Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = spent power lithium-ion battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2562 KiB  
Article
Metal Recovery from Discarded Lithium-Ion Batteries by Bioleaching Coupled with Minimal Mechanical Pre-Treatment
by Lidia Garcia, Joan Morell, Conxita Lao, Montserrat Solé-Sardans and Antonio D. Dorado
Minerals 2025, 15(6), 566; https://doi.org/10.3390/min15060566 - 26 May 2025
Viewed by 921
Abstract
The rising demand for lithium-ion batteries (LIBs), driven by the growing consumption of electronic devices and the expansion of electric vehicles, is leading to a concerning depletion of primary metal resources and a significant accumulation of electronic waste. This urgent challenge highlights the [...] Read more.
The rising demand for lithium-ion batteries (LIBs), driven by the growing consumption of electronic devices and the expansion of electric vehicles, is leading to a concerning depletion of primary metal resources and a significant accumulation of electronic waste. This urgent challenge highlights the need for sustainable recovery methods to extract valuable metals from spent LIBs, aligning with circular economy principles. In this study, the preparation of spent batteries for the bioleaching process was achieved with minimal manipulation. This included a preliminary discharge to ensure safety in subsequent processes and a brief crushing to facilitate the access of leaching agents to valuable metals. Unlike most studies that grind batteries to obtain powders between 70 and 200 microns, our approach works with particles sized around 5 mm. Additionally, our preparation process avoids any thermal or chemical treatments. This straightforward pre-treatment process marks a significant advancement by reducing the complexity and cost of processing. A systematic study was conducted on various fractions of the large particle sizes, using Fe (III) produced through bio-oxidation by A. ferrooxidans and biogenically obtained H2SO4 from A. thiooxidans. The highest metal extraction rates were achieved using the unsorted fraction, directly obtained from the black mass after the grinding process, without additional particle separation. When treated with bio-oxidized Fe (III), this fraction achieved a 95% recovery of Cu, Ni, and Al within 20 min, and over 90% recovery of Co, Mn, and Li within approximately 30 min. These recovery rates are attributed to the combined reducing power of Al and Cu already present in the black mass and the Fe (II) generated during the oxidation reactions of metallic Cu and Al. These elements actively facilitate the reduction of transition metal oxides into their more soluble, lower-valence states, enhancing the overall metal solubilization process. The extraction was carried out at room temperature in an acidic medium with a pH no lower than 1.5. These results demonstrate significant potential for efficient metal recovery from spent batteries with minimal pre-treatment, minimizing environmental impact. Additionally, the simplified residue preparation process can be easily integrated into existing waste management facilities without the need for additional equipment. Full article
Show Figures

Graphical abstract

16 pages, 3545 KiB  
Article
Effects of Ultrasonic Pretreatment on the Discharge for Better Recycling of Spent Lithium-Ion Batteries
by Weichen Yang, Zheng Tong, Hezhan Wan, Shuangyin Jiang, Xiangning Bu and Lisha Dong
Batteries 2025, 11(2), 56; https://doi.org/10.3390/batteries11020056 - 2 Feb 2025
Cited by 1 | Viewed by 1172
Abstract
Discharge treatment is a vital process in the pretreatment of spent lithium-ion batteries (LIBs). This paper focuses on the effects of ultrasonic pretreatment on the discharge of spent LIBs from the perspective of electrolyte concentration and ultrasonic power. By integrating characterizations such as [...] Read more.
Discharge treatment is a vital process in the pretreatment of spent lithium-ion batteries (LIBs). This paper focuses on the effects of ultrasonic pretreatment on the discharge of spent LIBs from the perspective of electrolyte concentration and ultrasonic power. By integrating characterizations such as pH measurement and X-ray fluorescence (XRF), the effect of ultrasonic pretreatment on the discharge of spent LIBs is evaluated. Experimental results show that sodium chloride (NaCl) solution and potassium chloride (KCl) solution have a more significant and better discharge efficiency (DE) under ultrasonic treatment, while organic electrolyte solutions which mainly contain formate and acetate generally show a less ideal DE. Under experimental conditions of using electrolyte discharge solutions with various electrolyte concentrations with the same ultrasonic power of 300 W, the DE generated from the experimental condition with KCl solution in 30 g/200 mL deionized water is the highest, 64.9%; under different ultrasonic powers in the same electrolyte solutions, the DE of 10 wt.% HCOONa solution is the highest at ultrasonic power of 500 W, at 4.7%. This work provides a reference for the efficient and cost-effective pretreatment of spent LIBs and the discharge mechanism in different electrolyte solutions with ultrasonic treatment is also explored to support the recycling of spent LIBs. Full article
(This article belongs to the Special Issue Advances in Recycling and Upcycling of Spent Lithium-Ion Batteries)
Show Figures

