Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = spongy mesophyll

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2391 KB  
Article
Effect of the Cytokinin Type in the Culture Medium on the Ultrastructure of Leaf Chloroplasts and Photosynthetic Pigment Content of In Vitro Apple (Malus x domestica Borkh.) Shoots
by Zsuzsa Máthéné Szigeti, Katalin Solymosi, Richárd Kovásznai-Oláh and Judit Dobránszki
Plants 2026, 15(2), 223; https://doi.org/10.3390/plants15020223 - 11 Jan 2026
Viewed by 230
Abstract
Thidiazuron, 6-benzylaminopurine riboside, and meta-topolin are cytokinins often used in apple tissue cultures. Three different CK-containing Murashige and Skoog media were used during the experiments: medium without CK or media containing 4.5 μM thidiazuron, 4.5 μM 6-benzylaminopurine riboside, or 4.5 μM meta-topolin, respectively. [...] Read more.
Thidiazuron, 6-benzylaminopurine riboside, and meta-topolin are cytokinins often used in apple tissue cultures. Three different CK-containing Murashige and Skoog media were used during the experiments: medium without CK or media containing 4.5 μM thidiazuron, 4.5 μM 6-benzylaminopurine riboside, or 4.5 μM meta-topolin, respectively. Comparative ultrastructural studies across cytokinin types and apple cultivars were lacking. We studied the changes in photosynthetic pigment content of the leaves with absorption spectroscopy and chloroplast structure with light and transmission electron microscopy. At the light microscopy level, large changes were detected in the length and length-to-width ratios of the chloroplasts in the spongy and palisade mesophyll cell sections in 6-benzylaminopurine riboside- and meta-topolin-treated leaves of the McIntosh scion. In the chloroplasts of the McIntosh plants treated with 6-benzylaminopurine riboside and meta-topolin, and Húsvéti rozmaring leaves treated with meta-topolin, the diameter of grana increased. In both cultivars, thidiazuron caused the height of grana to increase. Thidiazuron and 6-benzylaminopurine riboside influenced leaf anatomy both in the Húsvéti rozmaring and McIntosh cultivars. 6-benzylaminopurine riboside and thidiazuron treatments reduced the content of photosynthetic pigments in the in vitro leaves of both cultivars. In contrast, meta-topolin treatment had no significant effect on the chlorophyll content as compared to the control. Differences were observed not only among the effects of cytokinins, but even between the two apple scions examined. In in vitro apple shoot cultures, TOP maintained chloroplast integrity and pigment content, whereas TDZ exerted stress-like effects. Full article
(This article belongs to the Special Issue Microscopy Techniques in Plant Studies—2nd Edition)
Show Figures

Figure 1

27 pages, 11722 KB  
Article
Light Scattering of Leaf Surface and Spongy Mesophyll and Concentration of Anthocyanin Influence Typical and Modified Photochemical Reflectance Indices
by Ekaterina Sukhova, Lyubov Yudina, Yuriy Zolin, Alyona Popova, Kseniya Grebneva, Karina Abasheva, Elizaveta Kozlova and Vladimir Sukhov
Plants 2025, 14(21), 3255; https://doi.org/10.3390/plants14213255 - 24 Oct 2025
Cited by 1 | Viewed by 779
Abstract
The photochemical reflectance index (PRI) based on reflectance at 531 and 570 nm and its modifications with shifted measuring wavelengths are well-known indicators of stress changes in photosynthetic processes which can be induced in plants under the action of numerous adverse factors (e.g., [...] Read more.
The photochemical reflectance index (PRI) based on reflectance at 531 and 570 nm and its modifications with shifted measuring wavelengths are well-known indicators of stress changes in photosynthetic processes which can be induced in plants under the action of numerous adverse factors (e.g., drought). However, the relationships between photosynthetic characteristics and the PRI are varied in different works; this means that photosynthetic responses are not the only reason for PRI changes. In the current work, we analyzed the influence of the light scattering of leaf surfaces and mesophyll layers and concentrations of leaf pigments on typical and modified PRIs. The analytical model of light reflectance and transmittance in the leaves of dicot plants, which had been previously developed in our work, and experimental measurements were used to analyze this influence. It was shown that increasing the light scattering of the leaf surface and the anthocyanin concentration and decreasing the light scattering of the spongy mesophyll increased PRIs with short measuring wavelengths and decreased PRIs with long measuring wavelengths. The action of drought induced similar changes in typical and modified PRIs, which were accompanied by an increased light scattering of the leaf surface and anthocyanin concentration and a decreased light scattering of the spongy mesophyll. The results show that changes in the light scattering of the leaf surface and spongy mesophyll and in the anthocyanin concentration can be the important mechanisms of slow changes in typical and modified PRIs, including drought-induced ones. Full article
Show Figures

