Dehydroepiandrosterone and Its Metabolite 5-Androstenediol: New Therapeutic Targets and Possibilities for Clinical Application
Abstract
:1. Introduction
2. Biosynthesis and Transformation of DHEA
3. DHEA and 5-AED Targets
3.1. Nuclear Receptors of Androstenes
3.2. Plasma Membrane Receptors of Androstenes
4. DHEA and 5-AED in ATC Classification
5. Current Clinical Use of DHEA and 5-AED
5.1. DHEA Vaginal Gel
5.2. Oral DHEA
6. Prospects and New Clinical Applications of DHEA and AED
6.1. Androstenes for Treatment of Mucosal Atrophy
6.2. Skin Anti-Aging Effect of Androstenes
6.3. The Effect of Androstenes on the Musculoskeletal System
6.4. The Use of Androstenes as Antitumor Agents
6.5. Radioprotective Effect of Androstenes
6.6. Immunostimulatory Action of Androstenes
6.7. Androstenes as Neuroprotectors
- -
- Inhibition of NMDA-induced NOS activity (10 µM);
- -
- Inhibition of Ca2+ influx into the mitochondrial matrix (100 µM);
- -
- Inhibition of mitochondrial respiration by acting on complex I of the respiratory chain (100 µM);
- -
- Inhibition of NF-κB activation (10–100 µM);
- -
- Inhibition of H2O2 and 4-hydroxynonenal (HNE) production;
- -
- Stimulation of SOD, GSH, GSH-peroxidase, and catalase;
- -
- Inhibition of lipid oxidation stimulated by H2O2/FeSO4;
- -
- A decrease in the serum concentration of TNFα and IL-6 (0.1–100 µM, maximal at 100 µM);
- -
- Antagonism to the negative effects of corticosterone on neurogenesis;
- -
- Increasing the proliferation of granule cells in the dentate gyrus;
- -
- Increasing the number of neural stem cells
- -
- Decreasing apoptosis;
- -
- Reducing NMDA-induced neurotoxicity (10 µM).
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbrevations
11OHA4 | 11β-Hydroxyandrostenedione |
5-AED | 5-androstene-3β,17β-diol |
A4 | Androstendione |
AKR1C3 | aldo-keto reductase family 1 member C3 |
Akt | protein kinase B |
APMK | 5′ adenosine monophosphate-activated protein kinase |
AR | androgen receptor |
ARS | acute radiation syndrome |
ATC | anatomical therapeutic chemical (classification) |
BBB | blood–brain barrier |
BMD | bone mineral density |
CAR | constitutive androstane receptor |
CT | clinical trials |
CSFs | colony-stimulating factors |
DHEA | dehydroepiandrosterone |
DHEA-S | dehydroepiandrosterone sulfate |
DHT | dihydrotestosterone |
E2 | 17β-estradiol |
EGF | epidermal growth factor |
ER | estrogen receptor |
hMSCs | human bone marrow-derived mesenchymal stem cells |
HSD3B2 | 3beta-hydroxysteroid dehydrogenase/delta(5)-delta(4)isomerase type II |
FSH | follicle-stimulating hormone |
G6PD | glucose-6-phosphate dehydrogenase |
GABA(A)R | gamma aminobutyric acid receptor type A |
G-CSF | granulocyte colony-stimulating factor |
GLUT2, 4 | glucose transporters member 2, 4 |
GPCRs | G protein-coupled receptors |
GPER | G protein-coupled estrogen receptor |
GPx | glutathione peroxidase |
GR | glucocorticoid receptor |
GSH | glutathione |
GSK-3β | glycogen synthase kinase-3 beta |
IGF-1 | insulin-like growth factor 1 |
IL-1, 6 | interleukins 1, 6 |
IRS-1 | insulin receptor substrate 1 |
IVF | in vitro fertilization |
HMGB1 | high mobility group box 1 |
HRT | hormone replacement therapy |
LH | luteinizing hormone |
LIF | leukemia inhibitory factor |
LXR | liver X receptor |
MDA | malondialdehyde |
MAPK | mitogen-activated protein kinase |
mAR | membrane androgen receptor |
MMP-1 | matrix metalloproteinase-1 |
mPR | membrane progesterone receptor |
NADP | nicotinamide adenine dinucleotide phosphate |
NF-kB | nuclear factor kappa B |
NGF | nerve growth factor |
NMDA | N-methyl-d-aspartate |
NOS | nitric oxide synthase |
NRF1 | nuclear respiratory factor 1 |
P75NTR | neurotrophin receptor p75 |
PGC-1α | peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
PGRMC1,2 | progesterone receptor membrane component-1,2 |
PI3K | phosphatidylinositol 3-kinase |
POR | poor ovarian reserve |
PPAR | peroxisome proliferator-activated receptor |
PXR | pregnane X receptor |
ROS | reactive oxygen species |
S1R | sigma-1 receptor |
SLE | systemic lupus erythematosus |
SOD | superoxide dismutase |
T | testosterone |
TGFβ1 | transforming growth factor beta 1 |
TH1,2 | T-helper 1,2 |
TIMP-1 | tissue inhibitor of metalloproteinase-1 |
TLR4 | toll-like receptor 4 |
Tregs | T regulatory cells |
TRK | tropomyosin receptor kinase |
References
- Nair, K.S.; Rizza, R.A.; O’Brien, P.; Dhatariya, K.; Short, K.R.; Nehra, A.; Vittone, J.L.; Klee, G.G.; Basu, A.; Basu, R.; et al. DHEA in elderly women and DHEA or testosterone in elderly men. N. Engl. J. Med. 2006, 355, 1647–1659. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, D.; Kobbe, P.; Wegner, A.; Hammes, F.; Oberbeck, R. Dehydroepiandrosterone during sepsis: Does the timing of administration influence the effectiveness. J. Surg. Res. 2010, 163, e73–e77. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Jang, W.S.; Lee, S.; Son, Y.; Park, S.; Lee, S.S. A study of the effect of sequential injection of 5-androstenediol on irradiation-induced myelosuppression in mice. Arch. Pharm. Res. 2015, 38, 1213–1222. [Google Scholar] [CrossRef]
- Schwartz, A.G. Inhibition of spontaneous breast cancer formation in female C3H(Avy/a) mice by long-term treatment with dehydroepiandrosterone. Cancer Res. 1979, 39, 1129–1132. [Google Scholar] [PubMed]
- Colín-Val, Z.; López-Díazguerrero, N.E.; López-Marure, R. DHEA inhibits proliferation, migration and alters mesenchymal-epithelial transition proteins through the PI3K/Akt pathway in MDA-MB-231 cells. J. Steroid Biochem. Mol. Biol. 2021, 208, 105818. [Google Scholar] [CrossRef]
