Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = static and fatigue reliability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2892 KiB  
Article
Investigation of Bolt Grade Influence on the Structural Integrity of L-Type Flange Joints Using Finite Element Analysis
by Muhammad Waleed and Daeyong Lee
J. Mar. Sci. Eng. 2025, 13(7), 1346; https://doi.org/10.3390/jmse13071346 - 15 Jul 2025
Viewed by 50
Abstract
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt [...] Read more.
Critical components in support structures for wind turbines, flange joints, are fundamental to ensure the structural integrity of mechanical assemblies under varying operational conditions. This paper investigates the structural performance of L-type flange joints, focusing on the influence of bolt grades and bolt pretension through a finite element analysis (FEA) study of its key performance indicators, including stress distribution, deformation, and force–displacement behaviors. This paper studies two high-strength bolt grades, Grade 10.9 and Grade 12.9, and two main steps—first, bolt pretension and, second, external loading (tower shell tensile load)—to investigate the influence on joint reliability and safety margins. The novelty of this study lies in its specific focus on static axial loading conditions, unlike the existing literature that emphasizes fatigue or dynamic loads. Results show that the specimen carrying a higher bolt grade (12.9) has 18% more ultimate load carrying capacity than the specimen with a lower bolt grade (10.9). Increased pretension increases the stability of the joint and reduces the micro-movements between A and B (on model specimen), but could result in material fatigue if over-pretensioned. Comparative analysis of the different bolt grades has provided practical guidance on material selection and bolt pretension in L-type flange joints for wind turbine support structures. The findings of this work offer insights into the proper design of robust flange connections for high-demand applications by highlighting a balance among material properties, bolt pretension, and operational conditions, while also proposing optimized pretension and material recommendations validated against classical analytical models. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 3570 KiB  
Article
Fatigue Life Analysis of Cylindrical Roller Bearings Considering Elastohydrodynamic Lubrications
by Ke Zhang, Zhitao Huang, Qingsong Li and Ruiyu Zhang
Appl. Sci. 2025, 15(14), 7867; https://doi.org/10.3390/app15147867 - 14 Jul 2025
Viewed by 93
Abstract
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations [...] Read more.
Cylindrical roller bearings are widely used in industrial machinery, automotive systems, and aerospace applications, where their reliability directly affects the performance and safety of mechanical systems. The fatigue life of cylindrical roller bearings is significantly affected by their elastohydrodynamic lubrication condition, with variations potentially reaching multiple times. However, conventional quasi-static models often neglect lubrication effects. This study establishes a quasi-static analysis model for cylindrical roller bearings that incorporates the effects of elastohydrodynamic lubrication by integrating elastohydrodynamic lubrication theory with the Lundberg–Palmgren life model. The isothermal line contact elastohydrodynamic lubrication equations are solved using the multigrid method, and the contact load distribution is determined through nonlinear iterative techniques to calculate bearing fatigue life. Taking the N324 support bearing on the main shaft of an SFW250-8/850 horizontal hydro-generator as an example, the influences of radial load, inner race speed, and lubricant viscosity on fatigue life are comparatively analyzed. Experimental validation is conducted under both light-load and heavy-load operating conditions. The results demonstrate that elastohydrodynamic lubrication markedly increases contact loads, leading to a reduced predicted fatigue life compared with that of the De Mul model (which ignores lubrication). The proposed lubrication-integrated model achieves an average deviation of 5.3% from the experimental data, representing a 16.1% improvement in prediction accuracy over the De Mul model. Additionally, increased rotational speed and lubricant viscosity accelerate fatigue life degradation. Full article
(This article belongs to the Special Issue Advances and Applications in Mechanical Fatigue and Life Assessment)
Show Figures