Graphical abstract

23 pages, 2774 KiB  
Review
An Overview of the Sustainable Recycling Processes Used for Lithium-Ion Batteries
by Daniele Marchese, Chiara Giosuè, Antunes Staffolani, Massimo Conti, Simone Orcioni, Francesca Soavi, Matteo Cavalletti and Pierluigi Stipa
Batteries 2024, 10(1), 27; https://doi.org/10.3390/batteries10010027 - 11 Jan 2024
Cited by 16 | Viewed by 12630
Abstract
Lithium-ion batteries (LIBs) can play a crucial role in the decarbonization process that is being tackled worldwide; millions of electric vehicles are already provided with or are directly powered by LIBs, and a large number of them will flood the markets within the [...] Read more.
Lithium-ion batteries (LIBs) can play a crucial role in the decarbonization process that is being tackled worldwide; millions of electric vehicles are already provided with or are directly powered by LIBs, and a large number of them will flood the markets within the next 8–10 years. Proper disposal strategies are required, and sustainable and environmental impacts need to be considered. Despite still finding little applicability in the industrial field, recycling could become one of the most sustainable options to handle the end of life of LIBs. This review reports on the most recent advances in sustainable processing for spent LIB recycling that is needed to improve the LIB value chain, with a special focus on green leaching technologies for Co-based cathodes. Specifically, we provide the main state of the art for sustainable LIB recycling processes, focusing on the pretreatment of spent LIBs; we report on Life Cycle Assessment (LCA) studies on the usage of acids, including mineral as well as organic ones; and summarize the recent innovation for the green recovery of valuable metals from spent LIBs, including electrochemical methods. The advantage of using green leaching agents, such as organic acids, which represent a valuable option towards more sustainable recycling processes, is also discussed. Organic acids can, indeed, reduce the economic, chemical, and environmental impacts of LIBs since post-treatments are avoided. Furthermore, existing challenges are identified herein, and suggestions for improving the effectiveness of recycling are defined. Full article
Show Figures

Figure 1

14 pages, 4027 KiB  
Article
Preparation and Performance of Regenerated Al2O3-Coated Cathode Material LiNi0.8Co0.15Al0.05O2 from Spent Power Lithium-Ion Batteries
by Liwen Ma, Guangyun Liu, Yuehua Wang and Xiaoli Xi
Molecules 2023, 28(13), 5165; https://doi.org/10.3390/molecules28135165 - 2 Jul 2023
Cited by 2 | Viewed by 2494
Abstract
In this study, LiNi0.8Co0.15Al0.05O2@x%Al2O3-coated cathode materials were regeneratively compounded by the solid-phase sintering method, and their structural characterization and electrochemical performance were systematically analyzed. The regenerated ternary cathode material precursor synthesized [...] Read more.
In this study, LiNi0.8Co0.15Al0.05O2@x%Al2O3-coated cathode materials were regeneratively compounded by the solid-phase sintering method, and their structural characterization and electrochemical performance were systematically analyzed. The regenerated ternary cathode material precursor synthesized by the co-precipitation method was roasted with lithium carbonate at a molar ratio of 1:1.1, and then completely mixed with different contents of aluminum hydroxide. The combined materials were then sintered at 800 °C for 15 h to obtain the regenerated coated cathode material, LiNi0.8Co0.15Al0.05O2@x%Al2O3. The thermogravimetry analysis, phase composition, morphological characteristics, and other tests show that when the added content of aluminum hydroxide is 3%, the regenerated cathode material, LiNi0.8Co0.15Al0.05O2@1.5%Al2O3, exhibits the highest-order layered structure with Al2O3 coating. This material can better inhibit the production of Ni2+, and improve material structure and electrochemical properties. The first charge–discharge efficiency of the battery assembled with this regenerated cathode material is 97.4%, a 50-cycle capacity retention is 93.4%, and a 100-cycle capacity retention is 87.6%. The first charge–discharge efficiency is far better than that of the uncoated regenerated battery. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