- Mukohara, S.; Mifune, Y.; Inui, A.; Nishimoto, H.; Kurosawa, T.; Yamaura, K.; Yoshikawa, T.; Kuroda, R. In vitro and in vivo tenocyte-protective effectiveness of dehydroepiandrosterone against high glucose-induced oxidative stress. BMC Musculoskelet. Disord. 2021, 22, 519. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Qin, W.; Hu, Q.; Li, J.; Qin, R.; Ma, N.; Zheng, F.; Tian, W.; Jiang, J.; et al. Dehydroepiandrosterone promotes ovarian angiogenesis and improves ovarian function in a rat model of premature ovarian insufficiency by up-regulating HIF-1α/VEGF signalling. Reprod. Biomed. Online 2024, 49, 103914. [Google Scholar] [CrossRef]
- Fedotcheva, T.A.; Shimanovskii, N.L.; Senderovich, A.I.; Chermnykh, N.S.; Semeikin, A.V.; Rzheznikov, V.M.; Golubovskaya, L.E.; Grinenko, G.S.; Banin, V.V.; Sergeev, P.V. Comparative analysis of the effect of gestagens, antiestrogencytostatics, and androstenes on the viability of tumor and normal cells. Pharm. Chem. J. 2007, 41, 345–349. [Google Scholar] [CrossRef]
- Labrie, F.; Luu-The, V.; Labrie, C.; Simard, J. DHEA and its transformation into androgens and estrogens in peripheral target tissues: Intracrinology. Front. Neuroendocrinol. 2001, 22, 185–212. [Google Scholar] [CrossRef]
- Traish, A.M.; Kang, H.P.; Saad, F.; Guay, A.T. Dehydroepiandrosterone (DHEA)—A precursor steroid or an active hormone in human physiology. J. Sex. Med. 2011, 8, 2960–2982. [Google Scholar] [CrossRef]
- Jankowski, C.M.; Wolfe, P.; Schmiege, S.J.; Nair, K.S.; Khosla, S.; Jensen, M.; von Muhlen, D.; Laughlin, G.A.; Kritz-Silverstein, D.; Bergstrom, J.; et al. Sex-specific effects of dehydroepiandrosterone (DHEA) on bone mineral density and body composition: A pooled analysis of four clinical trials. Clin. Endocrinol. 2019, 90, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Tummala, S.; Svec, F. Correlation between the administered dose of DHEA and serum levels of DHEA and DHEA-S in human volunteers: Analysis of published data. Clin. Biochem. 1999, 32, 355–361. [Google Scholar] [CrossRef]
- Gurnell, E.M.; Hunt, P.J.; Curran, S.E.; Conway, C.L.; Pullenayegum, E.M.; Huppert, F.A.; Compston, J.E.; Herbert, J.; Chatterjee, V.K. Long-term DHEA replacement in primary adrenal insufficiency: A randomized, controlled trial. J. Clin. Endocr. Metab. 2008, 93, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Iruthayanathan, M.; Homan, L.L.; Wang, Y.; Yang, L.; Wang, Y.; Dillon, J.S. Dehydroepiandrosterone stimulates endothelial proliferation and angiogenesis through extracellular signal-regulated kinase 1/2-mediated mechanisms. Endocrinology 2008, 149, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Buendía-González, F.O.; Legorreta-Herrera, M. The Similarities and Differences between the Effects of Testosterone and DHEA on the Innate and Adaptive Immune Response. Biomolecules 2022, 12, 1768. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Knecht, K.; Birzin, E.; Fisher, J.; Wilkinson, H.; Mojena, M.; Moreno, C.T.; Schmidt, A.; Harada, S.; Freedman, L.P.; et al. Direct agonist/antagonist functions of dehydroepiandrosterone. Endocrinology 2005, 146, 4568–4576. [Google Scholar] [CrossRef]
- Dutheil, F.; de Saint Vincent, S.; Pereira, B.; Schmidt, J.; Moustafa, F.; Charkhabi, M.; Bouillon-Minois, J.B.; Clinchamps, M. DHEA as a Biomarker of Stress: A Systematic Review and Meta-Analysis. Front. Psychiatry 2021, 12, 688367. [Google Scholar] [CrossRef]
- Schwartz, A.G. Dehydroepiandrosterone, Cancer, and Aging. Aging Dis. 2022, 13, 423–432. [Google Scholar] [CrossRef]
- Kalimi, M.; Shafagoj, Y.; Loria, R.; Padgett, D.; Regelson, W. Anti-glucocorticoid effects of dehydroepiandrosterone (DHEA). Mol. Cell. Biochem. 1994, 131, 99–104. [Google Scholar] [CrossRef]
- Sokolov, M.N.; Rozhkov, V.V.; Uspenskaya, M.E.; Ulchenko, D.N.; Shmygarev, V.I.; Trukhan, V.M.; Churakov, A.V.; Shimanovsky, N.L.; Fedotcheva, T.A. The Effects of the Steroids 5-Androstenediol and Dehydroepiandrosterone and Their Synthetic Derivatives on the Viability of K562, HeLa, and Wi-38 Cells and the Luminol-Stimulated Chemiluminescence of Peripheral Blood Mononuclear Cells from Healthy Volunteers. Biomolecules 2024, 14, 373. [Google Scholar] [CrossRef]
- Yokokawa, T.; Sato, K.; Iwanaka, N.; Honda, H.; Higashida, K.; Iemitsu, M.; Hayashi, T.; Hashimoto, T. Dehydroepiandrosterone activates AMP kinase and regulates GLUT4 and PGC-1α expression in C2C12 myotubes. Biochem. Biophys. Res. Commun. 2015, 463, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Toporova, L.; Balaguer, P. Nuclear receptors are the major targets of endocrine disrupting chemicals. Mol. Cell. Endocrinol. 2020, 502, 110665. [Google Scholar] [CrossRef] [PubMed]
- Goncharov, N.P.; Katsia, G.V. Dehydroepiandrosterone: Biosynthesis, Metabolism, Biological Action and Clinical Application (Analytical Review). Androl. Genit. Surg. 2015, 1, 13–22, ISSN 2412-8902. Available online: https://cyberleninka.ru/article/n/degidroepiandrosteron-biosintez-metabolizm-biologicheskoe-deystvie-i-klinicheskoe-primenenie-analiticheskiy-obzor (accessed on 2 August 2024). [CrossRef]
- Maninger, N.; Wolkowitz, O.M.; Reus, V.I.; Epel, E.S.; Mellon, S.H. Neurobiological and neuropsychiatric effects of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front. Neuroendocrinol. 2009, 30, 65–91. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, L.; Barnard, L.; Baranowski, E.S.; Gilligan, L.C.; Taylor, A.E.; Arlt, W.; Shackleton, C.H.L.; Storbeck, K.H. Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. J. Steroid. Biochem. Mol. Biol. 2019, 194, 105439. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.T.; Blackman, M.R. Does DHEA exert direct effects on androgen and estrogen receptors, and does it promote or prevent prostate cancer? Endocrinology 2005, 146, 4565–4567. [Google Scholar] [CrossRef]
