
provide protection against ROS.

According to the study results, both BB3CMU and BB4CMU extracts could up-regulate
melanin synthesis in B16F10 melanoma cells. Notably, the stimulating effects on melanin
synthesis of BB4CMU-RBO (130.18 ± 9.13% of control) showed a comparable effect to
the standard theophylline (139.73 ± 5.20% of control) with no significant difference at
0.01 mg/mL (Figure 1). Theophylline is used as a melanogenic stimulating agent affect-
ing melanogenesis by elevating cyclic adenine monophosphate (cAMP) via the mitogen-
activated protein kinase 1 (MEK 1/2) and the Wnt/β-catenin biological signaling path-
ways [52,53]. This result suggested that the melanogenesis stimulating ability of BB4CMU-
RBO may contribute to iron, zinc, and unsaturated fatty acids. Malnutrition and vitamin
deficiencies can cause or contribute to canities. Iron, zinc, copper, calcium, and cobal-
amin could modulate melanogenesis in hair follicles, leading to reversible graying of
hair [47,54,55].
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Figure 1. Effects of Oryza sativa L. cv. BB3CMU and BB4CMU extracts at 0.01 mg/mL on melanin
content in B16F10 melanoma cells stimulated with 50 µM 3-isobutyl-1-methylxanthin (IBMX) for
48 h. Theophylline and arbutin (0.01 mg/mL) were used as standard controls. Cells cultured in
the medium without treatment refer to the blank. Different letters within each treatment indicate
significant differences (p < 0.05).

A previous report illustrated that iron treatment can elevate the number of maturing
melanosomes, the pigmentation in melanocytes, and the expression of the melanocyte-
inducing transcription factor (MITF) [56]. Interestingly, zinc is recognized as a cofactor of
tyrosinase-related protein type 1 [57] and can prevent the cell apoptosis of melanocytes [58].
In addition, previous reports demonstrated that rice bran extracts with high contents of
linoleic acid or silicic acid have the potential to restore the melanogenesis process [59–61].
Our previous study revealed the nutritional profiles of eleven rice bran varieties from the
north of Thailand. The mineral components in BB4CMU surpassed other rice cultivars, es-
pecially regarding iron (83.17± 1.09 mg/kg rice bran sample) and zinc (73.57 ± 3.98 mg/kg
rice bran sample). Moreover, BB4CMU rice bran contained a high concentration of essential
unsaturated fatty acids varieties, such as oleic acid, linoleic acid, and α-linolenic acid [11],
supporting the melanogenesis ability of BB4CMU-RBO.
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2.5. Effects of Oryza sativa L. Extracts on Nitric Oxide Production in Macrophages

Nitric oxide (NO) is synthesized from the amino acid L-arginine and oxygen molecules
by nitric oxide synthases (NOS). The NOS enzyme was observed in keratinocytes as well
as melanocytes. NO plays an important part in the physiological system as a key signaling
molecule. The role of NO may involve immune system responses, vascular function, and
skin homeostatic regulation [62–64]. Neuronal NOS (nNOS), endothelial NOS (eNOS), and
inducible NOS (iNOS) are the three isoforms of NOS [65]. The iNOS usually produces
NO after lipopolysaccharide (LPS) stimulation. In the previous experiment, iNOS was
expressed on the scalp epidermis, whereas nNOS and eNOS were mostly observed on
epidermal melanocytes and dermal keratinocytes [66].