Figure 1

16 pages, 3145 KB  
Article
Combined High Irradiance and Water Deficit Alters the Anatomy and Physiology of Photomorphogenic Mutant Micro-Tom Plants
by Ariana Bertola Carnevale, Alan Carlos da Costa, Emily Carolina Duarte Santos, Adinan Alves da Silva, Priscila Ferreira Batista, Fábia Barbosa da Silva, Luciana Minervina de Freitas Moura and Caroline Müller
Agriculture 2025, 15(14), 1518; https://doi.org/10.3390/agriculture15141518 - 14 Jul 2025
Viewed by 745
Abstract
Plants are continuously exposed to multiple environmental stressors throughout their lifecycle. Understanding their integrated physiological, biochemical, and anatomical responses under combined stress conditions is crucial for developing effective approaches to improve stress tolerance and maintain crop productivity. This study aimed to investigate the [...] Read more.
Plants are continuously exposed to multiple environmental stressors throughout their lifecycle. Understanding their integrated physiological, biochemical, and anatomical responses under combined stress conditions is crucial for developing effective approaches to improve stress tolerance and maintain crop productivity. This study aimed to investigate the physiological, biochemical, and anatomical changes in photomorphogenic Micro-Tom plants exposed to high irradiance and water deficit—an abiotic stress combination that commonly co-occurs in natural environments but remains poorly understood in light-sensitive genotypes. We hypothesized that the high pigment 1 (hp1) mutant, due to its enhanced light responsiveness, would display improved stress acclimation compared to the wild-type when exposed to combined stress factors. This study was conducted in a controlled plant growth chamber, using a randomized block design with five replicates. Two Micro-Tom genotypes (wt and hp1) were exposed to control (soil at field capacity (FC) + 450 μmol m−2 s−1 PPFD) and combined stress (40% FC + 1800 μmol m−2 s−1 PPFD) conditions. Despite the higher concentration of chloroplast pigments in hp1, its photosynthetic performance under combined stress was not significantly improved, and its defense mechanisms did not effectively mitigate the stress impacts. Anatomically, wt exhibited greater structural adjustment, observed by adaptations in the spongy parenchyma and mesophyll. Overall, the wt genotype showed stronger defense mechanisms, while hp1 was more susceptible to combined abiotic stress. Full article
Show Figures

Figure 1

24 pages, 6634 KB  
Article
Integrated Management of Tomato Fusarium Wilt: Ultrastructure Insights into Zn Nanoparticles and Phytohormone Applications
by Yasmin M. Heikal, Amal M. Albahi, Amal A. Alyamani, Hala M. Abdelmigid, Samia A. Haroun and Hoda M. Soliman
Cells 2025, 14(14), 1055; https://doi.org/10.3390/cells14141055 - 10 Jul 2025
Cited by 1 | Viewed by 2093
Abstract
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy [...] Read more.
Fusarium wilt (FW), induced by Fusarium oxysporum, poses a significant threat to global tomato (Solanum lycopersicum L.) production, leading to substantial yield reduction. This study investigated the anatomical and ultrastructural responses of tomato leaves to FW infection and assessed the efficacy of salicylic acid (SA), humic acid (HA), and zinc oxide nanoparticles (ZnO-NPs) as control and inducer agents. FW infection resulted in notable structural alterations, including decreased leaf blade and mesophyll thickness and increased Adaxial epidermal cell wall thickness, thereby disrupting the leaf structure. Also, it caused severe chloroplast damage, such as membrane detachment and a reduced count of starch granules, which could impair photosynthetic efficiency. The different treatments exhibited significant effectiveness in reversing these adverse effects, leading to increased thickness of the leaf blade, mesophyll, palisade, and spongy tissues and enhanced structural integrity. Furthermore, ultrastructural improvements included activated mitochondria, compact chloroplasts with increased numbers, and proliferation of plastoglobuli, indicating adaptive metabolic changes. Principal component analysis (PCA-biplot) highlighted the significant parameters distinguishing treatment groups, providing insights into trait-based differentiation. This study concluded the potential of SA, HA, and ZnO-NPs as sustainable solutions for managing Fusarium wilt and enhancing tomato plant resilience, thereby contributing to improved agricultural practices and food security. Full article
(This article belongs to the Section Plant, Algae and Fungi Cell Biology)
Show Figures