- Lindeblad, M.O.; Bauer, K.S.; Zakharov, A.D.; Hill, J.M.; Green, J.S.; Thomas, B.F.; Schwartz, A.; Kapetanovic, I.M.; Lyubimov, A. Pharmacokinetic and tissue distribution study of [14C]fluasterone in male Beagle dogs following intravenous, oral and subcutaneous dosing routes. Chem. Biol. Interact. 2010, 183, 317–326. [Google Scholar] [CrossRef]
- Oertel, G.W.; Menzel, P.; Bauke, D. Effects of dehydroepiandrosterone and its conjugates upon the activity of glucose-6-phosphate dehydrogenase. Clin. Chim. Acta 1970, 27, 197–201. [Google Scholar] [CrossRef]
- Powrie, Y.S.L.; Smith, C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: Therapeutic potential? J. Neuroinflammation 2018, 15, 289. [Google Scholar] [CrossRef]
- Ofner, P.; Vena, R.L.; Barowsky, N.J.; Singer, R.M.; Tashjian, A.H. Comparative C19-radiosteroid metabolism by MA 160 and HeLa cell lines. In Vitro 1977, 13, 378–388. [Google Scholar] [CrossRef]
- Bwayi, M.N.; Garcia-Maldonado, E.; Chai, S.C.; Xie, B.; Chodankar, S.; Huber, A.D.; Wu, J.; Annu, K.; Wright, W.C.; Lee, H.-M.; et al. Molecular basis of crosstalk in nuclear receptors: Heterodimerization between PXR and CAR and the implication in gene regulation. Nucleic Acids Res. 2022, 50, 3254–3275. [Google Scholar] [CrossRef] [PubMed]
- Toth-Fejel, S.; Cheek, J.; Calhoun, K.; Muller, P.; Pommier, R.F. Estrogen and androgen receptors as comediators of breast cancer cell proliferation: Providing a new therapeutic tool. Arch. Surg. 2004, 139, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Langley, E.; Velazquez-Cruz, R.; Parra-Torres, A.; Enríquez, J. The Non-Aromatic Δ5-Androstenediol Derivative of Dehydroepiandrosterone Acts as an Estrogen Agonist in Neonatal Rat Osteoblasts through an Estrogen Receptor α-related Mechanism. Endocr. Res. 2019, 44, 87–102. [Google Scholar] [CrossRef]
- Clark, B.J.; Prough, R.A.; Klinge, C.M. Mechanisms of Action of Dehydroepiandrosterone. Vitam. Horm. 2018, 108, 29–73. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, H.; Yang, Y.; Jiang, Z.; Ma, H. Dehydroepiandrosterone activates the GPER-mediated AMPK signaling pathway to alleviate the oxidative stress and inflammatory response in laying hens fed with high-energy and low-protein diets. Life Sci. 2022, 308, 120926. [Google Scholar] [CrossRef]
- Vahidinia, Z.; Karimian, M.; Joghataei, M.T. Neurosteroids and their receptors in ischemic stroke: From molecular mechanisms to therapeutic opportunities. Pharmacol. Res. 2020, 160, 105163. [Google Scholar] [CrossRef]
- Charalampopoulos, I.; Alexaki, V.I.; Lazaridis, I.; Dermitzaki, E.; Avlonitis, N.; Tsatsanis, C.; Calogeropoulou, T.; Margioris, A.N.; Castanas, E.; Gravanis, A. G protein-associated, specific membrane binding sites mediate the neuroprotective effect of dehydroepiandrosterone. FASEB J. 2006, 20, 577–579. [Google Scholar] [CrossRef]
- Johansson, T.; Elfverson, M.; Zhou, Q.; Nyberg, F. Allosteric modulation of the NMDA receptor by neurosteroids in rat brain and the impact of long term morphine administration. Biochem. Biophys. Res. Commun. 2010, 401, 504–508. [Google Scholar] [CrossRef]
- Prough, R.A.; Clark, B.J.; Klinge, C.M. Novel mechanisms for DHEA action. J. Mol. Endocrinol. 2016, 56, R139–R155. [Google Scholar] [CrossRef]
- Lu, S.F.; Mo, Q.; Hu, S.; Garippa, C.; Simon, N.G. Dehydroepiandrosterone upregulates neural androgen receptor level and transcriptional activity. J. Neurobiol. 2003, 57, 163–171. [Google Scholar] [CrossRef]
- Altman, R.; Motton, D.D.; Kota, R.S.; Rutledge, J.C. Inhibition of vascular inflammation by dehydroepiandrosterone sulfate in human aortic endothelial cells: Roles of PPARalpha and NF-kappaB. Vascul. Pharmacol. 2008, 48, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Elfverson, M.; Johansson, T.; Zhou, Q.; Le Grevès, P.; Nyberg, F. Chronic administration of the anabolic androgenic steroid nandrolone alters neurosteroid action at the sigma-1 receptor but not at the sigma-2 or NMDA receptors. Neuropharmacology 2011, 61, 1172–1181. [Google Scholar] [CrossRef] [PubMed]
- Echchgadda, I.; Song, C.S.; Oh, T.S.; Cho, S.H.; Rivera, O.J.; Chatterjee, B. Gene regulation for the senescence marker protein DHEA-sulfotransferase by the xenobiotic-activated nuclear pregnane X receptor (PXR). Mech. Ageing Dev. 2004, 125, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Kohalmy, K.; Tamási, V.; Kóbori, L.; Sárváry, E.; Pascussi, J.M.; Porrogi, P.; Rozman, D.; Prough, R.A.; Meyer, U.A.; Monostory, K. Dehydroepiandrosterone induces human CYP2B6 through the constitutive androstane receptor. Drug Metab. Dispos. 2007, 35, 1495–1501. [Google Scholar] [CrossRef]
- Bonnet, S.; Paulin, R.; Sutendra, G.; Dromparis, P.; Roy, M.; Watson, K.O.; Nagendran, J.; Haromy, A.; Dyck, J.R.; Michelakis, E.D. Dehydroepiandrosterone reverses systemic vascular remodeling through the inhibition of the Akt/GSK3-{beta}/NFAT axis. Circulation 2009, 120, 1231–1240. [Google Scholar] [CrossRef]
- Ochi, R.; Chettimada, S.; Kizub, I.; Gupte, S.A. Dehydroepiandrosterone inhibits ICa,L and its window current in voltage-dependent and -independent mechanisms in arterial smooth muscle cells. Am. J. Physiol. Heart. Circ. Physiol. 2018, 315, H1602–H1613. [Google Scholar] [CrossRef]
- Kuiper, G.G.; Carlsson, B.; Grandien, K.; Enmark, E.; Häggblad, J.; Nilsson, S.; Gustafsson, J.A. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 1997, 138, 863–870. [Google Scholar] [CrossRef]
- Nicoletti, F.; Auci, D.L.; Mangano, K.; Flores-Riveros, J.; Villegas, S.; Frincke, J.M.; Reading, C.L.; Offner, H. 5-androstenediol ameliorates pleurisy, septic shock, and experimental autoimmune encephalomyelitis in mice. Autoimmune Dis. 2010, 2010, 757432. [Google Scholar] [CrossRef]
- Miller, K.K.; Al-Rayyan, N.; Ivanova, M.M.; Mattingly, K.A.; Ripp, S.L.; Klinge, C.M.; Prough, R.A. DHEA metabolites activate estrogen receptors alpha and beta. Steroids 2013, 78, 15–25. [Google Scholar] [CrossRef]