The measured nitrite content indicated NO production in macrophage cells [67]. As
shown in Figure 2, BB4CMU-RBO displayed the greatest nitrite production (1.43 ± 0.05 µM),
followed by BB4CMU-DFRB (1.10± 0.10 µM), which were comparable to the LPS treatment
(1.70 ± 0.10 µM). Previous studies suggested that melanin synthesis could be enhanced
by NO production [62,68]. After ultraviolet (UV) exposure, the intracellular level of NO
is remarkably increased and then activates melanogenesis through the cyclic guanosine
monophosphate (cGMP) signaling pathway [69,70]. It has been established that NO regu-
lates soluble guanylate cyclase, which turns guanosine triphosphate (GTP) to cGMP and
further elevates protein kinase G (PKG), resulting in increased expressions of pigmentation
genes and melanin production [71–73]. Some evidence suggested that NO is associated
with the complex effects in melanogenesis, including the morphological appearance of
dendritic melanocytes, facilitation of melanosome aggregation, and increasing the melanin
synthesis activity of melanocytes [74].
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The previous articles presented that saturated fatty acids (palmitic acid and steric acid)
and unsaturated fatty acids, e.g., oleic acid and linoleic acid, could induce NO production
in macrophage cells, resulting in macrophage differentiation [75,76]. M1-like macrophages
(antigen-presenting cells) are involved in releasing pro-inflammatory cytokines and T-cell
function, which can be activated by saturated fatty acids. On the other hand, unsaturated
fatty acids could influence the M2-like phenotype (alternatively activated macrophages),
leading to tissue repair and anti-inflammatory cytokine secretion [75,77]. In this study,
BB4CMU-RBO was rich in free fatty acids, consisting of palmitic acid, steric acid, oleic acid,
and linoleic acid [11], corresponding to an increase in melanin content via NO induction.
Remarkably, palmitic acid could increase tyrosinase-related proteins, resulting in inducing
melanin production [78].
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2.6. Effects of Oryza sativa L. Extracts on Gene Expression of Steroid 5α-Reductase Isoenzymes

The different stages of the hair cycle include the growth (anagen), transition (catagen),
resting (telogen), and shedding (exogen) stages. Normally, a new hair matrix is formed
during the anagen then regresses and undergoes apoptosis in the telogen, and the active hair
follicle would regrow after the shedding step [79,80]. The hair-growth cycle is regulated
by multiple signaling pathways, including the Wnt/β-catenin, sonic hedgehog (Shh),
notch, angiogenesis, and transforming growth factor (TGF)-β signaling pathways. Hair
development is thought to be influenced by Wnt, Shh, and vascular growth factors, whereas
inflammatory cytokines, TGF-β and 5α-reductase dominate the negative aspects of hair
regeneration [81,82]. In particular, the androgen-dependent pathway is prone to associate
with disease-induced hair loss [83] and genetic variant-mediated alopecia [84,85].

The pathophysiology of hair loss may be complicated by complex processes. The most
common hair loss disorder is AGA, which is consistent with genetic factors and androgen
excess. Testosterone, the active androgen in circulation is converted to the most potent
androgen, dihydrotestosterone (DHT) by 5α-reductase [21,86]. This enzyme can be divided
in multiple isoforms, such as 5α-reductase type 1 (SRD5A1), type 2 (SRD5A2), and type 3
(SRD5A3). SRD5A2, located on the dermal papilla, is the target enzyme for treating hair
baldness. Finasteride, a selective SRD5A2 inhibitor, and dutasteride, an inhibitor of both
SRD5A1 and SRD5A2, are approved drugs for AGA treatment. However, the SRD5A2
isoenzyme is predominantly distributed in various organs, including the prostate, testes,
and liver [87]. Thus, undesirable side effects markedly appear after drug administration,
such as sexual dysfunction, testicular pain, and mental illness [88]. Natural substances,
attenuating the action of SRD5A isoenzymes, seem highly probable agents for hair loss
treatment with fewer adverse effects [89,90].