Graphical abstract

16 pages, 5239 KB  
Article
Hyperhydricity-Induced Physiological Changes and Catechin Accumulation in Blueberry Hybrids (Vaccinium corymbosum × V. angustifolium)
by Rajesh Barua, Sayani Kundu, Abir U. Igamberdiev and Samir C. Debnath
Horticulturae 2025, 11(4), 418; https://doi.org/10.3390/horticulturae11040418 - 14 Apr 2025
Cited by 2 | Viewed by 1266
Abstract
Hyperhydricity is a significant challenge in the tissue culture of blueberry plantlets, affecting their propagation, survival and quality, which results in economic losses for industrial blueberry micropropagation. The in vitro liquid propagation of two half-highbush blueberry hybrids, HB1 and HB2, [...] Read more.
Hyperhydricity is a significant challenge in the tissue culture of blueberry plantlets, affecting their propagation, survival and quality, which results in economic losses for industrial blueberry micropropagation. The in vitro liquid propagation of two half-highbush blueberry hybrids, HB1 and HB2, showed that a Growtek stationary bioreactor culture system containing a liquid medium exhibited a higher hyperhydricity percentage than a Sigma glass culture system with a semi-solid medium. The percentage of hyperhydricity (75.21 ± 1.89%) and water content (72%) of HB2 was more than that of HB1. A scanning electron microscopy study revealed that hyperhydric plantlets from both genotypes developed slowly, had closed stomata, and displayed enlarged intercellular spaces between the palisade and spongy parenchyma layers. Disrupted vascular bundles, underdeveloped sieve elements and a weak connection between phloem and xylem tissue were also observed in hyperhydric plantlets. An analysis of mesophyll and stem tissues highlighted a compressed adaxial epidermis, which led to compact palisade parenchyma, with irregularly shaped mesophyll cells. Hyperhydric plants showed strong nuclear magnetic resonance (NMR) signals in the aliphatic, aromatic, and sugar regions, specifically at peaks of 2.0, 2.5, 4.0, 4.5, 6.0, and 6.7 ppm. These signals were attributed to the presence of catechin (C15H14O6), a flavonoid compound, suggesting its significant role or accumulation in these plants under hyperhydric conditions. Despite the negative effects of hyperhydricity on commercial propagation, hyperhydric plants were found to contain higher levels of valuable untargeted metabolites, such as β-P-arbutin, chlorogenic acid, quercetin-3-O-glucoside, epicatechin, 2-O-caffeoyl arbutin, various fatty acids, β-glucose, linolenic acid, and acetyl than both in vitro and ex vitro conditions. The enrichment of bioactive compounds in blueberry enhances its antioxidant properties, nutritional profile, and potential health benefits, making them significant for plant defense mechanisms and stress adaptation. Full article
(This article belongs to the Special Issue Emerging Insights into Horticultural Crop Ecophysiology)
Show Figures