- Girón, R.A.; Montaño, L.F.; Escobar, M.L.; López-Marure, R. Dehydroepiandrosterone inhibits the proliferation and induces the death of HPV-positive and HPV-negative cervical cancer cells through an androgen- and estrogen-receptor independent mechanism. FEBS J. 2009, 276, 5598–5609. [Google Scholar] [CrossRef]
- Li, L.; Yao, Y.; Zhao, J.; Cao, J.; Ma, H. Dehydroepiandrosterone protects against hepatic glycolipid metabolic disorder and insulin resistance induced by high fat via activation of AMPK-PGC-1α-NRF-1 and IRS1-AKT-GLUT2 signaling pathways. Int. J. Obes. 2020, 44, 1075–1086. [Google Scholar] [CrossRef] [PubMed]
- Klinge, C.M.; Clark, B.J.; Prough, R.A. Dehydroepiandrosterone Research: Past, Current, and Future. Vitam. Horm. 2018, 108, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Dillon, J.S. Dehydroepiandrosterone activates endothelial cell nitric-oxide synthase by a specific plasma membrane receptor coupled to Galpha(i2,3). J. Biol. Chem. 2002, 277, 21379–21388. [Google Scholar] [CrossRef]
- Lazaridis, I.; Charalampopoulos, I.; Alexaki, V.I.; Avlonitis, N.; Pediaditakis, I.; Efstathopoulos, P.; Calogeropoulou, T.; Castanas, E.; Gravanis, A. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis. PLoS Biol. 2011, 9, e1001051. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, S.R.; Kelleher, C.; Khalil, R.A. Gender-based research underscores sex differences in biological processes, clinical disorders and pharmacological interventions. Biochem. Pharmacol. 2023, 215, 115737. [Google Scholar] [CrossRef]
- Available online: https://go.drugbank.com/atc/A14A (accessed on 2 August 2024).
- Available online: https://www.whocc.no/atc_ddd_index/?code=L02AX (accessed on 2 August 2024).
- Deghenghi, R. DHEA: A forgettable steroid? J. Endocrinol. Investig. 2000, 23, 782–783. [Google Scholar] [CrossRef]
- Ke, Y.; Labrie, F.; Gonthier, R.; Simard, J.N.; Bergeron, D.; Martel, C.; Vaillancourt, M.; Montesino, M.; Lavoie, L.; Archer, D.F.; et al. Serum levels of sex steroids and metabolites following 12 weeks of intravaginal 0.50% DHEA administration. J. Steroid Biochem. Mol. Biol. 2015, 154, 186–196. [Google Scholar] [CrossRef]
- Labrie, F.; Derogatis, L.; Archer, D.F.; Koltun, W.; Vachon, A.; Young, D.; Frenette, L.; Portman, D.; Montesino, M.; Cote, I.; et al. Effect of Intravaginal Prasterone on Sexual Dysfunction in Postmenopausal Women with Vulvovaginal Atrophy. J. Sex. Med. 2015, 12, 2401–2412. [Google Scholar] [CrossRef]
- Labrie, F.; Montesino, M.; Archer, D.F.; Lavoie, L.; Beauregard, A.; Cote, I.; Martel, C.; Vaillancourt, M.; Balser, J.; Moyneur, E.; et al. Influence of treatment of vulvovaginal atrophy with intravaginal prasterone on the male partner. Climacteric 2015, 18, 817–825. [Google Scholar] [CrossRef]
- Labrie, F.; Archer, D.F.; Koltun, W.; Vachon, A.; Young, D.; Frenette, L.; Portman, D.; Montesino, M.; Cote, I.; Parent, J.; et al. Efficacy of intravaginal dehydroepiandrosterone (DHEA) on moderate to severe dyspareunia and vaginal dryness, symptoms of vulvovaginal atrophy, and of the genitourinary syndrome of menopause. Menopause 2016, 23, 243–256. [Google Scholar] [CrossRef]
- Martel, C.; Labrie, F.; Archer, D.F.; Ke, Y.; Gonthier, R.; Simard, J.N.; Lavoie, L.; Vaillancourt, M.; Montesino, M.; Balser, J.; et al. Serum steroid concentrations remain within normal postmenopausal values in women receiving daily 6.5 mg intravaginal prasterone for 12 weeks. J. Steroid Biochem. Mol. Biol. 2016, 159, 142–153. [Google Scholar] [CrossRef]
- Montesino, M.; Labrie, F.; Archer, D.F.; Zerhouni, J.; Cote, I.; Lavoie, L.; Beauregard, A.; Martel, C.; Vaillancourt, M.; Moyneur, E.; et al. Evaluation of the acceptability of intravaginal prasterone ovule administration using an applicator. Gynecol. Endocrinol. 2016, 32, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Morales, A.J.; Haubrich, R.H.; Hwang, J.Y.; Asakura, H.; Yen, S.S. The effect of six months treatment with a 100 mg daily dose of dehydroepiandrosterone (DHEA) on circulating sex steroids, body composition and muscle strength in age-advanced men and women. Clin. Endocrinol. 1998, 49, 421–432. [Google Scholar] [CrossRef]
- Andguladze, M.; Tevdorashvili, G.; Tevdorashvili, M.; Tevdorashvili, D. (273) Influences of Oral Dehydroepiandrosterone (DHEA) Administration on Hormonal Profile, Menopausal Clinical Symptoms and Sexual Function in Early Postmenopausal Symptomatic Women. J. Sex. Med. 2024, 21, qdae002.236. [Google Scholar] [CrossRef]
- Mortola, J.F.; Yen, S.S. The effects of oral dehydroepiandrosterone on endocrine-metabolic parameters in postmenopausal women. J. Clin. Endocrinol. Metab. 1990, 71, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Chen, L.-R.; Chen, K.-H. The Utilization of Dehydroepiandrosterone as a Sexual Hormone Precursor in Premenopausal and Postmenopausal Women: An Overview. Pharmaceuticals 2022, 15, 46. [Google Scholar] [CrossRef] [PubMed]
- Panjari, M.; Bell, R.J.; Jane, F.; Adams, J.; Morrow, C.; Davis, S.R. The safety of 52 weeks of oral DHEA therapy for postmenopausal women. Maturitas 2009, 63, 240–245. [Google Scholar] [CrossRef]
- DiVasta, A.D.; Feldman, H.A.; Beck, T.J.; LeBoff, M.S.; Gordon, C.M. Does hormone replacement normalize bone geometry in adolescents with anorexia nervosa? J. Bone Miner. Res. 2014, 29, 151–157. [Google Scholar] [CrossRef]
- Vajapeyam, S.; Ecklund, K.; Mulkern, R.V.; Feldman, H.A.; O’Donnell, J.M.; DiVasta, A.D.; Rosen, C.J.; Gordon, C.M. Magnetic resonance imaging and spectroscopy evidence of efficacy for adrenal and gonadal hormone replacement therapy in anorexia nervosa. Bone 2018, 110, 335–342. [Google Scholar] [CrossRef]
- Available online: https://clinicaltrials.gov/study/NCT00391924?cond=Systemic%20Lupus%20Erythematosus&term=Prasterone%20oral&rank=1 (accessed on 2 August 2024).