Figure 1

16 pages, 779 KiB  
Article
A Supervisory Control Framework for Fatigue-Aware Wake Steering in Wind Farms
by Yang Shen, Jinkui Zhu, Peng Hou, Shuowang Zhang, Xinglin Wang, Guodong He, Chao Lu, Enyu Wang and Yiwen Wu
Energies 2025, 18(13), 3452; https://doi.org/10.3390/en18133452 - 30 Jun 2025
Viewed by 183
Abstract
Wake steering has emerged as a promising strategy to mitigate turbine wake losses, with existing research largely focusing on the aerodynamic optimization of yaw angles. However, many prior approaches rely on static look-up tables (LUTs), offering limited adaptability to real-world wind variability and [...] Read more.
Wake steering has emerged as a promising strategy to mitigate turbine wake losses, with existing research largely focusing on the aerodynamic optimization of yaw angles. However, many prior approaches rely on static look-up tables (LUTs), offering limited adaptability to real-world wind variability and leading to non-optimal results. More importantly, these energy-focused strategies overlook the mechanical implications of frequent yaw activities in pursuit of the maximum power output, which may lead to premature exhaustion of the yaw system’s design life, thereby accelerating structural degradation. This study proposes a supervisory control framework that balances energy capture with structural reliability through three key innovations: (1) upstream-based inflow sensing for real-time capture of free-stream wind, (2) fatigue-responsive optimization constrained by a dynamic actuation quota system with adaptive yaw activation, and (3) a bidirectional threshold adjustment mechanism that redistributes unused actuation allowances and compensates for transient quota overruns. A case study at an offshore wind farm shows that the framework improves energy yield by 3.94%, which is only 0.29% below conventional optimization, while reducing yaw duration and activation frequency by 48.5% and 74.6%, respectively. These findings demonstrate the framework’s potential as a fatigue-aware control paradigm that balances energy efficiency with system longevity. Full article
(This article belongs to the Special Issue Wind Turbine Wakes and Wind Farms)
Show Figures

Figure 1

24 pages, 6410 KiB  
Article
Optimal Diamond Burnishing of Chromium–Nickel Austenitic Stainless Steels Based on the Finishing Process–Surface Integrity–Operating Behavior Correlations
by Jordan Maximov, Galya Duncheva, Mariana Ichkova and Kalin Anastasov
Metals 2025, 15(6), 574; https://doi.org/10.3390/met15060574 - 22 May 2025
Viewed by 503
Abstract
Chromium–nickel austenitic stainless steels are widely used in various industries after their initial hardness and strength are increased. Apart from low-temperature thermal–chemical diffusion, the mechanical properties can be improved by surface cold working (SCW). A cheap and reliable form of static SCW is [...] Read more.
Chromium–nickel austenitic stainless steels are widely used in various industries after their initial hardness and strength are increased. Apart from low-temperature thermal–chemical diffusion, the mechanical properties can be improved by surface cold working (SCW). A cheap and reliable form of static SCW is diamond burnishing (DB), which drastically improves the surface integrity (SI) and hence the operational behavior of the processed component. To be maximally effective, the DB parameters must be optimized according to a relevant criterion, depending on the desired effect. For high fatigue strength and/or high wear resistance, complex experimental tests are necessary, which require significant time and financial resources. This study presents a cost-effective optimization approach based on the DB process–SI–operating behavior correlations. Using these correlations, in addition to the correlations between appropriately selected SI characteristics, the proposed approach relies on the control of only three easy-to-measure roughness parameters, namely the arithmetic average roughness, skewness, and kurtosis, which, in turn, depend on the governing factors of the DB process. Full article
(This article belongs to the Special Issue Machining Technology for Metallic Materials)
Show Figures