In this study, BB4CMU-RBO resulted in a significant down-regulation in the gene ex-
pression of both SRD5A1 and SRD5A2 among all the other extracts. Interestingly, BB4CMU-
RBO treatment demonstrated the gene inhibition of SRD5A2 when compared with the
standard drugs: finasteride and dutasteride (Figure 3). The highest SRD5A2 gene inhi-
bition activity of BB4CMU-RBO may be attributed to our previous study presenting the
highest amount of β-tocopherol (1.16 ± 0.01 mg/100 g crude fat), followed by γ-tocopherol
(6.78 ± 0.04 mg/100 g crude fat), and α-tocopherol (15.84 ± 0.03 mg/100 g crude fat),
consecutively [11]. Moreover, we also reported the binding affinity of bioactive compounds
in rice bran extract using molecular docking, in which β-tocopherol, γ-tocopherol, and
α-tocopherol can possess a specific binding to SRD5A2 [91]. Therefore, SRD5A2 inhibition
by the BB4CMU-RBO extract may be attributed to the structural features of tocopherols.
Our data agreed with the recent studies of Argania spinosa [92] and Prunus mira [93], which
displayed hair growth promotion related to the contents of tocopherols. Our findings
demonstrated that BB4CMU-RBO, with its main tocopherol compounds, essential fatty
acids, and mineral contents presented properties with a high potential for regenerating hair.
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0.50 mg/mL; H, 0.10 mg/mL) on mRNA expression of (A) SRD5A1; (B) SRD5A2; (C) SRD5A3 in
DU-145 prostate cancer cells after 24 h of treatment. Finasteride and dutasteride (0.10 mg/mL) were
used as standard controls. Different letters within each treatment indicate significant differences
(p < 0.05).

3. Materials and Methods
3.1. Chemicals and Reagents

The materials 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis (ethylbenzthia-
zoline-6-sulfonic acid (ABTS), 3-(2-yyridyl)-5,6-diphenyl-1,2,4-triazine-4′,4′ ′-disulfonic acid
sodium salt (ferrozine), iron (II) chloride tetrahydrate (FeCl2 · 4H2O), 6-hydroxy-2,5,7,
8-tetramethylchroman-2-carboxylic acid (Trolox), ethylenediaminetetraacetic acid (EDTA),
sulforhodamine B (SRB), D-glucose monohydrate, diclofenac sodium, lipopolysaccharide
(LPS), arbutin, theophylline were purchased from Sigma Aldrich (St. Louis, MO, USA).
Roswell Park Memorial Institute 1640 medium (RPMI-1640), Dulbecco’s Modified Eagle
Medium (DMEM), Eagle’s Minimal Essential Medium (MEM), fetal bovine serum (FBS),
0.5% Trypsin-EDTA (10X), and 3-isobutyl-1-methylxanthine (IBMX) were obtained from
Gibco Life Technologies (Grand Island, NY, USA). Penicillin/streptomycin solution (100×)
was obtained from Capricorn Scientific GmbH (Ebsdorfergrund, Germany). The Griess
reagent kit was acquired from Invitrogen, Thermo Fisher Scientific (Waltham, MA, USA).
Finasteride and dutasteride were purchased from Wuhan W&Z Biotech (Wuhan, China).
RedSafe™ dye was obtained from iNtRON Biotechnology (Gyeonggido, Korea). All other
chemical substances were of analytical grade.
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3.2. Plant Materials and Preparation of Sample Extraction

Oryza sativa cv. Bue Bang 3 CMU (BB3CMU) and Bue Bang 4 CMU (BB4CMU) were ob-
tained from the Lanna Rice Research Center, Chiang Mai University, Chiang Mai, Thailand.
Both rice cultivars were grown under the same environmental conditions for six months,
between June and December 2021. The rice extracts were provided by the Pharmaceutical
and Natural Products Research and Development Unit (PNPRDU), Chiang Mai University,
Chiang Mai, Thailand. The sample extraction followed the scheme illustrated in Figure 4.
Briefly, the rice husk was first removed from the rice seed, and then the rice bran was
separated from the white rice grain. Rice bran (1000 g) was fed into the mechanical screw
press to obtain the rice bran oil part 1 and its residue. Then, the rice bran residue part 1
(100 g) was further extracted using the dichloromethane extraction (2 L) for 72 h to obtain
the rice bran oil part 2 and the rice bran residue part 2. The rice bran oil (RBO) in this study
was a mixture of the rice bran oil parts 1 and 2. After that, the rice bran residue part 2 (100 g)
was macerated with 95% ethanol (2 L) for 72 h and then filtered and concentrated by a
rotary evaporator to obtain the defatted rice bran extract (DFRB). Moreover, the dried husk
(100 g) was mixed with 95% ethanol (6 L) and followed with a 48-h maceration to obtain
the rice husk extract (H). All stages of the extraction methods were performed at room
temperature. The rice samples were labeled as follows: BB3CMU-RBO, BB3CMU-DFRB,
BB3CMU-H, BB4CMU-RBO, BB4CMU-DFRB, and BB4CMU-H. Consequently, all extracts
were kept at a temperature of 4 ◦C until used.
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and Bue Bang 4 CMU (BB4CMU).

