Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (158)

Search Parameters:
Keywords = steroid hormone action

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1829 KiB  
Article
The Red Shift in Estrogen Research: An Estrogen-Receptor Targeted aza-BODIPY–Estradiol Fluorescent Conjugate
by Tamás Hlogyik, Noémi Bózsity, Rita Börzsei, Benjámin Kovács, Péter Labos, Csaba Hetényi, Mónika Kiricsi, Ildikó Huliák, Zoltán Kele, Miklós Poór, János Erostyák, Attila Hunyadi, István Zupkó and Erzsébet Mernyák
Int. J. Mol. Sci. 2025, 26(15), 7075; https://doi.org/10.3390/ijms26157075 - 23 Jul 2025
Viewed by 226
Abstract
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It [...] Read more.
Estradiol (E2) plays an important role in cell proliferation and certain brain functions. To reveal its mechanism of action, its detectability is essential. Only a few fluorescent-labeled hormonally active E2s exist in the literature, and their mechanism of action usually remains unclear. It would be of particular interest to develop novel labeled estradiol derivatives with retained biological activity and improved optical properties. Due to their superior optical characteristics, aza-BODIPY dyes are frequently used labeling agents in biomedical applications. E2 was labeled with the aza-BODIPY dye at its phenolic hydroxy function via an alkyl linker and a triazole coupling moiety. The estrogenic activity of the newly synthesized fluorescent conjugate was evaluated via transcriptional luciferase assay. Docking calculations were performed for the classical and alternative binding sites (CBS and ABS) of human estrogen receptor α. The terminal alkyne function was introduced into the tetraphenyl aza-BODIPY core via selective formylation, oxidation, and subsequent amidation with propargyl amine. The conjugation was achieved via Cu(I)-catalyzed azide–alkyne click reaction of the aza-BODIPY-alkyne with the 3-O-(4-azidobut-1-yl) derivative of E2. The labeled estrogen induced a dose-dependent transcriptional activity of human estrogen receptor α with a submicromolar EC50 value. Docking calculations revealed that the steroid part has a perfect overlap with E2 in ABS. In CBS, however, a head-tail binding deviation was observed. A facile, fluorescent labeling methodology has been elaborated for the development of a novel red-emitting E2 conjugate with substantial estrogenic activity. Docking experiments uncovered the binding mode of the conjugate in both ABS and CBS. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

27 pages, 1432 KiB  
Review
Neurosteroids Progesterone and Dehydroepiandrosterone: Molecular Mechanisms of Action in Neuroprotection and Neuroinflammation
by Tatiana A. Fedotcheva and Nikolay L. Shimanovsky
Pharmaceuticals 2025, 18(7), 945; https://doi.org/10.3390/ph18070945 - 23 Jun 2025
Viewed by 901
Abstract
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic [...] Read more.
Neurosteroids pregnenolone, progesterone, allopregnanolone, and dehydroepiandrosterone have been actively studied in the last years as candidates for the treatment of neurodegenerative diseases and postinjury rehabilitation. The neuroprotective mechanisms of these neurosteroids have been shown in clinical studies of depression, epilepsy, status epilepticus, traumatic brain injury, fragile X syndrome, and chemical neurotoxicity. However, only the allopregnanolone analogs brexanolone and zuranolone have been recently approved by the FDA for the treatment of depression. The aim of this review was to evaluate whether the endogenous neurosteroids can be used in clinical practice as neuroprotectors. Neurosteroids are multitarget compounds with strong anti-inflammatory, immunomodulatory, and cytoprotective action; they stimulate the synthesis and release of BDNF and increase remyelination and regeneration. In addition to nuclear and membrane steroid hormone receptors, such as PR, mPR, PGRMC1,2, ER, AR, CAR, and PXR, they can bind to GABAA receptors, NMDA receptors, Sigma-1 and -2 receptors (σ1-R/σ2-R). Among these, mPRs, PGRMC1,2, sigma receptors, and mitochondrial proteins attract comprehensive attention because of strong binding with the P4 and DHEA, but subsequent signaling is poorly studied. Other plasma membrane and mitochondrial proteins are involved in the rapid nongenomic neuroprotective action of neurosteroids. P-glycoprotein, BCL-2 proteins, and the components of the mitochondrial permeability transition pore (mPTP) play a significant role in the defense against the injuries of the brain and the peripheral nervous system. The role of these proteins in the molecular mechanisms of action in neuroprotection and neuroinflammation has not yet been clearly established. The aspects of their participation in these pathological processes are discussed. New formulations, such as lipophilic emulsions, nanogels, and microneedle array patches, are attractive strategies to overcome the low bioavailability of these neurosteroids for the amelioration and treatment of various nervous disorders. Full article
Show Figures