Figure 1

19 pages, 3454 KiB  
Article
Development of a Novel Biomechanical Framework for Quantifying Dynamic Risks in Motor Behaviors During Aircraft Maintenance
by Mingjiu Yu, Di Zhao, Yu Zhang, Jing Chen, Gongbing Shan, Ying Cao and Jun Ye
Appl. Sci. 2025, 15(10), 5390; https://doi.org/10.3390/app15105390 - 12 May 2025
Cited by 1 | Viewed by 382
Abstract
Aircraft mechanical maintenance involves high loads, repetitive movements, and awkward postures, significantly increasing the risk of work-related musculoskeletal disorders (WMSDs). Traditional static evaluation methods based on posture analysis fail to capture the complexity and dynamic nature of these tasks, limiting their applicability in [...] Read more.
Aircraft mechanical maintenance involves high loads, repetitive movements, and awkward postures, significantly increasing the risk of work-related musculoskeletal disorders (WMSDs). Traditional static evaluation methods based on posture analysis fail to capture the complexity and dynamic nature of these tasks, limiting their applicability in maintenance settings. To address this limitation, this study introduces a novel quantitative WMSD risk assessment model that leverages 3D motion data collected through an optical motion capture system. The model evaluates dynamic human postures and employs an inverse trigonometric function algorithm to quantify the loading effects on working joints. Experimental validation was conducted through quasi-real-life scenarios to ensure the model’s reliability and applicability. The findings demonstrate that the proposed methodology provides both innovative and practical advantages, overcoming the constraints of conventional assessment techniques. Specifically, it enables precise quantification of physical task loads and enhances occupational injury risk assessments. The model is particularly valuable in physically demanding industries, such as aircraft maintenance, where accurate workload and fatigue monitoring are essential. By facilitating real-time ergonomic analysis, this approach allows managers to monitor worker health, optimize task schedules, and mitigate excessive fatigue and injury risks, ultimately improving both efficiency and workplace safety. Full article
Show Figures

Figure 1

9 pages, 483 KiB  
Article
Load-Bearing Capacity of Lithium Silicate Derivates Applied as Ultra-Thin Occlusal Veneers on Molars
by Lorenzo Fiscalini, Liana Willi, Daniel Wiedemeier, Mutlu Özcan and Alexis Ioannidis
Prosthesis 2025, 7(2), 43; https://doi.org/10.3390/prosthesis7020043 - 16 Apr 2025
Viewed by 425
Abstract
Purpose: This study aimed to evaluate the load-bearing capacity of three different millable lithium silicate derivatives compared with lithium disilicate ceramic when used as ultra-thin occlusal veneers on eroded molars. The null hypothesis stated that there would be no significant differences in [...] Read more.
Purpose: This study aimed to evaluate the load-bearing capacity of three different millable lithium silicate derivatives compared with lithium disilicate ceramic when used as ultra-thin occlusal veneers on eroded molars. The null hypothesis stated that there would be no significant differences in load-bearing capacity (Fmax). Material and Methods: Four groups were tested: three groups with lithium silicate derivatives—“Celt” (Celtra, Dentsply Sirona, Bensheim, Germany), “Vita” (Vita Suprinity PC, Vita Zahnfabrik, Bad Säckingen, Germany), and “Nice” (n!ce, Straumann, Basel, Switzerland)—and a control group with lithium disilicate ceramic, “Emax” (IPS e.max CAD, Ivoclar Vivadent) (n = 20 per group). Extracted molars (n = 80) were prepared to simulate erosion and restored with occlusal veneers designed and milled by using CAD/CAM technology. After thermo-mechanical aging, the specimens were subjected to static load testing until fracture. Failure types were recorded and analyzed. Statistical evaluation included the Wilcoxon rank-sum test for group comparisons and Weibull distribution modeling to assess fracture probabilities. Results: Thermo-mechanical aging caused restoration debonding in three specimens from the “Nice” and “Celt” groups, resulting in fatigue resistance of 100% for “Emax” and “Vita”, 90% for “Celt”, and 95% for “Nice”. The mean Fmax values ranged from 892 N to 2087 N, with the “Vita” group demonstrating the highest values. Significant differences in stress values were observed among groups (p < 0.05). Cohesive failure was the most frequent failure mode. Conclusions: All tested lithium silicate derivatives demonstrated high load-bearing capacity and are suitable for ultra-thin occlusal veneers on eroded molars. Cohesive failures dominated, indicating reliable material performance and stable bonding under load. Full article
Show Figures