Figure 1

11 pages, 5628 KB  
Article
A Small Piece of a Complicated Puzzle: The Resurrection of Randia tomatillo Loes. from the Randia aculeata L. Complex (Rubiaceae)
by Alejandro Torres-Montúfar and Mayte Stefany Jiménez Noriega
Taxonomy 2025, 5(1), 10; https://doi.org/10.3390/taxonomy5010010 - 18 Feb 2025
Cited by 1 | Viewed by 1348
Abstract
Within the Rubiaceae family, the genus Randia comprises approximately 90 species, with significant morphological diversity in growth forms, leaf shapes, and floral sexuality. In particular, Randia aculeata is a taxonomically challenging species distributed from the southern United States to South America and the [...] Read more.
Within the Rubiaceae family, the genus Randia comprises approximately 90 species, with significant morphological diversity in growth forms, leaf shapes, and floral sexuality. In particular, Randia aculeata is a taxonomically challenging species distributed from the southern United States to South America and the Antilles that exhibits high morphological variability and ecological adaptability. One of its synonyms is Randia tomatillo, originally described from coastal dunes in Veracruz, Mexico, and it has been inconsistently described in the taxonomic literature either as a distinct species or as a synonym for R. aculeata. This study aimed to resolve the taxonomic identity of R. tomatillo through morphological observations from herbarium specimens, and transverse sections from mature leaves were observed using SEM microscopy to explore crystal types. Morphological traits, such as lifeform, twig pubescence, stipule persistence, fruit size, and pericarp texture, are critical in distinguishing R. tomatillo from morphologically related species, such as R. aculeata and Randia thurberi. Anatomical features, particularly the presence of prisms in the leaf mesophyll and epidermis, are unique to R. tomatillo, suggesting their diagnostic value. Ecological adaptations, such as scandent growth and spongy pericarps for hydrochorous fruit dispersal, further support its distinction as a species adapted to coastal environments. These findings highlight the need for a comprehensive taxonomic reassessment of Randia, integrating morphological, anatomical, and ecological evidence. Full article
Show Figures

Figure 1

15 pages, 13093 KB  
Article
Structural Particularities of Gall Neoformations Induced by Monarthropalpus flavus in the Leaves of Buxus sempervirens
by Irina Neta Gostin, Irinel Eugen Popescu and Cristian Felix Blidar
Plants 2025, 14(3), 453; https://doi.org/10.3390/plants14030453 - 4 Feb 2025
Viewed by 1839
Abstract
The boxwood leafminer Monarthropalpus flavus (Diptera, Cecidomyiidae) has historically been considered a leafminer, but some researchers suggested it induced galls on Buxus species leaves. The larvae of M. flavus create small blister-like galls on Buxus sempervirens leaves, causing tissue hypertrophy and hyperplasia. Histological [...] Read more.
The boxwood leafminer Monarthropalpus flavus (Diptera, Cecidomyiidae) has historically been considered a leafminer, but some researchers suggested it induced galls on Buxus species leaves. The larvae of M. flavus create small blister-like galls on Buxus sempervirens leaves, causing tissue hypertrophy and hyperplasia. Histological examination reveals that M. flavus larvae cause the formation of small blister galls, which involve tissue reorganization in the mesophyll. Unlike typical leafminers, which only disrupt existing tissues, M. flavus induces the appearance of a neo-formed tissue, near the larval chamber. This tissue, originating primarily from spongy parenchyma cells, significantly increases as the leaf thickens. Various histochemical analyses show that the new tissue contains starch, lipids, terpenes, and proteins, providing evidence of reprogramming in the plant’s metabolism. The study concludes that M. flavus induces rudimentary galls, not simply mines, due to the formation of new tissue, whose cells have cytological characteristics distinct from those found in non-galled leaves. However, despite some gall-like features, it does not create new vascular elements, distinguishing it from more complex galls formed by other gall-inducing species. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

17 pages, 4760 KB  
Article
Study on the Combustion Characteristics of Seven Common Broadleaf Plant Species in Southern China
by Yuanfan Ji, Rui Huang, Jiacheng Jia, Jiangjiang Yin and Yige Chen
Forests 2025, 16(1), 44; https://doi.org/10.3390/f16010044 - 30 Dec 2024
Cited by 1 | Viewed by 1415
Abstract
Due to the frequent occurrence of forest fires worldwide, which cause severe economic losses and casualties, it is essential to explore the mechanisms of forest fires. In this study, seven common broadleaf plant species from southern China were selected to observe their microscopic [...] Read more.
Due to the frequent occurrence of forest fires worldwide, which cause severe economic losses and casualties, it is essential to explore the mechanisms of forest fires. In this study, seven common broadleaf plant species from southern China were selected to observe their microscopic structural parameters. The combustion performance parameters of the leaves of these seven species were measured using a cone calorimeter, and the relationship between the microscopic structure and combustion performance was analyzed. Additionally, factor analysis was used to study the combustion intensity factor (F1), fire resistance intensity factor (F2), and the comprehensive fire risk degree (F) of the leaves of the seven plant species. Finally, regression analysis was performed between the microscopic structural parameters and the comprehensive fire risk factor. The results show the following: (1) The ratio of spongy mesophyll to palisade cells (S/P) affects the combustion performance of plant leaves. (2) The ranking of the comprehensive fire risk factor for the leaves of the seven plant species is as follows: Osmanthus fragrans var. semperflorens (OFS) > Cinnamomum camphora (CC) > Loropetalum chinense (R. Br.) Oliv. (LC) > Pterocarya stenoptera C. DC. (PS) > Loropetalum chinense var. rubrum (LCVR) > Photinia beauverdiana C. K Schneid. (PB) > Styphnolobium japonicum (L.) Schott (SJ). (3) There is a strong exponential relationship between the comprehensive fire risk factor and the microscopic structural parameters. This study is beneficial for selecting fire-resistant tree species and monitoring species with higher comprehensive fire risk. Full article
(This article belongs to the Special Issue Forest Responses to Fires)
Show Figures