- Stickney, D.R.; Groothuis, J.R.; Ahlem, C.; Kennedy, M.; Miller, B.S.; Onizuka-Handa, N.; Schlangen, K.M.; Destiche, D.; Reading, C.; Garsd, A.; et al. Preliminary clinical findings on NEUMUNE as a potential treatment for acute radiation syndrome. J. Radiol. Prot. 2010, 30, 687–698. [Google Scholar] [CrossRef]
- Singh, V.K.; Romaine, P.L.; Seed, T.M. Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile. Health Phys. 2015, 108, 607–630. [Google Scholar] [CrossRef]
- Singh, V.K.; Seed, T.M. The potential value of 5-androstenediol in countering acute radiation syndrome. Drug. Discov. Today. 2024, 29, 103856. [Google Scholar] [CrossRef]
- Cummings, J.L.; Osse, A.M.L.; Kinney, J.W. Alzheimer’s Disease: Novel Targets and Investigational Drugs for Disease Modification. Drugs 2023, 83, 1387–1408. [Google Scholar] [CrossRef] [PubMed]
- Aldred, J.; Rodriguez, R.; Rivera-Rivera, E.; Isaacson, S.; Kumar, R.; Ellenbogen, A.; Ahlem, C.; Reading, C.; Palumbo, J.; Osman, N.; et al. Safety and Pharmacokinetics of Anti-Inflammatory NE3107 Treatment in Carbidopa/Levodopa-Treated Patients with Parkinson’s Disease: A Phase 2a, Double-Blind, Placebo-Controlled Study [Abstract]. Mov. Disord. 2023, 38 (Suppl. S1), S1–S62. Available online: https://www.mdsabstracts.org/abstract/safety-and-pharmacokinetics-of-anti-inflammatory-ne3107-treatment-in-carbidopa-levodopa-treated-patients-with-parkinsons-disease-a-phase-2a-double-blind-placebo-controlled-study (accessed on 1 September 2024). [CrossRef]
- Pediaditakis, I.; Kourtgiantaki, A.; Prousis, K.C.; Potamitis, C.; Xanthopoulos, K.P.; Zervou, M.; Calogeropoulou, T.; Charalampopoulos, I.; Gravanis, A. BNN27, a 17-spiroepoxy steroid derivative, interacts with and activates p75 neurotrophin receptor, rescuing cerebellar granule neurons from apoptosis. Front. Pharmacol. 2016, 7, 512. [Google Scholar] [CrossRef] [PubMed]
- Fragkiadaki, E.; Katsanou, L.; Vartzoka, F.; Gravanis, A.; Pitsikas, N. Effects of low doses of the novel dehydroepiandrosterone (DHEA) derivative BNN27 in rat models of anxiety. Psychopharmacology 2024, 241, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Pitsikas, N.; Zoupa, E.; Gravanis, A. The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts cognitive deficits induced by the D1/D2 dopaminergic receptor agonist apomorphine in rats. Psychopharmacology 2021, 238, 227–237. [Google Scholar] [CrossRef]
- Available online: https://go.drugbank.com/drugs/DB06250 (accessed on 2 August 2024).
- Nyce, J. Components of the human-specific, p53-mediated “kill switch” tumor suppression mechanismare usurped by human tumors, creating the possibility of therapeutic exploitation. Cancer Drug Resist. 2019, 2, 1207–1214. [Google Scholar]
- Malik, A.S.; Narayan, R.K.; Wendling, W.W.; Cole, R.W.; Pashko, L.L.; Schwartz, A.G.; Strauss, K.I. A novel dehydroepiandrosterone analog improves functional recovery in a rat traumatic brain injury model. J. Neurotrauma 2003, 20, 463–476. [Google Scholar] [CrossRef]
- Schwartz, A.G.; Pashko, L.L. Inhibition of adjuvant-induced arthritis by 16 alpha-fluoro-5-androsten-17-one. Mil. Med. 2002, 167, 60–63. [Google Scholar] [CrossRef]
- Offner, H.; Zamora, A.; Drought, H.; Matejuk, A.; Auci, D.L.; Morgan, E.E.; Vandenbark, A.A.; Reading, C.L. A synthetic androstene derivative and a natural androstene metabolite inhibit relapsing-remitting EAE. J. Neuroimmunol. 2002, 130, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Whitnall, M.H.; Villa, V.; Seed, T.M.; Benjack, J.; Miner, V.; Lewbart, M.L.; Dowding, C.A.; Jackson, W.E. 3rd. Molecular specificity of 5-androstenediol as a systemic radioprotectant in mice. Immunopharmacol. Immunotoxicol. 2005, 27, 15–32. [Google Scholar] [CrossRef] [PubMed]
- Vrachnis, D. 2024 Fluasterone buccal tablets: A promising therapy for the metabolic effects of hypercortisolemia and cushing syndrome. Presented at Society for Endocrinology ECE2024, Endocrine Abstracts, Stockholm, Sweden, 11–14 May 2024; Volume 99, p. EP281. [Google Scholar] [CrossRef]
- Available online: https://pubchem.ncbi.nlm.nih.gov/compound/16739648 (accessed on 2 August 2024).
- Available online: https://go.drugbank.com/structures/search/small_molecule_drugs/structure?database_id=DB05212&search_type=similarity#results (accessed on 2 August 2024).