Figure 1

22 pages, 5974 KiB  
Article
Estimation of Vibration-Induced Fatigue Damage in a Tracked Vehicle Suspension Arm at Critical Locations Under Real-Time Random Excitations
by Ayaz Mahmood Khan, Muhammad Shahid Khalil and Muhammad Muzammil Azad
Machines 2025, 13(4), 257; https://doi.org/10.3390/machines13040257 - 21 Mar 2025
Viewed by 848
Abstract
Probabilistic random vibration can speed up wear and tear on several components of the tracked vehicle, including the track system, drivetrain, and suspension. Extended exposure to high levels of vibration can cause structural damage to the vehicle frame and other critical components. Assessing [...] Read more.
Probabilistic random vibration can speed up wear and tear on several components of the tracked vehicle, including the track system, drivetrain, and suspension. Extended exposure to high levels of vibration can cause structural damage to the vehicle frame and other critical components. Assessing random vibration in track vehicles requires a comprehensive approach that considers both the root causes and potential consequences of the vibrations. This random vibration significantly influences the structural performance of suspension arm which is key component of tracked vehicle. Damage due to fatigue is conventionally computed using time domain loaded signals with stress or strain data. This approach generally holds good when loading is periodic in nature but not be a good choice when dynamic resonance is in process. In this case an alternative frequency domain fatigue life analysis is used where the random loads and responses are characterized using a concept called Power spectral density (PSD). The current research article investigates the fatigue damage characteristics of a tracked vehicle suspension arm considering the dynamic loads induced by traversing on smooth and rough terrain. The analysis focusses on assessing the damage and stress response Power spectral density (PSD) ground-based excitation which is termed PSD-G acceleration. Quasi Static Finite Element Method based approach is used to simulate the operational conditions experienced by the suspension arm. Through comprehensive numerical simulations, the fatigue damage accumulation patterns are examined, providing insights into the structure integrity and performance durability of the suspension arm under varying operational scenarios. The obtained stress response PSD data and fatigue damage showed that the rough terrain response exhibits higher stresses in suspension arm. The accumulated stresses in case of rough terrain may prompt to brittle failure at specific critical locations. This research contributes to the advancement to the design and optimization strategies for tracked vehicle components enhancing their reliability and longevity in demanding operational environments. Full article
(This article belongs to the Special Issue Vibration-Based Machines Wear Monitoring and Prediction)
Show Figures

Figure 1

14 pages, 8606 KiB  
Article
Predicting the Fatigue Life of a Commercial Vehicle X-EPS Steering Gear with a Rigid–Flexible Coupling Dynamics Method
by Feng Chen, Zhiquan Fu, Baoxiang Qiu, Chenfeng Si, Qizhang Zhu, Chenli Feng, Xiaoqing Sun, Huafang Liang and Lai Yang
Machines 2025, 13(3), 218; https://doi.org/10.3390/machines13030218 - 7 Mar 2025
Viewed by 606
Abstract
Commercial X-EPS steering gears are characterized by high torque output, torque—with increasing capabilities, high reliability, and excellent handling precision. Among them, the screw–nut pair in the steering gear is subjected to complex working loads, and its raceways are prone to fatigue failure. To [...] Read more.
Commercial X-EPS steering gears are characterized by high torque output, torque—with increasing capabilities, high reliability, and excellent handling precision. Among them, the screw–nut pair in the steering gear is subjected to complex working loads, and its raceways are prone to fatigue failure. To more accurately and effectively predict the fatigue life of the screw–nut pair in the steering gear, a method for dynamic simulation and fatigue life prediction of commercial X-EPS steering gears is proposed based on virtual prototyping technology and finite element theory. That is, a rigid–flexible coupling dynamic model of the X-EPS steering gear is established to obtain the load spectra of the screw and nut, and a finite-element static model is also established. Then, combined with the material S-N curve, the fatigue life is predicted through the NOCDE fatigue “five-block diagram”. The research results show that the screw and nut raceways are the key components prone to fatigue failure in the steering gear. The minimum numbers of fatigue life cycles are 1.028 × 105 times and 2.9695 × 105 times, respectively. Subsequently, a fatigue life bench test was conducted for verification. The results show that the error between the fatigue life analysis model of the XEPS recirculating ball steering gear and the test is less than 5%, meeting the requirements of the fatigue life test standard and design standard. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