Figure 1

14 pages, 4751 KB  
Article
Colchicine-Induced Tetraploidy in Protocorms of Aerides rosea Lodd. ex Lindl. and Paxton. and Its Identification
by Li Wang, Pengrui Zheng, Hong Ge, Xin Zhao, Yaping Kou, Shuhua Yang, Xiaonan Yu and Ruidong Jia
Plants 2024, 13(24), 3535; https://doi.org/10.3390/plants13243535 - 18 Dec 2024
Cited by 2 | Viewed by 1815
Abstract
Aerides rosea (Orchidaceae) boasts high ornamental value due to its pleasant aroma, foxtail spike, and elegant floral morphology. Inducing A. rosea to become tetraploid enhances horticultural traits and facilitates fertile intergeneric hybrids through crosses with other market-available tetraploid species. The experimental design involved [...] Read more.
Aerides rosea (Orchidaceae) boasts high ornamental value due to its pleasant aroma, foxtail spike, and elegant floral morphology. Inducing A. rosea to become tetraploid enhances horticultural traits and facilitates fertile intergeneric hybrids through crosses with other market-available tetraploid species. The experimental design involved the application of colchicine at varying concentrations—0.05%, 0.1%, and 0.2%—to a solid medium. Exposure durations were 5, 10, and 15 days, with treatments conducted under sterile conditions on 6-week-old protocorms post-germination. Results indicated that the protocorms were sensitive to colchicine concentrations exceeding 0.05%, with high concentrations leading to a mortality rate exceeding 50%. Flow cytometry (FCM) with 4′,6-diamidino-2-phenylindole (DAPI) staining confirmed a doubling of chromosome numbers in tetraploid plants (2n = 4x = 76) compared to diploid controls (2n = 2x = 38). Induction efficiency was significantly influenced by colchicine concentration and treatment duration. A 10-day treatment with 0.2% colchicine yielded a 70.00% tetraploid induction rate; however, considering protocorm survival, a 5-day treatment with 0.05% colchicine was preferable, achieving a 63.55% survival rate and a 56.67% tetraploid induction rate. Tetraploid plants exhibited distinct morphological traits, such as a more compact growth habit, thicker leaves, and increased stem and root thickness. Leaf morphology changes included larger stomata with reduced density, denser spongy mesophyll, and more pronounced venation. Tetraploids also demonstrated a 1.94-fold increase in genome size compared to diploids. The tetraploid genotypes developed in this study hold significant potential for future Aerides breeding programs. Full article
(This article belongs to the Special Issue Sexual and Asexual Reproduction in Forest Plants)
Show Figures