Figure 1

18 pages, 1313 KiB  
Review
Mode of Action of Brassinosteroids: Seed Germination and Seedling Growth and Development—One Hypothesis
by Bogdan Nikolić, Vladan Jovanović, Branislav Knežević, Zoran Nikolić and Maja Babović-Đorđević
Int. J. Mol. Sci. 2025, 26(6), 2559; https://doi.org/10.3390/ijms26062559 - 12 Mar 2025
Viewed by 1053
Abstract
Brassinosteroids, as unique plant steroid hormones that bear structural similarity to animal steroids, play a crucial role in modulating plant growth and development. These hormones have a positive impact on plant resistance and, under stressful conditions, stimulate photosynthesis and antioxidative systems (enzymatic and [...] Read more.
Brassinosteroids, as unique plant steroid hormones that bear structural similarity to animal steroids, play a crucial role in modulating plant growth and development. These hormones have a positive impact on plant resistance and, under stressful conditions, stimulate photosynthesis and antioxidative systems (enzymatic and non-enzymatic), leading to a reduced impact of environmental cues on plant metabolism and growth. Although these plant hormones have been studied for several decades, most studies analyze the primary site of action of the brassinosteroid phytohormone, with a special emphasis on the activation of various genes (mainly nuclear) through different signaling processes that influence plant metabolism, growth, and development. This review explores another issue, the secondary influence (the so-called mode of action) of brassinosteroids on changes in growth, development, and chemical composition, as well as thermodynamic and energetic changes, mainly during the early growth of corn seedlings. The interactions of brassinosteroids with other phytohormones and physiologically active substances and the influence of these interactions on the mode of action of brassinosteroid phytohormones were also discussed. Seen from a cybernetic point of view, the approach can be labeled as “black box” or “gray box”. “Black box” and “gray box” are terms for cybernetic systems, for which we know the inputs and outputs (in an energetic, biochemical, kinetic, informational, or some other sense), but whose internal structure and/or organization are completely or partially unknown to us. The findings of many researchers have indicated an important role of reactive species, such as oxygen and nitrogen reactive species, in these processes. This ultimately results in the redistribution of matter and energy from source organs to sink organs, with a decrease in Gibbs free energy from the source to sink organs. This quantitative evidence speaks of the exothermic nature and spontaneity of early (corn) seedling development and growth under the influence of 24-epibrassinolide. Based on these findings and a review of the literature on the mode of action of brassinosteroids, a hypothesis was put forward about the secondary effects of BRs on germination and the early growth of plant seedlings. Full article
(This article belongs to the Special Issue The Role of Cytokinins and Other Phytohormones in Plant Life)
Show Figures

Figure 1

18 pages, 2532 KiB  
Review
Vitamin D: Beyond Traditional Roles—Insights into Its Biochemical Pathways and Physiological Impacts
by Vlad Mihai Voiculescu, Andreea Nelson Twakor, Nicole Jerpelea and Anca Pantea Stoian
Nutrients 2025, 17(5), 803; https://doi.org/10.3390/nu17050803 - 26 Feb 2025
Cited by 3 | Viewed by 4475
Abstract
Background: It is true that vitamin D did not earn its title as the “sunshine vitamin” for nothing. In recent years, however, there has been a shift in the perception surrounding vitamin D to a type of hormone that boasts countless bioactivities and [...] Read more.
Background: It is true that vitamin D did not earn its title as the “sunshine vitamin” for nothing. In recent years, however, there has been a shift in the perception surrounding vitamin D to a type of hormone that boasts countless bioactivities and health advantages. Historically, vitamin D has been known to take care of skeletal integrity and the calcium–phosphorus balance in the body, but new scientific research displays a much larger spectrum of actions handled by this vitamin. Materials and Methods: A systematic literature search was performed using the following electronic databases: PubMed, Scopus, Web of Science, Embase, and Cochrane Library. Results: Many emerging new ideas, especially concerning alternative hormonal pathways and vitamin D analogs, are uniformly challenging the classic “one hormone–one receptor” hypothesis. To add more context to this, the vitamin D receptor (VDR) was previously assumed to be the only means through which the biologically active steroid 1,25-dihydroxyvitamin D3 could impact the body. Two other molecules apart from the active hormonal form of 1,25(OH)2D3 have gained interest in recent years, and these have reinvigorated research on D3 metabolism. These metabolites can interact with several other nuclear receptors (like related orphan receptor alpha—RORα, related orphan receptor gamma—RORγ, and aryl hydrocarbon receptor—AhR) and trigger various biological responses. Conclusions: This paper thus makes a case for placing vitamin D at the forefront of new holistic and dermatological health research by investigating the potential synergies between the canonical and noncanonical vitamin D pathways. This means that there are now plentiful new opportunities for manipulating and understanding the full spectrum of vitamin D actions, far beyond those related to minerals. Full article
(This article belongs to the Special Issue Assessment of Vitamin D Status and Intake in Human Health)
Show Figures