24 pages, 4606 KiB  
Article
Finite Element Analysis of the Contact Pressure for Human–Seat Interaction with an Inserted Pneumatic Spring
by Xuan-Tien Tran, Van-Ha Nguyen and Duc-Toan Nguyen
Appl. Sci. 2025, 15(5), 2687; https://doi.org/10.3390/app15052687 - 3 Mar 2025
Viewed by 1101
Abstract
This study explores the integration of a custom-designed pneumatic spring into a car-seat cushion and its interaction with a simplified human body model using the Finite Element Method (FEM). A 3D half-symmetry FEM framework, developed from experimental data, ensured computational efficiency and convergence. [...] Read more.
This study explores the integration of a custom-designed pneumatic spring into a car-seat cushion and its interaction with a simplified human body model using the Finite Element Method (FEM). A 3D half-symmetry FEM framework, developed from experimental data, ensured computational efficiency and convergence. This research bridged experimental and numerical approaches by analyzing the contact pressure distributions between a seat cushion and a volunteer with representative biometric characteristics. The model incorporated two material groups: (1) human body components (bones and muscles) and (2) seat cushion materials (polyurethane foam, latex, and fabric tape). Mechanical properties were obtained from both the literature and experiments, and simulations were conducted using MSC.Marc software under realistic boundary and initial conditions. The simulation results exhibited strong agreement with experimental data, validating the model’s reliability in predicting contact pressure distribution and optimizing seat cushion designs. Contrary to the conventional notion that uniformly distributed contact pressure inherently enhances comfort, this study emphasizes that the precise localization of pressure plays a crucial role in static and long-term seating ergonomics. Both experimental and simulation results demonstrated that modulating the pneumatic spring’s internal pressure from 0 kPa to 25 kPa altered peak contact pressure by approximately 3.5 kPa (around 20%), significantly influencing pressure redistribution and mitigating high-pressure zones. By validating this FEM-based approach, this study reduces dependence on physical prototyping, lowering design costs, and accelerating the development of ergonomically optimized seating solutions. The findings contribute to a deeper understanding of human–seat interactions, offering a foundation for next-generation automotive seating innovations that enhance comfort, fatigue reduction, and adaptive pressure control. Full article
Show Figures

Figure 1

9 pages, 2876 KiB  
Proceeding Paper
Fatigue Strength Determination of AISI 316L Steel and Welded Specimens Using Energy Methods
by Danilo D’Andrea, Giacomo Risitano, Pasqualino Corigliano and Davide D’Andrea
Eng. Proc. 2025, 85(1), 31; https://doi.org/10.3390/engproc2025085031 - 1 Mar 2025
Viewed by 618
Abstract
AISI 316 is a stainless steel known for its exceptional corrosion resistance and excellent mechanical properties. It is used in the chemical and pharmaceutical industries, food processing equipment, and medical devices. This alloy’s wide range of applications underscores its importance in industries requiring [...] Read more.
AISI 316 is a stainless steel known for its exceptional corrosion resistance and excellent mechanical properties. It is used in the chemical and pharmaceutical industries, food processing equipment, and medical devices. This alloy’s wide range of applications underscores its importance in industries requiring materials that can withstand extreme conditions while maintaining structural integrity and performance. Additionally, the excellent weldability and formability of AISI 316 allow for versatile design and production processes, ensuring durable and reliable performance in marine environments. This work aims to examine the behavior of AISI 316L and its welded joints under high-cycle fatigue loadings using infrared thermography (IR). Two kinds of experimental tests are performed on specimens with the same geometry: static tests and stepwise succession tests. The results of the static tests are in accordance with the stepwise succession test results in predicting the fatigue properties. Full article
Show Figures