3.3. Antioxidant Activity Assays

The antioxidant potential of the samples was performed using the DPPH radical
scavenging assay, the ABTS radical scavenging assay, and the iron chelating assay, as
previously described [94]. Briefly, each sample was diluted in the range of 0.01–10 mg/mL.
For the DPPH assay, 50 µL of the sample solution was mixed with 50 µL of DPPH working
solution, then incubated in a dark at room temperature for 30 min. The absorbance of
each well was determined at 517 nm using the EZ2000 microplate reader (Biochrome
Ltd., Cambridge, UK). For the ABTS assay, 25 µL of the sample solution was reacted with
200 µL of the ABTS working solution, then incubated at room temperature for 10 min. The
absorbance was measured at 734 nm. Trolox was used as the standard scavenging agent for
the DPPH and ABTS assays. For metal chelation, 100 µL of the sample solution was reacted
with 50 µL of 2 mM ferrous chloride solution and 50 µL of 5 mM ferrozine substrate. After
incubating at room temperature for 30 min, the absorbance was measured at 562 nm. EDTA
was used as the standard chelating agent. Blanks for every sample without free radical
or heavy metal solutions were also conducted for each measured absorbance. The results
were obtained from the line slope of each sample, which was divided by the line slope
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of the standard and expressed as mg of Trolox equivalent/g of extract and mg of EDTA
equivalent/g of extract [95].

3.4. Cell Cultures

Mouse skin melanoma cells (B16F10; JCRB no. JCRB0202) and human fibroblast
cells (JCRB no. JCRB1006.4F) were purchased from the JCRB Cell Bank (Osaka, Japan).
Murine RAW 264.7 macrophage cells and human prostate cancer cells (DU-145) were
purchased from the American Type Culture Collection (Rockville, MD, USA). Primary
human follicle dermal papilla cells (HFDPC) were obtained from Promo Cell GmbH
(Heidelberg, Germany). The B16F10 cells were grown in a MEM culture medium supple-
mented with 10% FBS and 1% penicillin/streptomycin. The RAW 264.7 cells were grown
in a DMEM culture medium supplemented with 4500 mg/L D-glucose, 10% FBS, and 1%
penicillin/streptomycin. The DU-145 cells were grown in RPMI-1640 culture medium sup-
plemented with 10% FBS and 1% penicillin/streptomycin. The fibroblast cells were cultured
in a DMEM culture medium supplemented with 10% FBS, and 1% penicillin/streptomycin.
The HFDPC cells were cultured in a Growth Medium Kit supplemented with 10% FBS and
1% antibiotic-antimycotic 100× solution. All cell lines were maintained under a humidified
atmosphere containing 5% CO2 at a temperature of 37 ◦C.