14 pages, 12844 KiB  
Article
Effects of Mechanical Stirring and Ultrasound Treatment on the Separation of Graphite Electrode Materials from Copper Foils of Spent LIBs: A Comparative Study
by Xibing Ren, Zheng Tong, Yanshan Dai, Guoying Ma, Zhongze Lv, Xiangning Bu, Muhammad Bilal, Ali Behrad Vakylabad and Ahmad Hassanzadeh
Separations 2023, 10(4), 246; https://doi.org/10.3390/separations10040246 - 9 Apr 2023
Cited by 18 | Viewed by 4061
Abstract
In this paper, mechanical stirring and ultrasonic treatment are used to separate graphite electrode materials from copper foils in recycling spent lithium-ion batteries (LIBs). Firstly, the effects of ultrasonic power (60–180 W), ultrasonic time (1–8 min), stirring speed (420–2000 rpm), and stirring time [...] Read more.
In this paper, mechanical stirring and ultrasonic treatment are used to separate graphite electrode materials from copper foils in recycling spent lithium-ion batteries (LIBs). Firstly, the effects of ultrasonic power (60–180 W), ultrasonic time (1–8 min), stirring speed (420–2000 rpm), and stirring time (1–8 min) on the abscission rate of active material on copper foil were studied. It was found that the peeling-off ratio of electrode material under ultrasonic treatment was 91.34% compared with stirring treatment (84.22%). The removal of electrode material from copper foil during stirring was mainly through mechanical scrubbing. As a comparison, the generation of the microjets induced by ultrasound, the local high-temperature and high-pressure environment, and the free radicals during ultrasonic treatment are the key factors to further improve electrode material removal efficiency. An integrated ultrasound-mechanical stirrer technique can achieve a high-efficient separation performance (approximately 100% peeling-off ratio) of anode electrode materials from copper foils. The effects of mechanical stirring speed, temperature, and treatment time on the peeling-off ratios of the ultrasound-mechanical stirrer-assisted system were investigated. Finally, the results of XRF (X-ray fluorescence spectrometer), XRD (X-ray diffraction), and SEM-EDS (scanning electron microscopy coupled with energy dispersive X-ray spectroscopy) showed that the as-separated graphite electrode material had high purity and contained almost no copper foil impurities. Numerical simulation analyses briefly showed that the difference between pressure and ultrasonic temperature changes in the boundary between different anode layers (graphite on copper foil in aqueous solution) was the main effective factor in the considerable separation of graphite from copper anode foil under ultrasonic-assisted delamination. Full article
Show Figures

Figure 1

25 pages, 1493 KiB  
Review
A Paradox over Electric Vehicles, Mining of Lithium for Car Batteries
by John H. T. Luong, Cang Tran and Di Ton-That
Energies 2022, 15(21), 7997; https://doi.org/10.3390/en15217997 - 27 Oct 2022
Cited by 35 | Viewed by 22914
Abstract
Lithium, a silver-white alkali metal, with significantly high energy density, has been exploited for making rechargeable lithium-ion batteries (LiBs). They have become one of the main energy storage solutions in modern electric cars (EVs). Cobalt, nickel, and manganese are three other key components [...] Read more.
Lithium, a silver-white alkali metal, with significantly high energy density, has been exploited for making rechargeable lithium-ion batteries (LiBs). They have become one of the main energy storage solutions in modern electric cars (EVs). Cobalt, nickel, and manganese are three other key components of LiBs that power electric vehicles (EVs). Neodymium and dysprosium, two rare earth metals, are used in the permanent magnet-based motors of EVs. The operation of EVs also requires a high amount of electricity for recharging their LiBs. Thus, the CO2 emission is reduced during the operation of an EV if the recharged electricity is generated from non-carbon sources such as hydroelectricity, solar energy, and nuclear energy. LiBs in EVs have been pushed to the limit because of their limited storage capacity and charge/discharge cycles. Batteries account for a substantial portion of the size and weight of an EV and occupy the entire chassis. Thus, future LiBs must be smaller and more powerful with extended driving ranges and short charging times. The extended range and longevity of LiBs are feasible with advances in solid-state electrolytes and robust electrode materials. Attention must also be focused on the high-cost, energy, and time-demand steps of LiB manufacturing to reduce cost and turnover time. Solid strategies are required to promote the deployment of spent LiBs for power storage, solar energy, power grids, and other stationary usages. Recycling spent LiBs will alleviate the demand for virgin lithium and 2.6 × 1011 tons of lithium in seawater is a definite asset. Nonetheless, it remains unknown whether advances in battery production technology and recycling will substantially reduce the demand for lithium and other metals beyond 2050. Technical challenges in LiB manufacturing and lithium recycling must be overcome to sustain the deployment of EVs for reducing CO2 emissions. However, potential environmental problems associated with the production and operation of EVs deserve further studies while promoting their global deployment. Moreover, the combined repurposing and remanufacturing of spent LiBs also increases the environmental benefits of EVs. EVs will be equipped with more powerful computers and reliable software to monitor and optimize the operation of LiBs. Full article
Show Figures