Figure 1

19 pages, 9171 KiB  
Article
Resonant Frequency Response to Mechanical Loading in Conformal Load-Bearing Antenna Systems
by Shouxun Lu, Kelvin J. Nicholson, Joel Patniotis, John Wang and Wing Kong Chiu
Sensors 2025, 25(5), 1323; https://doi.org/10.3390/s25051323 - 21 Feb 2025
Viewed by 428
Abstract
This study investigates the impact of mechanical loading on the electromagnetic performance of conformal load-bearing antenna structures (CLASs), focusing on the resonant frequency response. Using 6-ply [0/90] GFRP as the CLAS substrate, the research evaluated the effects of two mechanical loading scenarios: the [...] Read more.
This study investigates the impact of mechanical loading on the electromagnetic performance of conformal load-bearing antenna structures (CLASs), focusing on the resonant frequency response. Using 6-ply [0/90] GFRP as the CLAS substrate, the research evaluated the effects of two mechanical loading scenarios: the quasi-static uniaxial tensile test and cyclic fatigue. The quasi-static tests explore the response of CLASs to significant elongation, while the cyclic fatigue tests simulate localised damage propagation under operational loads. The results from the quasi-static tests demonstrated that the dominant effect under uniaxial tensile loading is the increase in substrate permittivity due to damage, causing a decrease in resonant frequency. The cyclic fatigue tests employed two configurations: removeable antenna patch (RAP), which isolates the antenna from mechanical loading to focus on substrate damage; and surface-mounted antenna patch (SMAP), which examines the combined effects of substrate damage and antenna elongation. The RAP results showed a consistent correlation between substrate damage and resonant frequency decrease, while SMAP demonstrated complex frequency behaviour due to competing effects of substrate damage and antenna elongation. A comparison with [±45]6 GFRP results showed that the resonant behaviour remained consistent regardless of ply configuration during the initial damage accumulation induced by cyclic fatigue. However, with significant elongation in quasi-static tests, resonant frequency behaviour was affected by the specimen’s ply configuration, with substrate permittivity changes due to mechanical loading being the dominant factor. These findings provide valuable insights into the relationship between damage sustained by the CLAS system and resonant frequency shifts, providing critical information for predicting CLAS’s reliability and service life. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

28 pages, 2405 KiB  
Systematic Review
Systematic Review and Meta-Analysis of Electromyography Potential to Discriminate Muscular or Articular Temporomandibular Disorders and Healthy Patients
by Maria Isabella Federici, Francesca Di Pasquale, Chiara Valenti, Alessandro Nanussi, Ornella Tulli, Maddalena Coniglio, Stefano Eramo, Lorella Marinucci and Stefano Pagano
Healthcare 2025, 13(5), 466; https://doi.org/10.3390/healthcare13050466 - 21 Feb 2025
Cited by 1 | Viewed by 1119
Abstract
Background/Objectives: New devices such as surface electromyography (sEMG) have been proposed to support traditional gnathological examination and diagnostic protocols. The aim of this study is to investigate whether sEMG can be considered a diagnostic instrument to discriminate between healthy subjects and patients [...] Read more.
Background/Objectives: New devices such as surface electromyography (sEMG) have been proposed to support traditional gnathological examination and diagnostic protocols. The aim of this study is to investigate whether sEMG can be considered a diagnostic instrument to discriminate between healthy subjects and patients with temporomandibular disorders (TMDs) of an articular or muscular nature. Methods: A systematic review was conducted according to PRISMA guidelines using literature searches of MEDLINE (via PubMed), Scopus, and Web of Science. Inclusion criteria: recent clinical studies (≤10 years) in English or Italian, involving electromyography in TMD diagnosis, with a control group of healthy patients. Data considered to be homogenous were subjected to meta-analysis (95% confidence interval [CI]; α = 0.05). Hedge g was calculated because all variables were continuous. Articles meeting the inclusion criteria were checked for further consideration, and relevant data were collected into two tables. In total, 18 studies were included after full-text reading. Meta-analyses were carried out for the static impact index (IMP), percentage overlapping coefficient (POC), and torque coefficient, and dynamic Symmetrical Mastication Index (SMI). Results: Patients with TMD had lower values in all parameters except IMP. sEMG registered a reduction in masseter activity, lower chewing efficiency, and an increase in fatigue during contractions in TMD patients. Conclusions: sEMG is not reliable to distinguish healthy from TMD patients, but despite the limitations related to the high variability in the studies (type of electromyography, static or dynamic tests, and population characteristics), the sEMG results are reliable considering the POC and SMI parameters, encouraging more in-depth studies for a predictable clinical practice. Patients with TMD had lower values in the dynamic index SMI and in static indexes POC and torque coefficient, except IMP. EMG might performs better if employed in muscle forms. Full article
Show Figures