3.5. Cytotoxicity Assay

The cell viability of B16F10, RAW 264.7, DU-145, fibroblast, and HFDPC cells for
determining non-toxic concentrations (above 80% cell viability) was evaluated through
the colorimetric SRB assay [10]. The cells were seeded into 96-well plates at a density of
1 × 104 cells/well. After 24 h, the growth medium was replaced with fresh serum-free
medium containing various concentrations (0.0001–1 mg/mL) of rice extracts and standard
controls on RAW 264.7, DU-145, and HFDPC cells for 24 h and on B16F10 and fibroblast
cells for 48 h. Following incubation, 50% trichloroacetic acid was added to fix cells for 1 h
at a temperature of 4 ◦C. The cells were rinsed with deionized water and air-dried. After
that, cells were stained using a 0.04% SRB solution for 30 min at room temperature, and
then the unbound dye was discarded by washing cells with 1% acetic acid and air-drying.
The bound dye was dissolved with a 10 mM Tris base. The absorbance was measured at
515 nm using a microplate reader. The cell viability of the treated cells was compared with
untreated cells as the percentage of cell viability of control.

3.6. Melanin Content Assay

This assay was examined on murine melanoma cells by a slight modification method [96,97].
Briefly, the B16F10 melanoma cells (2.5× 105 cells/well) were seeded in 6-well plates. After
24 h of incubation, the cells were treated with serum-free medium containing 50 µM IBMX
and the rice samples or the standard controls (theophylline and arbutin) at a concentration
of 0.01 mg/mL for an additional 48 h. Then, the cell pellets were harvested using 0.25%
trypsin-EDTA and centrifuged at 10,000× g for 10 min. The intracellular melanin was
dissolved in 1 N NaOH containing 10% DMSO at a temperature of 80 ◦C for 30 min.
The amount of melanin was measured using an absorbance of 405 nm. The results were
expressed as the relative percentage of melanin content of the control (untreated cells).

3.7. Intracellular Nitric Oxide Production

The nitric oxide production in macrophage cells was expressed as the amount of
accumulated nitrite in the cell supernatant. This method was modified from a previ-
ously published method [98,99]. Briefly, the RAW 264.7 cells were plated at a density of
1 × 105 cells/well in 96-well plates for 24 h. Then, the cells were induced by 1 µg/mL LPS
for 24 h after pre-treatment with the rice extracts (RBO, 0.10 mg/mL; DFRB, 0.0001 mg/mL;
and H, 0.10 mg/mL) or the standard diclofenac sodium (0.10 mg/mL). The supernatant
was collected to react with the Griess reagent according to the manufacturer’s recommen-
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dations. The nitrite content of each sample was calculated using the standard curve of
sodium nitrite.

3.8. RNA Extraction and Semi-Quantitative Reverse Transcription Polymerase Chain Reaction

The modulation of the SRD5A gene expression was observed in prostate tumor cells
as previously described [10]. The DU-145 cells were used as an in vitro cell model to
determine the expression of 5α-reductase for anti-hair loss applications [100–102] because
the action of 5α-reductase was obviously evaluated in prostate cells [103]. Total RNA was
isolated from the DU-145 cells treated with samples (RBO, 0.25 mg/mL; DFRB, 0.50 mg/mL;
and H, 0.10 mg/mL) or SRD5A enzyme inhibitors (dutasteride and finasteride at a con-
centration of 0.10 mg/mL) for 24 h. The RNA extraction process was performed using
the E.Z.N.A.® Total RNA Kit I (Omega Bio-Tek, Norcross, GA, USA) following the man-
ufacturer’s instructions. The RNA concentrations were determined using the Qubit™
4 fluorometer and Qubit™ RNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA). Comple-
mentary DNA (cDNA) was synthesized using the RT-PCR Quick Master Mix (Toyobo,
Osaka, Japan) as the template and the following primers for amplification: SRD5A1 (F: 5′-
AGCCATTGTGCAGTGTATGC-3′ and R: 5′-AGCCTCCCCTTGGTATTTTG-3′), SRD5A2 (F:
5′-TGAATACCCTGATGGGTGG-3′ and R: 5′-CAAGCCACCTTGTGGAATC-3′), SRD5A3
(F: 5′-TCCTTCTTTGCCCAAACATC-3′ and R: 5′-TCCTTCTTT-GCCCAAACATC-3′), and
GAPDH (F: 5′-GGAAGGTGAAGGTCGGAGTC-3′ and R: 5′-CTCAGCCTTGACGGTG-
CCATG-3′). GAPDH was used to normalize the expression of the target genes. The PCR
product was separated through electrophoresis on 1% agarose gel and stained using Red-
Safe™ dye. The DNA bands were visualized on a gel documentation system (Gel Doc™
EZ, Bio-Rad, Hercules, CA, USA) and Image Lab™ Software (Bio-Rad, Hercules, CA, USA).