Figure 1

85 pages, 24685 KiB  
Review
Adaptogens in Long-Lasting Brain Fatigue: An Insight from Systems Biology and Network Pharmacology
by Alexander Panossian, Terrence Lemerond and Thomas Efferth
Pharmaceuticals 2025, 18(2), 261; https://doi.org/10.3390/ph18020261 - 15 Feb 2025
Cited by 1 | Viewed by 8370
Abstract
Long-lasting brain fatigue is a consequence of stroke or traumatic brain injury associated with emotional, psychological, and physical overload, distress in hypertension, atherosclerosis, viral infection, and aging-related chronic low-grade inflammatory disorders. The pathogenesis of brain fatigue is linked to disrupted neurotransmission, the glutamate-glutamine [...] Read more.
Long-lasting brain fatigue is a consequence of stroke or traumatic brain injury associated with emotional, psychological, and physical overload, distress in hypertension, atherosclerosis, viral infection, and aging-related chronic low-grade inflammatory disorders. The pathogenesis of brain fatigue is linked to disrupted neurotransmission, the glutamate-glutamine cycle imbalance, glucose metabolism, and ATP energy supply, which are associated with multiple molecular targets and signaling pathways in neuroendocrine-immune and blood circulation systems. Regeneration of damaged brain tissue is a long-lasting multistage process, including spontaneously regulating hypothalamus-pituitary (HPA) axis-controlled anabolic–catabolic homeostasis to recover harmonized sympathoadrenal system (SAS)-mediated function, brain energy supply, and deregulated gene expression in rehabilitation. The driving mechanism of spontaneous recovery and regeneration of brain tissue is a cross-talk of mediators of neuronal, microglia, immunocompetent, and endothelial cells collectively involved in neurogenesis and angiogenesis, which plant adaptogens can target. Adaptogens are small molecules of plant origin that increase the adaptability of cells and organisms to stress by interaction with the HPA axis and SAS of the stress system (neuroendocrine-immune and cardiovascular complex), targeting multiple mediators of adaptive GPCR signaling pathways. Two major groups of adaptogens comprise (i) phenolic phenethyl and phenylpropanoid derivatives and (ii) tetracyclic and pentacyclic glycosides, whose chemical structure can be distinguished as related correspondingly to (i) monoamine neurotransmitters of SAS (epinephrine, norepinephrine, and dopamine) and (ii) steroid hormones (cortisol, testosterone, and estradiol). In this narrative review, we discuss (i) the multitarget mechanism of integrated pharmacological activity of botanical adaptogens in stress overload, ischemic stroke, and long-lasting brain fatigue; (ii) the time-dependent dual response of physiological regulatory systems to adaptogens to support homeostasis in chronic stress and overload; and (iii) the dual dose-dependent reversal (hormetic) effect of botanical adaptogens. This narrative review shows that the adaptogenic concept cannot be reduced and rectified to the various effects of adaptogens on selected molecular targets or specific modes of action without estimating their interactions within the networks of mediators of the neuroendocrine-immune complex that, in turn, regulates other pharmacological systems (cardiovascular, gastrointestinal, reproductive systems) due to numerous intra- and extracellular communications and feedback regulations. These interactions result in polyvalent action and the pleiotropic pharmacological activity of adaptogens, which is essential for characterizing adaptogens as distinct types of botanicals. They trigger the defense adaptive stress response that leads to the extension of the limits of resilience to overload, inducing brain fatigue and mental disorders. For the first time, this review justifies the neurogenesis potential of adaptogens, particularly the botanical hybrid preparation (BHP) of Arctic Root and Ashwagandha, providing a rationale for potential use in individuals experiencing long-lasting brain fatigue. The review provided insight into future research on the network pharmacology of adaptogens in preventing and rehabilitating long-lasting brain fatigue following stroke, trauma, and viral infections. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