Figure 1

23 pages, 10176 KiB  
Article
Experimental Study on Bond Fatigue Between Carbon Fiber-Reinforced Polymer Bars and Seawater–Sea Sand Concrete Under Seawater Immersion and Dry–Wet Cycle Conditions
by Fu Yang, Weiquan Gan, Bingsan Chen, Jiangchuan Wu and Shiwen Yuan
Buildings 2025, 15(3), 438; https://doi.org/10.3390/buildings15030438 - 30 Jan 2025
Viewed by 897
Abstract
The durability of carbon fiber-reinforced polymer (CFRP) bars in marine environments is essential for their application in seawater–sea sand concrete (SWSSC), especially under cyclic loading conditions. While previous studies primarily focused on static bonding performance, the effects of seawater immersion and dry–wet cycles [...] Read more.
The durability of carbon fiber-reinforced polymer (CFRP) bars in marine environments is essential for their application in seawater–sea sand concrete (SWSSC), especially under cyclic loading conditions. While previous studies primarily focused on static bonding performance, the effects of seawater immersion and dry–wet cycles on bond fatigue behavior at CFRP–SWSSC interfaces remain underexplored. This study investigated the bond fatigue performance of CFRP bars and SWSSC under seawater immersion and dry–wet cycling conditions. Eighteen CFRP bar-SWSSC bond specimens were divided into three categories and prepared for static and fatigue pull-out tests. The effects of varying stress levels (fatigue upper load/static bond ultimate load) after seawater immersion and dry–wet cycling on fatigue failure modes, bond–slip behavior, and fatigue characteristics were evaluated. The results show that seawater immersion and dry–wet cycling significantly degrade the performance of bonds between CFRP bars and SWSSC, with an average bond strength reduction of 10.31%. These conditions reduce fatigue cycles and stiffness while increasing bond–slip (relative displacement at the bar–concrete interface) and residual–slip (displacement after unloading). Moreover, dry–wet cycling has a greater negative impact on fatigue bond performance than seawater immersion. Higher fatigue stress levels exacerbate damage and crack propagation at the CFRP–SWSSC interface, leading to significant increases in both bond–slip and residual-slip. Under similar conditions, higher stress levels enhance bond stiffness. However, excessively high stresses may lead to bond fatigue failures. Using experimental data and existing fatigue bond–slip constitutive models, a customized model for CFRP bars in SWSSC was developed. These findings highlight that marine environments and fatigue loading severely impair bond performance, thereby emphasizing the importance of careful design for marine applications. The proposed model offers a reliable framework for predicting bond–slip behavior under fatigue conditions, enhancing the understanding of CFRP–SWSSC interactions and supporting the design of durable marine infrastructure. Full article
Show Figures