3.9. Statistical Analysis

All experiments were performed in triplicate and reported as means ± standard
deviation (SD). All data were analyzed using the one-way analysis of variance (ANOVA)
test along with the LSD’s post hoc test using SPSS 23.0 Software (SPSS Inc., Chicago, IL,
USA). The significant difference was defined as a p-value < 0.05.

4. Conclusions

Rice bran and rice husk are the most common agricultural waste with deteriorated
environmental effects. Our previous studies illustrated the abundant constituents of rice
by-products extracts from numerous Thai rice varieties. Consecutively, in this study,
BB3CMU and BB4CMU were selected for biological testing using cell-based assays to
identify a potential for hair nourishing effects and for restoring hair. Impressively, rice
bran oil from BB4CMU showed ameliorable effects on NO-induced melanin production,
which was attributed to the mineral content and free fatty acid profiles. According to
the tocopherols-enrich rice bran oil fraction, the BB4CMU-RBO extract showed promising
SRD5A2 down-regulation. Possibly, BB4CMU-RBO is to be regarded as a re-pigmenting
agent in graying hair and an effective treatment for androgenetic hair loss. Furthermore,
BB4CMU-RBO could be used as a natural alternative treatment and a substitution for
conventional drugs that possess strong side effects. Overall, the results in this study
illustrated the pharmaceutical potential of plant resources for restoring hair in terms of hair
growth and hair re-pigmentation.
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24. Acer, E.; Kaya Erdoğan, H.; İğrek, A.; Parlak, H.; Saraçoğlu, Z.N.; Bilgin, M. Relationship between diet, atopy, family history, and
premature hair graying. J. Cosmet. Dermatol. 2019, 18, 665–670. [CrossRef] [PubMed]

25. Thompson, K.G.; Marchitto, M.C.; Ly, B.C.K.; Chien, A.L. Evaluation of physiological, psychological, and lifestyle factors
associated with premature hair graying. Int. J. Trichol. 2019, 11, 153. [CrossRef]

26. Kaur, K.; Kaur, R.; Bala, I. Therapeutics of premature hair graying: A long journey ahead. J. Cosmet. Dermatol. 2019, 18, 1206–1214.
[CrossRef] [PubMed]

27. Boonchai, W.; Winayanuwattikun, W.; Limphoka, P.; Sukakul, T. Contact allergy to hair cosmetic allergens in Thailand. Contact
Derm. 2019, 81, 426–431. [CrossRef]

28. Durán, B.E.; Romero-Pérez, D.; Salvador, J.S. Allergic contact dermatitis due to paraphenylenediamine: An update. Actas.
Dermosifiliogr. 2018, 109, 602–609.

29. Wongwaiwech, D.; Weerawatanakorn, M.; Tharatha, S.; Ho, C.-T. Comparative study on amount of nutraceuticals in by-products
from solvent and cold pressing methods of rice bran oil processing. J. Food Drug Anal. 2019, 27, 71–82. [CrossRef]

30. Watson, J.; Lu, J.; de Souza, R.; Si, B.; Zhang, Y.; Liu, Z. Effects of the extraction solvents in hydrothermal liquefaction processes:
Biocrude oil quality and energy conversion efficiency. Energy 2019, 167, 189–197. [CrossRef]

31. Bibi Sadeer, N.; Montesano, D.; Albrizio, S.; Zengin, G.; Mahomoodally, M.F. The versatility of antioxidant assays in food science
and safety—Chemistry, applications, strengths, and limitations. Antioxidants 2020, 9, 709. [CrossRef]
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