Figure 1

23 pages, 5158 KB  
Article
Development of Analytical Model to Describe Reflectance Spectra in Leaves with Palisade and Spongy Mesophyll
by Ekaterina Sukhova, Yuriy Zolin, Kseniya Grebneva, Ekaterina Berezina, Oleg Bondarev, Anastasiia Kior, Alyona Popova, Daria Ratnitsyna, Lyubov Yudina and Vladimir Sukhov
Plants 2024, 13(22), 3258; https://doi.org/10.3390/plants13223258 - 20 Nov 2024
Cited by 4 | Viewed by 2430
Abstract
Remote sensing plays an important role in plant cultivation and ecological monitoring. This sensing is often based on measuring spectra of leaf reflectance, which are dependent on morphological, biochemical, and physiological characteristics of plants. However, interpretation of the reflectance spectra requires the development [...] Read more.
Remote sensing plays an important role in plant cultivation and ecological monitoring. This sensing is often based on measuring spectra of leaf reflectance, which are dependent on morphological, biochemical, and physiological characteristics of plants. However, interpretation of the reflectance spectra requires the development of new tools to analyze relations between plant characteristics and leaf reflectance. The current study was devoted to the development, parameterization, and verification of the analytical model to describe reflectance spectra of the dicot plant leaf with palisade and spongy mesophyll layers (on the example of pea leaves). Four variables (intensities of forward and backward collimated light and intensities of forward and backward scattered light) were considered. Light reflectance and transmittance on borders of lamina (Snell’s and Fresnel’s laws), light transmittance in the palisade mesophyll (Beer–Bouguer–Lambert law), and light transmittance and scattering in the spongy mesophyll (Kubelka–Munk theory) were described. The developed model was parameterized based on experimental results (reflectance spectra, contents of chlorophylls and carotenoid, and thicknesses of palisade and spongy mesophyll in pea leaves) and the literature data (final R2 was 0.989 for experimental and model-based reflectance spectra). Further model-based and experimental investigations showed that decreasing palisade and spongy mesophyll thicknesses in pea leaves (from 35.5 to 25.2 µm and from 58.6 to 47.8 µm, respectively) increased reflectance of green light and decreased reflectance of near-infrared light. Similarity between model-based and experimental results verified the developed model. Thus, the model can be used to analyze leaf reflectance spectra and, thereby, to increase efficiency of the plant remote and proximal sensing. Full article
(This article belongs to the Special Issue Integration of Spectroscopic and Photosynthetic Analyses in Plants)
Show Figures

Figure 1

13 pages, 3797 KB  
Article
Anatomical Responses of Two Species under Controlled Water Restriction
by Karen Peña-Rojas, Sergio Donoso, Carolain Badaracco, Paulette I. Naulin, Bárbara Gotor and Alejandro Riquelme
Plants 2024, 13(19), 2812; https://doi.org/10.3390/plants13192812 - 8 Oct 2024
Cited by 2 | Viewed by 1766
Abstract
Quillay (Quillaja saponaria Molina) and peumo (Cryptocarya alba [Molina] Looser) are two tree species endemic to Chile that grow in Mediterranean climate zones, characterized by a summer season with high temperatures, high solar radiation, and low soil water availability. A study [...] Read more.
Quillay (Quillaja saponaria Molina) and peumo (Cryptocarya alba [Molina] Looser) are two tree species endemic to Chile that grow in Mediterranean climate zones, characterized by a summer season with high temperatures, high solar radiation, and low soil water availability. A study was conducted with 2-year-old Q. saponaria and C. alba plants and two substrate water conditions: well-watered and controlled water restriction. At the end of the study, anatomical leaf modifications were analyzed. The tissues were anatomically described in transverse sections of juvenile and adult leaves, measuring leaf thickness, cuticle thickness, and cell density of the mesophyll parenchymal tissues. In the young leaves of Q. saponaria plants undergoing water restriction treatment, an increase in cuticle and leaf thickness and a decrease in the density of the palisade and spongy parenchyma were observed. In contrast, a significant reduction in leaf thickness was observed in adult leaves of both species with water restriction treatment. The anatomical changes in the leaves of Q. saponaria and C. alba suggest an adaptation to adverse environmental conditions, such as water restriction. Full article
(This article belongs to the Special Issue Drought Responses and Adaptation Mechanisms in Plants)
Show Figures