Graphical abstract

16 pages, 4565 KiB  
Article
Separation and Comprehensive Recovery of Cobalt, Nickel, and Lithium from Spent Power Lithium-Ion Batteries
by Liwen Ma, Xiaoli Xi, Zhengzheng Zhang and Zhe Lyu
Minerals 2022, 12(4), 425; https://doi.org/10.3390/min12040425 - 30 Mar 2022
Cited by 11 | Viewed by 4910
Abstract
The popularization of electric vehicles drives the extensive use of power lithium-ion batteries (LIBs) and their abandonment after retirement. Spent power LIBs have a high economic value because they contain valuable metals which need to be recovered. In this study, the separation and [...] Read more.
The popularization of electric vehicles drives the extensive use of power lithium-ion batteries (LIBs) and their abandonment after retirement. Spent power LIBs have a high economic value because they contain valuable metals which need to be recovered. In this study, the separation and comprehensive recovery of valuable metallic elements, including Co, Ni, and Li, from spent power LIBs were realized by a hydrometallurgical process of “calcination–leaching–synergistic extraction–synthesis”. The results showed that, under the optimal conditions, the extraction efficiencies of impurities, such as Al and Cu, by P204 were 91% and 90%, respectively. A P507–N235 synergistic system was proposed to extract Co over Ni and Li with the maximum synergistic coefficient of 12.6. The extraction efficiency of Co, Ni, and Li was 99.5%, 3.9%, and 9.7%, respectively, and the separation coefficients of β(Co/Ni) and β(Co/Li) were 200.6 and 300.3, respectively. Cobalt oxalate, nickel oxalate, and lithium carbonate were finally obtained. Comprehensive recovery of valuable metals was realized, and the total recovery efficiency of Li, Ni, and Co was 84.1%, 93.1%, and 96.5%, respectively. This study provides positive significance for the improvement of cobalt extraction technology and comprehensive recycling efficiency of spent power LIBs. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

17 pages, 9107 KiB  
Article
Estimation of Parallel Hybrid Scooter’s Energy Consumption through Real Urban Drive Cycle Using IMU
by Supriya Kalyankar-Narwade, Ramesh Kumar Chidambaram and Sanjay Patil
Vehicles 2022, 4(1), 297-313; https://doi.org/10.3390/vehicles4010018 - 15 Mar 2022
Viewed by 2977
Abstract
Drive cycle a is primary information useful for analyzing, designing, and optimizing automotive controllers for vehicle homologation. Conventional and electric vehicles are tested and certified based on the specified standard driving cycles as per vehicle category for emission compliance and energy consumption, respectively. [...] Read more.
Drive cycle a is primary information useful for analyzing, designing, and optimizing automotive controllers for vehicle homologation. Conventional and electric vehicles are tested and certified based on the specified standard driving cycles as per vehicle category for emission compliance and energy consumption, respectively. In countries such as India, this drive cycle fails to conceal the real-time drive cycles on urban roads with heavy traffic. This real-time drive cycle details the driving skill, congestion, road characteristics, acceleration and deceleration durations, etc. In this context, the real-time drive cycle is captured with the help of an Inertial Measurement Unit. Analysis of IMU measured data with a suitable sampling rate is carried out and energy characterizations are presented in this article. For better accuracy, the IMU data logger is set for an 8 Hz sampling rate which logs the vehicle dynamics data of a scooter. For urban traffic data collection, Pune city is selected and actual energy spent is estimated with the engine, electric, and hybrid modes. State of Charge based switching is carried out with the help of a hybrid controller and observations are tabulated. State of Charge thresholds are monitored and energy-efficient switching is decided. It is estimated from the results that hybrid conversion of a scooter is more efficient due to charge/regeneration into a Lithium-ion battery when the engine powers the wheel and while braking. The range is extended with the above configuration, and further can be increased based on higher battery capacity. Energy management is better handled with a hybrid electric controller for urban roads. Range anxiety issues of EV are lowered in HEV configuration and it is also estimated that parallel Hybrid scooters are more energy-efficient and release lower carbon emissions than conventional vehicles. Full article
(This article belongs to the Special Issue Electrified Intelligent Transportation Systems)
Show Figures