16 pages, 4081 KiB  
Article
Weizmannia coagulans BC99 Relieves Constipation Symptoms by Regulating Inflammatory, Neurotransmitter, and Lipid Metabolic Pathways: A Randomized, Double-Blind, Placebo-Controlled Trial
by Qiuxia Fan, Yinyin Gao, Yiqing Zhou, Jinghui Wu, Haotian Wang, Yao Dong, Zhonghui Gai, Ying Wu, Shuguang Fang and Shaobin Gu
Foods 2025, 14(4), 654; https://doi.org/10.3390/foods14040654 - 15 Feb 2025
Cited by 1 | Viewed by 1448
Abstract
Probiotics have attracted increasing attention due to their benefits in terms of relieving gastrointestinal ailments, including constipation. This study evaluated the potential of Weizmannia coagulans BC99 for clinical remission of constipation in adults. In this randomized, double-blind, and placebo-controlled trial, 90 individuals with [...] Read more.
Probiotics have attracted increasing attention due to their benefits in terms of relieving gastrointestinal ailments, including constipation. This study evaluated the potential of Weizmannia coagulans BC99 for clinical remission of constipation in adults. In this randomized, double-blind, and placebo-controlled trial, 90 individuals with constipation were divided between a BC99 and a placebo group for an 8-week intervention duration. The spontaneous bowel movement (SBM) frequency, patient assessment of constipation symptoms (PAC-SYM), patient assessment of constipation quality of life (PAC-QOL), inflammatory cytokines, neurotransmitters, and serum metabolites were investigated before and after the intervention. The results showed that BC99 intervention significantly improved constipation symptoms and quality of life in adults with constipation, as evidenced by an increased SBM score and decreased PAC-SYM and PAC-QOL scores. Additionally, BC99 supplementation increased the levels of neurotransmitters (5-HT, MTL, AChE, and BDNF) associated with intestinal motility and alleviated inflammation in participants with constipation, as supported by higher levels of anti-inflammatory factors (IL-4, IL-10) and lower levels of pro-inflammatory factors (IL-6, IFN-γ) in the BC99 group. Furthermore, BC99 altered the abundance of 93 metabolites and affected biological pathways correlated with gastrointestinal motility, including sphingolipid metabolism, steroid hormone biosynthesis, and glycerophospholipid metabolism. This study demonstrates the effectiveness of the W. coagulans BC99 strain in relieving constipation in adults, and reveals its potential mechanism of action. These findings provide a scientific basis for BC99 as an effective and safe probiotic for constipation treatment. Full article
(This article belongs to the Special Issue Functional Foods, Gut Microbiota, and Health Benefits)
Show Figures

Graphical abstract

35 pages, 3685 KiB  
Review
Molecular Basis of Na, K–ATPase Regulation of Diseases: Hormone and FXYD2 Interactions
by Bárbara Martins Cordeiro, Carlos Frederico Leite Fontes and José Roberto Meyer-Fernandes
Int. J. Mol. Sci. 2024, 25(24), 13398; https://doi.org/10.3390/ijms252413398 - 13 Dec 2024
Cited by 5 | Viewed by 1938
Abstract
The Na, K–ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na+ and [...] Read more.
The Na, K–ATPase generates an asymmetric ion gradient that supports multiple cellular functions, including the control of cellular volume, neuronal excitability, secondary ionic transport, and the movement of molecules like amino acids and glucose. The intracellular and extracellular levels of Na+ and K+ ions are the classical local regulators of the enzyme’s activity. Additionally, the regulation of Na, K–ATPase is a complex process that occurs at multiple levels, encompassing its total cellular content, subcellular distribution, and intrinsic activity. In this context, the enzyme serves as a regulatory target for hormones, either through direct actions or via signaling cascades triggered by hormone receptors. Notably, FXYDs small transmembrane proteins regulators of Na, K–ATPase serve as intermediaries linking hormonal signaling to enzymatic regulation at various levels. Specifically, members of the FXYD family, particularly FXYD1 and FXYD2, are that undergo phosphorylation by kinases activated through hormone receptor signaling, which subsequently influences their modulation of Na, K–ATPase activity. This review describes the effects of FXYD2, cardiotonic steroid signaling, and hormones such as angiotensin II, dopamine, insulin, and catecholamines on the regulation of Na, K–ATPase. Furthermore, this review highlights the implications of Na, K–ATPase in diseases such as hypertension, renal hypomagnesemia, and cancer. Full article
(This article belongs to the Special Issue The Na, K-ATPase in Health and Disease)
Show Figures