Figure 1

24 pages, 3766 KB  
Article
Microanatomical Properties of Energy Willow (Salix spp.) Leaves after Exposure to Potentially Toxic Elements from Wastewater Solids and Wood Ash
by Csilla Tóth, László Simon and Brigitta Tóth
Agronomy 2024, 14(8), 1625; https://doi.org/10.3390/agronomy14081625 - 25 Jul 2024
Cited by 3 | Viewed by 1639
Abstract
This open-field small-plot long-term experiment was set up between 2011 and 2021 with willow (Salix triandra × S. viminalis ‘Inger’), grown as a short rotation coppice energy crop in Nyíregyháza, Hungary. The sandy loam Cambisol was treated with wastewater solids (WS) in [...] Read more.
This open-field small-plot long-term experiment was set up between 2011 and 2021 with willow (Salix triandra × S. viminalis ‘Inger’), grown as a short rotation coppice energy crop in Nyíregyháza, Hungary. The sandy loam Cambisol was treated with wastewater solids (WS) in the form of municipal sewage sludge compost (MSSC, 2011, 2013, and 2016), municipal sewage sediment (MSS, 2018), and with willow ash (WA, 2011, 2013, 2016, and 2018). Control plots remained untreated since 2011. All soil treatments significantly enhanced the uptake or accumulation of potentially toxic elements (PTEs) in the leaves of willows. During June 2019, 53 weeks after the last soil treatments, MSSC + MSS-, WA-, and MSSC + MSS + WA-treated willows leaves had 14–68% more As, 17–48% more Ba, 31–104% more Cr, 4–12% more Cu, 6–15% more Mn, 18–218% more Pb, and 11–35% more Zn compared to the untreated control. Significantly higher Mn and Zn concentrations were measured in the MSSC + MSS + WA treatments than in the MSSC + MSS treatments. The assumption that WA reduces the accumulation of PTEs in willow leaves when applied together with MSSC and MSS was therefore only partially confirmed. The hypothesis of this study was that PTEs accumulated in the leaves would affect the microanatomical parameters of the leaves. Numerous positive changes were observed with the combined application of WS and WA. MSSC + MSS + WA treatment reduced the thickness of the mesophyll less than MSSC + MSS or WA treatments alone; the size of the cells building the palisade and spongy parenchyma and the extent of the main vein significantly increased. In the case of the combined treatment, the extent of the sclerenchymatous stock was smaller than in the control but larger than in WS- or WA-treated willow. The extent of the collenchymatous stock significantly increased compared to the control. Increases in the thickness of the adaxial epidermis and the number of stomata were statistically significant. However, the extent of the increases did not reach the extent of the increase experienced in the case of WS treatment, as the size of the stomata did not significantly decrease. Full article
(This article belongs to the Special Issue Plant Ecophysiology Under Anthropogenic and Natural Stresses)
Show Figures

Figure 1

14 pages, 3053 KB  
Article
Foliar Pectins and Physiology of Diploid and Autotetraploid Mango Genotypes under Water Stress
by Andrés Fonollá, José I. Hormaza and Juan M. Losada
Plants 2023, 12(21), 3738; https://doi.org/10.3390/plants12213738 - 31 Oct 2023
Cited by 4 | Viewed by 2264
Abstract
The cultivation of mango in Mediterranean-type climates is challenged by the depletion of freshwater. Polyploids are alternative genotypes with potential greater water use efficiency, but field evaluations of the anatomy and physiology of conspecific adult polyploid trees under water stress remain poorly explored. [...] Read more.
The cultivation of mango in Mediterranean-type climates is challenged by the depletion of freshwater. Polyploids are alternative genotypes with potential greater water use efficiency, but field evaluations of the anatomy and physiology of conspecific adult polyploid trees under water stress remain poorly explored. We combined field anatomical evaluations with measurements of leaf water potential (Ψl) and stomatal conductance (Gs) comparing one diploid and one autotetraploid tree per treatment with and without irrigation during dry summers (when fruits develop). Autotetraploid leaves displayed lower Ψl and Gs in both treatments, but the lack of irrigation only affected Gs. Foliar cells of the adaxial epidermis and the spongy mesophyll contained linear pectin epitopes, whereas branched pectins were localized in the abaxial epidermis, the chloroplast membrane, and the sieve tube elements of the phloem. Cell and fruit organ size was larger in autotetraploid than in diploid mango trees, but the sugar content in the fruits was similar between both cytotypes. Specific cell wall hygroscopic pectins correlate with more stable Ψl of autotetraploid leaves under soil water shortage, keeping lower Gs compared with diploids. These preliminary results point to diploids as more susceptible to water deficits than tetraploids. Full article
(This article belongs to the Special Issue Anatomy and Physiology of Fruit Trees)
Show Figures