- Kannavou, M.; Karali, K.; Katsila, T.; Siapi, E.; Marazioti, A.; Klepetsanis, P.; Calogeropoulou, T.; Charalampopoulos, I.; Antimisiaris, S.G. Development and Comparative In Vitro and In Vivo Study of BNN27 Mucoadhesive Liposomes and Nanoemulsions for Nose-to-Brain Delivery. Pharmaceutics 2023, 15, 419. [Google Scholar] [CrossRef] [PubMed]
- Casson, P.R.; Straughn, A.B.; Umstot, E.S.; Abraham, G.E.; Carson, S.A.; Buster, J.E. Delivery of dehydroepiandrosterone to premenopausal women: Effects of micronization and nonoral administration. Am. J. Obstet. Gynecol. 1996, 174, 649–653. [Google Scholar] [CrossRef]
- Leblanc, M.; Labrie, C.; Bélanger, A.; Candas, B.; Labrie, F. Bioavailability and pharmacokinetics of dehydroepiandrosterone in the cynomolgus monkey. J. Clin. Endocrinol. Metab. 2003, 88, 4293–4302. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Meng, Z.; Zhu, X.; Gan, H.; Gu, R.; Wu, Z.; Zheng, Y.; Wei, J.; Dou, G. A sharp, robust, and quantitative method by liquid chromatography tandem mass spectrometry for the measurement of EAD for acute radiation syndrome and its application. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1055–1056, 45–50. [Google Scholar] [CrossRef]
- Uspenskaya, M.E.; Fedotcheva, T.A.; Usenko, A.N.; Shimanovsky, N.L. The Prospects of 5-Androstenediol and its Synthetic Derivatives as Novel Radioprotective Drugs. Pharm. Chem. J. 2024, 57, 1849–1857. [Google Scholar] [CrossRef]
- Boyle, P.; Andralojc, K.; van der Velden, S.; Najmabadi, S.; de Groot, T.; Turczynski, C.; Stanford, J.B. Restoration of serum estradiol and reduced incidence of miscarriage in patients with low serum estradiol during pregnancy: A retrospective cohort study using a multifactorial protocol including DHEA. Front. Reprod. Health 2024, 5, 1321284. [Google Scholar] [CrossRef]
- Bouchard, C.; Labrie, F.; Archer, D.F.; Portman, D.J.; Koltun, W.; Elfassi, É.; Grainger, D.A.; Ayotte, N.; Cooper, T.A.; Martens, M.; et al. Decreased efficacy of twice-weekly intravaginal dehydroepiandrosterone on vulvovaginal atrophy. Climacteric 2015, 18, 590–607. [Google Scholar] [CrossRef]
- Portman, D.J.; Labrie, F.; Archer, D.F.; Bouchard, C.; Cusan, L.; Girard, G.; Ayotte, N.; Koltun, W.; Blouin, F.; Young, D.; et al. Lack of effect of intravaginal dehydroepiandrosterone (DHEA, prasterone) on the endometrium in postmenopausal women. Menopause 2015, 22, 1289–1295. [Google Scholar] [CrossRef]
- von Mühlen, D.; Laughlin, G.A.; Kritz-Silverstein, D.; Barrett-Connor, E. The Dehydroepiandrosterone And WellNess (DAWN) study: Research design and methods. Contemp. Clin. Trials 2007, 28, 153–168. [Google Scholar] [CrossRef] [PubMed]
- Mawal-Dewan, M.; Frisoni, L.; Cristofalo, V.J.; Sell, C. Extension of replicative lifespan in WI-38 human fibroblasts by dexamethasone treatment is accompanied by suppression of p21Waf1/Cip1/Sdi1 levels. Exp. Cell Res. 2003, 285, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Majidian, M.; Kolli, H.; Moy, R.L. Management of skin thinning and aging: Review of therapies for neocollagenesis; hormones and energy devices. Int. J. Dermatol. 2021, 60, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Oh, K.Y.; Kim, B.C. Effects of dehydroepiandrosterone on collagen and collagenase gene expression by skin fibroblasts in culture. J. Dermatol. Sci. 2000, 23, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.H.; Rhie, G.E.; Park, C.H.; Kim, K.H.; Cho, K.H.; Eun, H.C.; Chung, J.H. Modulation of collagen metabolism by the topical application of dehydroepiandrosterone to human skin. J. Investig. Dermatol. 2005, 124, 315–323. [Google Scholar] [CrossRef]
- Sato, K.; Iemitsu, M. The Role of Dehydroepiandrosterone (DHEA) in Skeletal Muscle. Vitam. Horm. 2018, 108, 205–221. [Google Scholar]
- Ayhan, S.; Tugay, C.; Norton, S.; Araneo, B.; Siemionow, M. Dehydroepiandrosterone protects the microcirculation of muscle flaps from ischemia-reperfusion injury by reducing the expression of adhesion molecules. Plast. Reconstr. Surg. 2003, 111, 2286–2294. [Google Scholar] [CrossRef]
- Samaras, N.; Papadopoulou, M.; Samaras, D.; Ongaro, F. Off-label use of hormones as an antiaging strategy: A review. Clin. Interv. Aging 2014, 9, 1175–1186. [Google Scholar] [CrossRef]
- Skare, T.L.; Hauz, E.; de Carvalho, J.F. Dehydroepiandrosterone (DHEA) Supplementation in Rheumatic Diseases: A Systematic Review. Mediterr. J. Rheumatol. 2023, 34, 292–301. [Google Scholar] [CrossRef]
- Furman, K.; Gut, P.; Sowińska, A.; Ruchała, M.; Fichna, M. Predictors of bone mineral density in patients receiving glucocorticoid replacement for Addison’s disease. Endocrine 2024, 84, 711–719. [Google Scholar] [CrossRef]
- Quester, J.; Nethander, M.; Eriksson, A.; Ohlsson, C. Endogenous DHEAS Is Causally Linked With Lumbar Spine Bone Mineral Density and Forearm Fractures in Women. J. Clin. Endocrinol. Metab. 2022, 107, e2080–e2086. [Google Scholar] [CrossRef] [PubMed]
- Sakr, H.F.; Hussein, A.M.; Eid, E.A.; Boudaka, A.; Lashin, L.S. Impact of Dehydroepiandrosterone (DHEA) on Bone Mineral Density and Bone Mineral Content in a Rat Model of Male Hypogonadism. Vet. Sci. 2020, 7, 185. [Google Scholar] [CrossRef] [PubMed]
- Kirby, D.J.; Buchalter, D.B.; Anil, U.; Leucht, P. DHEA in bone: The role in osteoporosis and fracture healing. Arch. Osteoporos. 2020, 15, 84. [Google Scholar] [CrossRef] [PubMed]
- Villareal, D.T. Effects of dehydroepiandrosterone on bone mineral density: What implications for therapy? Treat. Endocrinol. 2002, 1, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Glowacki, J. Dehydroepiandrosterone and Bone. Vitam. Horm. 2018, 108, 251–271. [Google Scholar] [CrossRef]