Figure 1

30 pages, 2198 KiB  
Article
Transcriptomic Response of the Ovarian Follicle Complex in Post-Vitellogenic Rainbow Trout to 17α,20β-Dihdroxy-4-pregnen-3-one In Vitro
by Hao Ma, Guangtu Gao, Yniv Palti, Vibha Tripathi, Jill E. Birkett and Gregory M. Weber
Int. J. Mol. Sci. 2024, 25(23), 12683; https://doi.org/10.3390/ijms252312683 - 26 Nov 2024
Cited by 2 | Viewed by 1045
Abstract
Gonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear [...] Read more.
Gonadotropins and progestins are the primary regulators of follicle maturation and ovulation in fish, and they require complex communication among the oocyte and somatic cells of the follicle. The major progestin and the maturation-inducing hormone in salmonids is 17α,20β-dihdroxy-4-pregnen-3-one (17,20βP), and traditional nuclear receptors and membrane steroid receptors for the progestin have been identified within the follicle. Herein, RNA-seq was used to conduct a comprehensive survey of changes in gene expression throughout the intact follicle in response to in vitro treatment with these hormones to provide a foundation for understanding the coordination of their actions in regulating follicle maturation and preparation for ovulation. A total of 5292 differentially expressed genes were identified from our transcriptome sequencing datasets comparing four treatments: fresh tissue; untreated control; 17,20βP-treated; and salmon pituitary homogenate-treated follicles. Extensive overlap in affected genes suggests many gonadotropin actions leading to the acquisition of maturational and ovulatory competence are mediated in part by gonadotropin induction of 17,20βP synthesis. KEGG analysis identified signaling pathways, including MAPK, TGFβ, FoxO, and Wnt signaling pathways, among the most significantly enriched pathways altered by 17,20βP treatment, suggesting pervasive influences of 17,20βP on actions of other endocrine and paracrine factors in the follicle complex. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

15 pages, 1968 KiB  
Article
Susceptibility of Human Spermatozoa to Titanium Dioxide Nanoparticles: Evaluation of DNA Damage and Biomarkers
by Elena Maria Scalisi, Roberta Pecoraro, Agata Scalisi, Jessica Dragotto, Giovanni Bracchitta, Massimo Zimbone, Giuliana Impellizzeri and Maria Violetta Brundo
Life 2024, 14(11), 1455; https://doi.org/10.3390/life14111455 - 9 Nov 2024
Viewed by 2295
Abstract
Nowadays, developing countries have seen a reduction in male reproductive parameters, and it has been linked to the exposure of endocrine disrupting chemicals (EDCs), which are able to mimic or disrupt steroid hormone actions. Also, nanoparticles have shown effects on the male reproductive [...] Read more.
Nowadays, developing countries have seen a reduction in male reproductive parameters, and it has been linked to the exposure of endocrine disrupting chemicals (EDCs), which are able to mimic or disrupt steroid hormone actions. Also, nanoparticles have shown effects on the male reproductive system, in particular the use of TiO2-NPs in drugs, cosmetics, and food as pigment additives, and, thanks to their small size (1–100 nm), provide themselves the opportunity to be internalized by the body and pass the blood–testis barrier (BTB). Therefore, TiO2-NPs can act on spermatogenesis and spermatozoa. In this study, we carried out an in vitro assay on human spermatozoa to evaluate the effects of TiO2-NPs at the concentrations of 500, 250, 100, and 50 ppm. Exposure did not statistically alter sperm parameters (e.g., motility and viability) but induced damage to sperm DNA and the expression of biomarkers by spermatozoa. This immunofluorescence investigation showed a positivity for biomarkers of stress (HSP70 and MTs) on the connecting piece of spermatozoa and also for sex hormone binding globulin (SHBG) biomarkers. The SHBG protein acts as a carrier of androgens and estrogens, regulating their bioavailability; therefore, its expression in the in vitro assay did not rule out the ability of TiO2-NPs to act as endocrine disruptors. Full article
(This article belongs to the Special Issue Clinical Research in Male Reproduction)
Show Figures