Figure 1

17 pages, 902 KiB  
Article
Research on Spent LiFePO4 Electric Vehicle Battery Disposal and Its Life Cycle Inventory Collection in China
by Lingyun Zhu and Ming Chen
Int. J. Environ. Res. Public Health 2020, 17(23), 8828; https://doi.org/10.3390/ijerph17238828 - 27 Nov 2020
Cited by 20 | Viewed by 5100
Abstract
The main research direction for the disposal of spent lithium-ion batteries is focused on the recovery of precious metals. However, few studies exist on the recycling of LiFePO4 electric vehicle (EV) batteries because of their low recycling value. In addition, a detailed [...] Read more.
The main research direction for the disposal of spent lithium-ion batteries is focused on the recovery of precious metals. However, few studies exist on the recycling of LiFePO4 electric vehicle (EV) batteries because of their low recycling value. In addition, a detailed life cycle inventory (LCI) of waste plays a significant role in its life cycle assessment (LCA) for an environmental perspective. In this study, an end-of-life (EOL) LiFePO4 EV battery is disposed to achieve the LCI result. The approach comprises manual dismantling of the battery pack/module and crushing and pyrolysis of cells. The authors classify the dismantling results and use different disposal methods, such as recycling or incineration. Regarding the environmental emissions during pyrolysis, the authors record and evaluate the results according to the experimental data, the bill of materials (BOM), the mass conservation, and the chemical reaction equations. In addition, the electricity power demand is related to the electricity mix in China, and the waste gases and solid residue are treated by using neutralization and landfill, respectively. Finally, the authors integrate the LCI data with analysis data and a background database (Ecoinvent). After the integration of the total emission and consumption data, the authors obtained the total detailed LCI resulting from the disposal of the LiFePO4 vehicle battery. This LCI mainly includes the consumption of energy and materials, and emissions to air, water, and soil, which can provide the basis for the future LCA of LiFePO4 (LFP) batteries. Furthermore, the potential of industrial scale process research on the disposal of spent LiFePO4 batteries is discussed. Full article
Show Figures

Figure 1

10 pages, 1452 KiB  
Article
Recovery of Li and Co from LiCoO2 via Hydrometallurgical–Electrodialytic Treatment
by M.M. Cerrillo-Gonzalez, M. Villen-Guzman, C. Vereda-Alonso, C. Gomez-Lahoz, J.M. Rodriguez-Maroto and J.M. Paz-Garcia
Appl. Sci. 2020, 10(7), 2367; https://doi.org/10.3390/app10072367 - 30 Mar 2020
Cited by 36 | Viewed by 5478
Abstract
Lithium-ion batteries play an important role in our modern society as the main option to power portable electronic devices and electric vehicles. The growing demand for these batteries encourages the development of more efficient recycling processes, aiming to decrease the environmental impact of [...] Read more.
Lithium-ion batteries play an important role in our modern society as the main option to power portable electronic devices and electric vehicles. The growing demand for these batteries encourages the development of more efficient recycling processes, aiming to decrease the environmental impact of the spent batteries and recover their valuable components. In this paper, a combined hydrometallurgical-electrodialytic method is proposed for processing battery waste. In the combined technique, the amount of leaching solution is reduced as acid is generated via electrolysis. At the same time, the use of ion-exchange membranes and the possibility of electroplating allows for a selective separation of the target metals. Experiments were performed using LiCoO2, which is one of the most used cathodes in lithium-ion batteries. First, 0.1 M HCl solution was used in batch extractions to study the kinetics of LiCoO2 dissolution, reaching an extraction of 30% and 69% of cobalt and lithium, respectively. Secondly, hydrometallurgical extraction experiments were carried out in three-compartment electrodialytic cells, enhanced with cation-exchange membranes. Experiments yielded to a selective recovery in the catholyte of 62% of lithium and 33% of cobalt, 80% of the latter electrodeposited at the cathode. Full article
(This article belongs to the Special Issue Recycling and Reusing of Spent Batteries)
Show Figures

Figure 1

Back to TopTop