Figure 1

15 pages, 10248 KiB  
Article
Flow-Induced Fatigue Damage of Large Francis Turbines Under Multiple Operating Loads
by Pinghu Liu, Xingxing Huang, Tianyu Yang and Zhengwei Wang
Appl. Sci. 2024, 14(24), 12003; https://doi.org/10.3390/app142412003 - 21 Dec 2024
Cited by 2 | Viewed by 1215
Abstract
The Francis runner is a critical component of the Francis turbine generator unit, playing a central role in converting water energy into rotating mechanical energy that drives the generator in hydropower stations. In-depth analyses of the flow characteristics of the Francis runner under [...] Read more.
The Francis runner is a critical component of the Francis turbine generator unit, playing a central role in converting water energy into rotating mechanical energy that drives the generator in hydropower stations. In-depth analyses of the flow characteristics of the Francis runner under various operating conditions and avoiding fatigue damage of the Francis runner are crucial to the reliability and efficiency of hydropower operation. In this paper, the flow dynamics of a large Francis turbine runner are analyzed under three representative loading conditions—low partial load, high partial load, and full load—and the flow-induced stress of the runner is analyzed under these loading conditions. It was found that the maximum static and dynamics stresses of the runner at three representative loading conditions are located at the chamfered surface where the blade trailing edge connects to the runner crown. The maximum static stresses of the Francis runner are 284 MPa, 352 MPa, and 381 MPa at low partial load, high partial load, and full load, respectively, and they are above the allowable stress limits, as half of the yield stress of the runner material of 550 MPa. The peak-to-peak values of runner dynamic stress at low partial load, high partial load, and full load are 15 MPa, 25 MPa, and 14.6 MPa, respectively. The high stress invoked by the unsteady flow under various loading conditions in this runner was the cause of the fatigue breakage of the runner blades. The results of this investigation have important reference values for mitigating fatigue damage in similar Francis runners and optimizing unit operation. Full article
Show Figures

Figure 1

11 pages, 2146 KiB  
Article
Analysis and Experimental Study for Fatigue Performance of Wing-Fuselage Connection Structure for Unmanned Aerial Vehicle
by Lijun Sui, Youchao Sun and Min Kang
Aerospace 2024, 11(10), 826; https://doi.org/10.3390/aerospace11100826 - 9 Oct 2024
Cited by 2 | Viewed by 1646
Abstract
(1) Background: As the principal structural element of an unmanned aerial vehicle (UAV), a lightweight, high-performance wing-fuselage connection structure plays an important role in UAV structural integrity. Previous studies focused on the static strength characteristics of aluminum and high-strength steel wing-fuselage connection structures. [...] Read more.
(1) Background: As the principal structural element of an unmanned aerial vehicle (UAV), a lightweight, high-performance wing-fuselage connection structure plays an important role in UAV structural integrity. Previous studies focused on the static strength characteristics of aluminum and high-strength steel wing-fuselage connection structures. With the widespread usage of titanium material in aviation, research should address the fatigue performance of titanium wing-fuselage connection structures. This paper aims to investigate the fatigue performance of the titanium wing-fuselage connection structure by using analysis and experimental methods, and to develop a reliable fatigue assessment method based on the experimental results. (2) Methods: General and detail finite element models were established, and the stress distribution at the detail fatigue design point was obtained via finite element analysis. Based on the equivalent life curve theory, a dimensionless value, detail fatigue value (DF), was proposed to characterize the fatigue performance for structure. By using detail fatigue value (DF) method, the theoretical fatigue performance value was calculated. The fatigue test of the wing-fuselage connection structure was conducted, and the fatigue life was determined according to the test results. (3) Results: For the wing joint with fatigue failure in the test, the test fatigue performance was close to the theoretical value. It can be concluded from the DF value that the analysis and test results are consistent, and the values obtained from the analysis are more conservative than test results. (4) Conclusions: The error between the test DF value and the theoretical analysis DF value is small, and the theoretical analysis of fatigue performance can represent the fatigue characteristics of the wing-fuselage connection structure. The detail fatigue value (DF) method can predict the fatigue performance of the structure quite well. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

Back to TopTop