Figure 1

37 pages, 5714 KiB  
Review
Abiraterone and Galeterone, Powerful Tools Against Prostate Cancer: Present and Perspective
by Ivana Z. Kuzminac, Andrea R. Nikolić, Marina P. Savić and Jovana J. Ajduković
Pharmaceutics 2024, 16(11), 1401; https://doi.org/10.3390/pharmaceutics16111401 - 30 Oct 2024
Cited by 1 | Viewed by 2146
Abstract
Due to the high prostate cancer incidence worldwide, the development of different methods of treatment continues to be a hot research topic. Since its first clinical application at the beginning of the 2010s, abiraterone in the form of prodrug abiraterone acetate continues to [...] Read more.
Due to the high prostate cancer incidence worldwide, the development of different methods of treatment continues to be a hot research topic. Since its first clinical application at the beginning of the 2010s, abiraterone in the form of prodrug abiraterone acetate continues to be the most used hormone derivative in the treatment of castration-resistant prostate cancer. This is the reason behind the publication of many scientific results regarding its synthesis, biological activity, metabolism, novel designed steroid derivatives based on its structure, etc. A similar steroid compound with a heterocycle in the C17 position, called galeterone, also designed to treat prostate cancer, continues to be in clinical studies, which provides further proof of the importance of these steroid derivatives. Besides prostate cancer treatment, abiraterone showed indications for possible clinical application in the treatment of breast, ovarian, lung, kidney, salivary gland, and adrenocortical cancer, congenital adrenal hyperplasia, Cushing’s syndrome, and COVID-19, while galeterone is investigated for its use against prostate, pancreatic, and breast cancer. Herein, we report a review comprising methods of synthesis, possible clinical applications, and mechanisms of action, as well as structures and bioactivities of derivatives of these two important steroids. Full article
(This article belongs to the Special Issue Steroid Derivatives: Design and Pharmaceutical Application)
Show Figures

Graphical abstract

18 pages, 9275 KiB  
Article
ALKBH5 Reduces BMP15 mRNA Stability and Regulates Bovine Puberty Initiation Through an m6A-Dependent Pathway
by Xiaorui Yang, Ziming Wang, Yue Chen, He Ding, Yi Fang, Xin Ma, Hongyu Liu, Jing Guo, Jing Zhao, Jun Wang and Wenfa Lu
Int. J. Mol. Sci. 2024, 25(21), 11605; https://doi.org/10.3390/ijms252111605 - 29 Oct 2024
Cited by 2 | Viewed by 1311
Abstract
The timing of puberty significantly influences subsequent reproductive performance in cattle. N6-methyladenosine (m6A) is a key epigenetic modification involved in the regulation of pubertal onset. However, limited research has investigated alterations in m6A methylation within the hypothalamic–pituitary–ovarian (HPO) axis during the onset of [...] Read more.
The timing of puberty significantly influences subsequent reproductive performance in cattle. N6-methyladenosine (m6A) is a key epigenetic modification involved in the regulation of pubertal onset. However, limited research has investigated alterations in m6A methylation within the hypothalamic–pituitary–ovarian (HPO) axis during the onset of puberty. In this study, combined analysis of methylated RNA immunoprecipitation sequencing (MeRIP-Seq) and RNA sequencing (RNA-seq) is used to describe the overall modification pattern of m6A in the HPO axis, while GSEA, KEGG, and GO analyses are used to describe the enrichment pathways of differentially expressed genes and differentially methylated genes. The m6A modifications of the differential genes KL, IGSF10, PAPPA2, and BMP15 and the pathways of cell adhesion molecules (CAMs), TGF-β, cell cycle, and steroid hormone synthesis may play roles in regulating the function of the HPO axis tissue during pubertal transition. Notably, BMP15′s m6A modification depends on the action of the demethylase ALKBH5, which is recognized by the reader protein YTHDF2, promoting bovine granulosa cell proliferation, steroid production, and estrogen secretion. This study reveals for the first time the modification mechanism of BMP15 m6A during the initiation of bovine puberty, which will provide useful information for improving the reproductive efficiency of Chinese beef cattle. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 1498 KiB  
Review
Role of Gonadal Steroid Hormones in the Eye: Therapeutic Implications
by Javier Valero-Ochando, Antolin Cantó, Rosa López-Pedrajas, Inmaculada Almansa and María Miranda
Biomolecules 2024, 14(10), 1262; https://doi.org/10.3390/biom14101262 - 7 Oct 2024
Cited by 4 | Viewed by 2809
Abstract
Gonadal steroid hormones are critical regulatory substances involved in various developmental and physiological processes from fetal development through adulthood. These hormones, derived from cholesterol, are synthesized primarily by the gonads, adrenal cortex, and placenta. The synthesis of these hormones involves a series of [...] Read more.
Gonadal steroid hormones are critical regulatory substances involved in various developmental and physiological processes from fetal development through adulthood. These hormones, derived from cholesterol, are synthesized primarily by the gonads, adrenal cortex, and placenta. The synthesis of these hormones involves a series of enzymatic steps starting in the mitochondria and includes enzymes such as cytochrome P450 and aromatase. Beyond their genomic actions, which involve altering gene transcription over hours, gonadal steroids also exhibit rapid, nongenomic effects through receptors located on the cell membrane. Additionally, recent research has highlighted the role of these hormones in the central nervous system (CNS). However, the interactions between gonadal steroid hormones and the retina have received limited attention, though it has been suggested that they may play a protective role in retinal diseases. This review explores the synthesis of gonadal hormones, their mechanisms of action, and their potential implications in various retinal and optic nerve diseases, such as glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), or retinitis pigmentosa (RP), discussing both protective and risk factors associated with hormone levels and their therapeutic potential. Full article
Show Figures