- Qiu, X.; Gui, Y.; Xu, Y.; Li, D.; Wang, L. DHEA promotes osteoblast differentiation by regulating the expression of osteoblast-related genes and Foxp3(+) regulatory T cells. Biosci. Trends. 2015, 9, 307–314. [Google Scholar] [CrossRef]
- Li, L.J.; Li, C.H.; Chang, P.M.; Lai, T.C.; Yong, C.Y.; Feng, S.W.; Hsiao, M.; Chang, W.M.; Huang, C.F. Dehydroepiandrosterone (DHEA) Sensitizes Irinotecan to Suppress Head and Neck Cancer Stem-Like Cells by Downregulation of WNT Signaling. Front. Oncol. 2022, 12, 775541. [Google Scholar] [CrossRef]
- Fazli, H.R.; Mohamadkhani, A.; Godarzi, H.R.; Pourshams, A.; Jafari Nia, M. Dehydroepiandrosterone modulates oxidative DNA damage in pancreatic cancer: A case-control study. JGH Open 2021, 5, 902–906. [Google Scholar] [CrossRef]
- Savić, M.P.; Ajduković, J.J.; Plavša, J.J.; Bekić, S.S.; Ćelić, A.S.; Klisurić, O.R.; Jakimov, D.S.; Petri, E.T.; Djurendić, E.A. Evaluation of A-ring fused pyridine d-modified androstane derivatives for antiproliferative and aldo–keto reductase 1C3 inhibitory activity. MedChemComm 2018, 9, 969–981. [Google Scholar] [CrossRef]
- Hackenberg, R.; Turgetto, I.; Filmer, A.; Schulz, K.D. Estrogen and androgen receptor mediated stimulation and inhibition of proliferation by androst-5-ene-3 beta,17 beta-diol in human mammary cancer cells. J. Steroid Biochem. Mol. Biol. 1993, 46, 597–603. [Google Scholar] [CrossRef]
- Boccuzzi, G.; Brignardello, E.; Di Monaco, M.; Gatto, V.; Leonardi, L.; Pizzini, A.; Gallo, M. 5-En-androstene-3 beta,17 beta-diol inhibits the growth of MCF-7 breast cancer cells when oestrogen receptors are blocked by oestradiol. Br. J. Cancer 1994, 70, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Dworkin, C.R.; Gorman, S.D.; Pashko, L.L.; Cristofalo, V.J.; Schwartz, A.G. Inhibition of growth of HeLa and WI-38 cells by dehydroepiandrosterone and its reversal by ribo- and deoxyribonucleosides. Life Sci. 1986, 38, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Shimizu, T.; Szalay, L.; Choudhry, M.A.; Rue, L.W., 3rd; Bland, K.I.; Chaudry, I.H. Androstenediol ameliorates alterations in immune cells cytokine production capacity in a two-hit model of trauma-hemorrhage and sepsis. Cytokine 2006, 34, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Abbas, N.A.T.; Hassan, H.A. The protective and therapeutic effects of 5-androstene3β, 17β-diol (ADIOL) in abdominal post-operative adhesions in rat: Suppressing TLR4/NFκB/HMGB1/TGF1 β/α SMA pathway. Int. Immunopharmacol. 2022, 109, 108801. [Google Scholar] [CrossRef] [PubMed]
- Loria, R.M.; Padgett, D.A. Androstenediol regulates systemic resistance against lethal infections in mice. Arch. Virol. 1992, 127, 103–115. [Google Scholar] [CrossRef]
- Xiao, M.; Inal, C.E.; Parekh, V.I.; Chang, C.M.; Whitnall, M.H. 5-Androstenediol promotes survival of gamma-irradiated human hematopoietic progenitors through induction of nuclear factor-kappaB activation and granulocyte colony-stimulating factor expression. Mol. Pharmacol. 2007, 72, 370–379. [Google Scholar] [CrossRef]
- Georgelou, K.; Saridaki, E.-A.; Karali, K.; Papagiannaki, A.; Charalampopoulos, I.; Gravanis, A.; Tzeranis, D.S. Microneurotrophin BNN27 Reduces Astrogliosis and Increases Density of Neurons and Implanted Neural Stem Cell-Derived Cells after Spinal Cord Injury. Biomedicines 2023, 11, 1170. [Google Scholar] [CrossRef]
- Singh, V.K.; Grace, M.B.; Jacobsen, K.O.; Chang, C.M.; Parekh, V.I.; Inal, C.E.; Shafran, R.L.; Whitnall, A.D.; Kao, T.C.; Jackson, W.E., 3rd; et al. Administration of 5-androstenediol to mice: Pharmacokinetics and cytokine gene expression. Exp. Mol. Pathol. 2008, 84, 178–188. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, J.; Yu, L.; Ma, H. Dehydroepiandrosterone alleviates E. coli O157:H7-induced inflammation by preventing the activation of p38 MAPK and NF-κB pathways in mice peritoneal macrophages. Mol. Immunol. 2019, 114, 114–122. [Google Scholar] [CrossRef]
- Cao, J.; Li, Q.; Shen, X.; Yao, Y.; Li, L.; Ma, H. Dehydroepiandrosterone attenuates LPS-induced inflammatory responses via activation of Nrf2 in RAW264.7 macrophages. Mol. Immunol. 2021, 131, 97–111. [Google Scholar] [CrossRef]
- Zhao, J.; Cao, J.; Yu, L.; Ma, H. Dehydroepiandrosterone resisted E. coli O157:H7-induced inflammation via blocking the activation of p38 MAPK and NF-κB pathways in mice. Cytokine 2020, 127, 154955. [Google Scholar] [CrossRef] [PubMed]
- Pillerová, M.; Borbélyová, V.; Hodosy, J.; Riljak, V.; Renczés, E.; Frick, K.M.; Tóthová, Ľ. On the role of sex steroids in biological functions by classical and non-classical pathways. An update. Front. Neuroendocrinol. 2021, 62, 100926. [Google Scholar] [CrossRef] [PubMed]
- Graf, M.; Jia, W.; Loria, R. The neuro-steroid, 3β androstene 17α diol exhibits potent cytotoxic effects on human malignant glioma and lymphoma cells through different programmed cell death pathways. Br. J. Cancer 2007, 97, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Loria, R.M. Antiglucocorticoid function of androstenetriol. Psychoneuroendocrinology 1997, 22, S103–S108. [Google Scholar] [CrossRef]
- Suzuki, M.; Wright, L.S.; Marwah, P.; Lardy, H.A.; Svendsen, C.N. Mitotic and neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived from the fetal cortex. Proc. Natl. Acad. Sci. USA 2004, 101, 3202–3207. [Google Scholar] [CrossRef]
- Bentley, C.; Hazeldine, J.; Greig, C.; Lord, J.; Foster, M. Dehydroepiandrosterone: A potential therapeutic agent in the treatment and rehabilitation of the traumatically injured patient. Burn Trauma 2019, 7, 26. [Google Scholar] [CrossRef]