Figure 1

23 pages, 9576 KB  
Article
Effect of Waterlogging Stress on Leaf Anatomical Structure and Ultrastructure of Phoebe sheareri Seedlings
by Fenghou Shi, Zhujing Pan, Pengfei Dai, Yongbao Shen, Yizeng Lu and Biao Han
Forests 2023, 14(7), 1294; https://doi.org/10.3390/f14071294 - 23 Jun 2023
Cited by 13 | Viewed by 3970
Abstract
Phoebe sheareri is an excellent roadside tree with a wide distribution range and high ornamental value. Excessive moisture can affect the external morphology, the microstructure, and the ultrastructure of the leaf. Little is known at present regarding the leaf structure of P. sheareri [...] Read more.
Phoebe sheareri is an excellent roadside tree with a wide distribution range and high ornamental value. Excessive moisture can affect the external morphology, the microstructure, and the ultrastructure of the leaf. Little is known at present regarding the leaf structure of P. sheareri under waterlogging stress. In this paper, the external morphology of leaves, the microstructure of leaf epidermis, and the ultrastructure of mesophyll cells of P. sheareri seedlings under waterlogging stress and drainage were dynamically observed. Waterlogging stress contributed to the yellowing and wilting of P. sheareri seedling leaves, the gradual closing of leaf epidermal stomata, increasing density of leaf stomata, gradual loosening of the arrangement of leaf cell structure, and merging of leaf palisade tissue cells. Waterlogging stress forced the structure of the chloroplast membranes to blur, gradually causing swelling, and deformation, with plasmolysis occurring in severe cases. During waterlogging, the basal lamellae were disorganized, and the mitochondrial membrane structure was damaged. The damaged state of the leaves was not relieved after drainage. Waterlogging stress not only inhibited the growth of leaves, but also accelerated the closure of stomata, disordered the arrangement of palisade tissue and spongy tissue gradually, and damaged the internal organelles of mesophyll cells. Full article
Show Figures

Figure 1

25 pages, 22807 KB  
Article
Morphology, Taxonomy, Anatomy, and Palynology of the Opium Poppy (Papaver somniferum L.) Cultivation in Northern Thailand
by Chatchai Ngernsaengsaruay, Nisa Leksungnoen, Pichet Chanton, Tushar Andriyas, Pratchaya Thaweekun, Surasak Rueansri, Ratthapon Tuntianupong and Woottichai Hauyluek
Plants 2023, 12(11), 2105; https://doi.org/10.3390/plants12112105 - 25 May 2023
Cited by 10 | Viewed by 14373
Abstract
In this paper, we present the morphology, taxonomy, anatomy, and palynology of Papaver somniferum. A detailed morphological description and illustrations of the species are provided, along with information about the identification, distribution, cultivation areas, habitats, pollinators, specimens examined, growing periods, phenology, etymology, [...] Read more.
In this paper, we present the morphology, taxonomy, anatomy, and palynology of Papaver somniferum. A detailed morphological description and illustrations of the species are provided, along with information about the identification, distribution, cultivation areas, habitats, pollinators, specimens examined, growing periods, phenology, etymology, vernacular name, and uses. The species can be characterized as a glabrous and glaucous herb with unlobed or pinnately lobed leaves, and an amplexicaul base; variations in color and morphological characteristics of petals; and white filaments, occasionally purple with a white basal part, broadened at the apical part. Two rings of discontinuous and widely spaced collateral vascular bundles are recognized in the transverse section of the stems. The shape of epidermal cells on the adaxial surface is polygonal, while that on the abaxial surface is polygonal or irregular. The anticlinal cell walls of the epidermal cells on the adaxial surface are straight or slightly curved, while those on the abaxial surface are straight, slightly curved, sinuate, or strongly sinuate. The stomata are anomocytic and are confined to the lower epidermis. The stomatal density is 54–199/mm2 (with a mean of 89.29 ± 24.97). The mesophyll is not distinctly differentiated into palisade and spongy regions. Laticifers are found in the phloem areas of the stems and leaves. The pollen grains can be spheroidal or prolate spheroidal in shape, sometimes oblate spheroidal [polar axis (P) diameter/equatorial axis (E) diameter ratio = 0.99–1.12 (with a mean of 1.03 ± 0.03)]. The pollen aperture is tricolpate and the exine sculpturing is microechinate. Full article
(This article belongs to the Topic Plant Systematics and Taxonomy)
Show Figures

Figure 1

Back to TopTop