Graphical abstract

25 pages, 980 KiB  
Review
Advances in the Effects of Heat Stress on Ovarian Granulosa Cells: Unveiling Novel Ferroptosis Pathways
by Zhen Zhu, Jiang Wu, Yuguo Wen, Xiaocheng Wu, Huimingda Bao, Min Wang and Kai Kang
Vet. Sci. 2024, 11(10), 464; https://doi.org/10.3390/vetsci11100464 - 1 Oct 2024
Cited by 2 | Viewed by 2202
Abstract
Heat stress has been one of the key research areas for researchers due to the wide-ranging effects and complex mechanisms of action of its stress product reactive oxygen species (ROS). The aim of this paper is to comprehensively review and summarize the effects [...] Read more.
Heat stress has been one of the key research areas for researchers due to the wide-ranging effects and complex mechanisms of action of its stress product reactive oxygen species (ROS). The aim of this paper is to comprehensively review and summarize the effects of heat stress on ovarian granulosa cells and their mechanism of action. We systematically reviewed the effects of heat stress on ovarian granulosa cells, including intracellular steroid hormone changes, oxidative stress, apoptosis, and mitochondrial function. Meanwhile, this paper discusses in detail several major mechanisms by which heat stress induces apoptosis in ovarian granulosa cells, such as through the activation of apoptosis-related genes, induction of endoplasmic reticulum stress, and the mitochondrial pathway. In addition, we analyzed the mechanism of ferroptosis in ovarian granulosa cells under heat stress conditions, summarized the potential association between heat stress and ferroptosis in light of the existing literature, and explored the key factors in the mechanism of action of heat stress, such as the signaling pathways of Nrf2/Keap1, HSPs, and JNK, and analyzed their possible roles in the process of ferroptosis. Finally, this paper provides an outlook on the future research direction, describing the possible interaction between heat stress and ferroptosis, with a view to providing a theoretical basis for further understanding and revealing the complex mechanism of ferroptosis occurrence in ovarian granulosa cells under heat stress. Full article
Show Figures