- Zoupa, E.; Gravanis, A.; Pitsikas, N. The novel dehydroepiandrosterone (DHEA) derivative BNN27 counteracts behavioural deficits induced by the NMDA receptor antagonist ketamine in rats. Neuropharmacology 2019, 151, 74–83. [Google Scholar] [CrossRef]
- Ritsner, M.S.; Gibel, A.; Shleifer, T.; Boguslavsk, I.; Zayed, A.; Maayan, R.; Weizman, A.; Lerner, V. Pregnenolone and Dehydroepandrosterone as an Adjunctive Treatment in Schizophrenia and Schizoaffective Disorder. J. Clin. Psychiatry 2021, 71, 1351–1362. [Google Scholar] [CrossRef]
- Ritsner, M.S.; Gibel, A.; Ratner, Y.; Tsinovoy, G.; Strous, R.D. Improvement of sustained attention and visual and movement skills, but not clinical symptoms, after dehydroepiandrosterone augmentation in schizophrenia: A randomized, double-blind, placebo-controlled, crossover trial. J. Clin. Psychopharmacol. 2006, 26, 495–499. [Google Scholar] [CrossRef]
- Balan, I.; Boero, G.; Chéry, S.L.; McFarland, M.H.; Lopez, A.G.; Morrow, A.L. Neuroactive Steroids, Toll-like Receptors, and Neuroimmune Regulation: Insights into Their Impact on Neuropsychiatric Disorders. Life 2024, 14, 582. [Google Scholar] [CrossRef]
- Bourque, M.; Morissette, M.; Di Paolo, T. Neuroactive steroids and Parkinson’s disease: Review of human and animal studies. Neurosci. Biobehav. Rev. 2024, 156, 105479. [Google Scholar] [CrossRef]
Target | Action | Organism | Reference |
---|---|---|---|
Estrogen receptor alpha (ERα) | Binder (modulator) | Rat | [33] |
Estrogen receptor alpha (ERα) | Binder (modulator) | Human | [16] |
Estrogen receptor beta (ERβ) | Activator | Humans | [34] |
G protein-coupled estrogen receptor (GPER) | Activator | Humans | [35] |
γ-aminobutyric-acid-type A receptor (GABA (A)) | Antagonist | Humans | [36,37] |
N-methyl-d-aspartate (NMDA) receptor | Agonist | Humans | [37] |
N-methyl-d-aspartate (NMDA) receptor | Agonist | Rat | [38] |
Androgen receptor (AR) | Agonist | Humans | [39,40] |
Peroxisome proliferator-activated receptor alpha (PPARα) | Activator | Humans | [34,41] |
Sigma non-opioid intracellular receptor 1 | Agonist | Humans | [42] |
Nuclear receptor subfamily 1 group 1 member 2 (Pregnane X receptor) | Activator | Humans | [43] |
Nuclear receptor subfamily 1 group 1 member 2 (Constitutive andronstane receptor (CAR) | Activator | Humans | [44] |
GSK-3β glycogen-synthase-kinase-3β (GSK-3β) | Activator | Humans | [45] |
Glucose-6-phosphate dehydrogenase (G6PD) | Inhibitor | Humans | [46] |
Name of Steroid | AR | ERα | ERβ | Reference |
---|---|---|---|---|
DHEA | 1177 (breast cancer cells) 1259 (prostate cancer cells) | 1053 | 514 | [16] |
DHEA | - | 245 | 163 | [47] |
5-AED | 210 | 49 | 10 | [48] |
5-AED | - | 3.6 | 0.9 | [47] |
5-AED | - | 100 | 5 | [49] |
DHT | 0.5 (breast cancer cells) 0.52 (prostate cancer cells) | >5000 | 1687 | [16] |
DHT | - | 221 | 73 | [47] |
DHT | 15 | - | - | [48] |
Testosterone | 0.5 (breast cancer cells) 0.52 (prostate cancer cells) | >5000 | >500 | [16] |
E2 | 3.64 | 0.04 | 0.1 | [16] |
E2 | - | 8 | 7 | [48] |
E2 | - | 0.12 | 0.13 | [47] |
Clinical Parameter (Endpoint) | Trial 1: Intrarosa N = 81, Placebo N = 77 | Trial 2: Intrarosa N = 157, Placebo N = 325 |
---|---|---|
Dyspareunia Week 12 Mean Severity | −0.40 | −0.35 |
% Superficial Cells Week 12 Mean | 4.71 | 8.46 |
% Parabasal Cells Week 12 Mean | −45.77 | −29.53 |
Vaginal pH Week 12 Mean | −0.83 | −0.67 |
Androstene Chemical Name | Androstene Trade Name | Pharmacological Indication | Status | Reference or Link | |
---|---|---|---|---|---|
1 | 5-androstenediol | Tetragold, Neumune | Radioprotective agent | Investigational | [73,74,75] |
2 | DHEA | Prasterone | The treatment of dyspareunia associated with menopausal vulvar and vaginal atrophy | FDA approved | [59,60,61,62,63,64,65] |
3 | 3α-ethynyl-androst-5-ene-3β,7β,17β-triol | Triplex (ne3107) | Anti-inflammatory action: collagen-induced arthritis, Alzheimer’s disease, and Parkinson’s disease | Investigational | [76,77] |
4 | 17α,20R-epoxypregn-5-ene-3β,21-diol | BNN27 | Neuroprotector | Investigational | [78,79,80] |
5 | 3β-dehydroxy-16α-fluoro-DHEA | Fluasterone | Anti-inflammatory effects in preclinical models of chronic autoimmune diseases (psoriasis, asthma, rheumatoid arthritis, multiple sclerosis, and lupus erythematosus) and lastly for the control of hyperglycemia in adults with Cushing syndrome | Investigational | [81,82,83,84,85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedotcheva, T.A.; Uspenskaya, M.E.; Ulchenko, D.N.; Shimanovsky, N.L. Dehydroepiandrosterone and Its Metabolite 5-Androstenediol: New Therapeutic Targets and Possibilities for Clinical Application. Pharmaceuticals 2024, 17, 1186. https://doi.org/10.3390/ph17091186
Fedotcheva TA, Uspenskaya ME, Ulchenko DN, Shimanovsky NL. Dehydroepiandrosterone and Its Metabolite 5-Androstenediol: New Therapeutic Targets and Possibilities for Clinical Application. Pharmaceuticals. 2024; 17(9):1186. https://doi.org/10.3390/ph17091186
Chicago/Turabian StyleFedotcheva, Tatiana A., Maria E. Uspenskaya, Darya N. Ulchenko, and Nikolay L. Shimanovsky. 2024. "Dehydroepiandrosterone and Its Metabolite 5-Androstenediol: New Therapeutic Targets and Possibilities for Clinical Application" Pharmaceuticals 17, no. 9: 1186. https://doi.org/10.3390/ph17091186
APA StyleFedotcheva, T. A., Uspenskaya, M. E., Ulchenko, D. N., & Shimanovsky, N. L. (2024). Dehydroepiandrosterone and Its Metabolite 5-Androstenediol: New Therapeutic Targets and Possibilities for Clinical Application. Pharmaceuticals, 17(9), 1186. https://doi.org/10.3390/ph17091186