Figure 1

25 pages, 1533 KiB  
Review
Dehydroepiandrosterone and Its Metabolite 5-Androstenediol: New Therapeutic Targets and Possibilities for Clinical Application
by Tatiana A. Fedotcheva, Maria E. Uspenskaya, Darya N. Ulchenko and Nikolay L. Shimanovsky
Pharmaceuticals 2024, 17(9), 1186; https://doi.org/10.3390/ph17091186 - 9 Sep 2024
Cited by 4 | Viewed by 4985
Abstract
Dehydroepiandrosterone and its sulfate are the most abundant steroids in humans. The metabolism of dehydroepiandrosterone can differ significantly depending on the organ or tissue and the subtype of steroid receptors expressed in it. For dehydroepiandrosterone, as a precursor of all steroid hormones, intracrine [...] Read more.
Dehydroepiandrosterone and its sulfate are the most abundant steroids in humans. The metabolism of dehydroepiandrosterone can differ significantly depending on the organ or tissue and the subtype of steroid receptors expressed in it. For dehydroepiandrosterone, as a precursor of all steroid hormones, intracrine hormonal activity is inherent. This unique feature could be beneficial for the medicinal application, especially for the local treatment of various pathologies. At present, the clinical use of dehydroepiandrosterone is limited by its Intrarosa® (Quebec city, QC, Canada) prasterone) 6.5 mg vaginal suppositories for the treatment of vaginal atrophy and dyspareunia, while the dehydroepiandrosterone synthetic derivatives Triplex, BNN 27, and Fluasterone have the investigational status for the treatment of various diseases. Here, we discuss the molecular targets of dehydroepiandrosterone, which open future prospects to expand its indications for use. Dehydroepiandrosterone, as an oral drug, is surmised to have promise in the treatment of osteoporosis, cachexia, and sarcopenia, as does 10% unguent for skin and muscle regeneration. Also, 5-androstenediol, a metabolite of dehydroepiandrosterone, is a promising candidate for the treatment of acute radiation syndrome and as an immunostimulating agent during radiopharmaceutical therapy. The design and synthesis of new 5-androstenediol derivatives with increased bioavailability may lead to the appearance of highly effective cytoprotectors on the pharmaceutical market. The argumentations for new clinical applications of these steroids and novel insights into their mechanisms of action are discussed. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

15 pages, 1927 KiB  
Communication
Acetylation of Steroidogenic Acute Regulatory Protein Sensitizes 17β-Estradiol Regulation in Hormone-Sensitive Breast Cancer Cells
by Pulak R. Manna, Deborah Molehin, Ahsen U. Ahmed, Shengping Yang and P. Hemachandra Reddy
Int. J. Mol. Sci. 2024, 25(16), 8732; https://doi.org/10.3390/ijms25168732 - 10 Aug 2024
Cited by 1 | Viewed by 1501
Abstract
An imbalance in estrogen signaling is a critical event in breast tumorigenesis. The majority of breast cancers (BCs) are hormone-sensitive; they majorly express the estrogen receptor (ER+) and are activated by 17β-estradiol (E2). The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step [...] Read more.
An imbalance in estrogen signaling is a critical event in breast tumorigenesis. The majority of breast cancers (BCs) are hormone-sensitive; they majorly express the estrogen receptor (ER+) and are activated by 17β-estradiol (E2). The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in steroid biosynthesis. The dysregulation of the epigenetic machinery, modulating E2 levels, is a primary occurrence for promoting breast tumorigenesis. StAR expression, concomitant with E2 synthesis, was reported to be aberrantly high in human and mouse hormone-dependent BC cells compared with their non-cancerous counterparts. However, the mechanism of action of StAR remains poorly understood. We discovered StAR as an acetylated protein and have identified a number of lysine (K) residues that are putatively acetylated in malignant and non-malignant breast cells, using LC-MS/MS (liquid chromatography–tandem mass spectrometry), suggesting they differently influence E2 synthesis in mammary tissue. The treatment of hormone-sensitive MCF7 cells with a variety of histone deacetylase inhibitors (HDACIs), at therapeutically and clinically relevant doses, identified a few additional StAR acetylated lysine residues. Among a total of fourteen StAR acetylomes undergoing acetylation and deacetylation, K111 and K253 were frequently recognized either endogenously or in response to HDACIs. Site-directed mutagenesis studies of these two StAR acetylomes, pertaining to K111Q and K253Q acetylation mimetic states, resulted in increases in E2 levels in ER+ MCF7 and triple negative MB-231 BC cells, compared with their values seen with human StAR. Conversely, these cells carrying K111R and K253R deacetylation mutants diminished E2 biosynthesis. These findings provide novel and mechanistic insights into intra-tumoral E2 regulation by elucidating the functional importance of this uncovered StAR post-translational modification (PTM), involving acetylation and deacetylation events, underscoring the potential of StAR as a therapeutic target for hormone-sensitive BC. Full article
(This article belongs to the Special Issue Hormonal Diversity: From Organogenesis to Neurodegeneration)
Show Figures

Figure 1

Back to TopTop