Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = specular highlights

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1321 KiB  
Article
Intravitreal Povidone-Iodine Injection and Low-Dose Antibiotic Irrigation for Infectious Endophthalmitis: A Retrospective Case Series
by Yumiko Machida, Hiroyuki Nakashizuka, Hajime Onoe, Yorihisa Kitagawa, Naoya Nakagawa, Keisuke Miyata, Misato Yamakawa, Yu Wakatsuki, Koji Tanaka, Ryusaburo Mori and Hiroyuki Shimada
Pharmaceutics 2025, 17(8), 995; https://doi.org/10.3390/pharmaceutics17080995 (registering DOI) - 31 Jul 2025
Viewed by 151
Abstract
Background/Objectives: Infectious endophthalmitis is a vision-threatening complication of intraocular surgery and intravitreal injections. Standard treatment involves intravitreal antibiotics; however, concerns regarding multidrug resistance and vancomycin-associated hemorrhagic occlusive retinal vasculitis (HORV) highlight the need for alternative antimicrobial strategies. This study aimed to evaluate the [...] Read more.
Background/Objectives: Infectious endophthalmitis is a vision-threatening complication of intraocular surgery and intravitreal injections. Standard treatment involves intravitreal antibiotics; however, concerns regarding multidrug resistance and vancomycin-associated hemorrhagic occlusive retinal vasculitis (HORV) highlight the need for alternative antimicrobial strategies. This study aimed to evaluate the clinical efficacy and safety of a protocol combining intravitreal injection of 1.25% povidone-iodine (PI) with intraoperative irrigation using low concentrations of vancomycin and ceftazidime. Methods: We retrospectively analyzed 11 eyes from patients diagnosed with postoperative or injection-related endophthalmitis. Six of the eleven cases received an initial intravitreal injection of 1.25% PI, followed by pars plana vitrectomy with irrigation using balanced salt solution PLUS containing vancomycin (20 μg/mL) and ceftazidime (40 μg/mL). A second intravitreal PI injection was administered at the end of surgery in all cases. Additional PI injections were administered postoperatively based on clinical response. Clinical outcomes included best-corrected visual acuity (BCVA), microbial culture results, corneal endothelial cell density, and visual field testing. Results: All eyes achieved complete infection resolution without recurrence. The mean BCVA improved significantly from 2.18 logMAR at baseline to 0.296 logMAR at final follow-up (p < 0.001). No adverse events were observed on specular microscopy or visual field assessment. The protocol was well tolerated, and repeated PI injections showed no signs of ocular toxicity. Conclusions: This combination protocol provides a safe and effective treatment strategy for infectious endophthalmitis. It enables rapid and complete infection resolution while minimizing the risks associated with intravitreal antibiotics. These findings support further investigation of this protocol as a practical and globally accessible alternative to standard intravitreal antimicrobial therapy. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Ocular Diseases)
Show Figures

Graphical abstract

19 pages, 17180 KiB  
Article
Adaptive Support Weight-Based Stereo Matching with Iterative Disparity Refinement
by Alexander Richter, Till Steinmann, Andreas Reichenbach and Stefan J. Rupitsch
Sensors 2025, 25(13), 4124; https://doi.org/10.3390/s25134124 - 2 Jul 2025
Viewed by 402
Abstract
Real-time 3D reconstruction in minimally invasive surgery improves depth perception and supports intraoperative decision-making and navigation. However, endoscopic imaging presents significant challenges, such as specular reflections, low-texture surfaces, and tissue deformation. We present a novel, deterministic and iterative stereo-matching method based on adaptive [...] Read more.
Real-time 3D reconstruction in minimally invasive surgery improves depth perception and supports intraoperative decision-making and navigation. However, endoscopic imaging presents significant challenges, such as specular reflections, low-texture surfaces, and tissue deformation. We present a novel, deterministic and iterative stereo-matching method based on adaptive support weights that is tailored to these constraints. The algorithm is implemented in CUDA and C++ to enable real-time performance. We evaluated our method on the Stereo Correspondence and Reconstruction of Endoscopic Data (SCARED) dataset and a custom synthetic dataset using the mean absolute error (MAE), root mean square error (RMSE), and frame rate as metrics. On SCARED datasets 8 and 9, our method achieves MAEs of 3.79 mm and 3.61 mm, achieving 24.9 FPS on a system with an AMD Ryzen 9 5950X and NVIDIA RTX 3090. To the best of our knowledge, these results are on par with or surpass existing deterministic stereo-matching approaches. On synthetic data, which eliminates real-world imaging errors, the method achieves an MAE of 140.06 μm and an RMSE of 251.9 μm, highlighting its performance ceiling under noise-free, idealized conditions. Our method focuses on single-shot 3D reconstruction as a basis for stereo frame stitching and full-scene modeling. It provides accurate, deterministic, real-time depth estimation under clinically relevant conditions and has the potential to be integrated into surgical navigation, robotic assistance, and augmented reality workflows. Full article
(This article belongs to the Special Issue Stereo Vision Sensing and Image Processing)
Show Figures

Figure 1

20 pages, 14221 KiB  
Article
EBTM: An Enumeration-Based Thresholding Method for Degraded Circular Dot Segmentation
by Baoquan Shi, Qian He, Xianmin Chen, Wendong Zhang and Lin Yang
Sensors 2025, 25(7), 2158; https://doi.org/10.3390/s25072158 - 28 Mar 2025
Viewed by 320
Abstract
Circular dots are widely used in various measurement applications due to their inherent symmetry, ease of detection, and scalability. However, when degraded by factors such as specular highlights, low contrast, strong noise, or friction damage, accurately extracting them from the background becomes a [...] Read more.
Circular dots are widely used in various measurement applications due to their inherent symmetry, ease of detection, and scalability. However, when degraded by factors such as specular highlights, low contrast, strong noise, or friction damage, accurately extracting them from the background becomes a significant challenge. To address this issue, an enumeration-based thresholding method (EBTM) is proposed for degraded circular dot segmentation. Firstly, a series of candidate outputs are generated using an enumeration-based thresholding scheme. Next, an assessment criterion is developed to evaluate these candidate outputs. Finally, the optimal segments are selected from each candidate output and combined to produce a reasonable thresholding result. Unlike traditional methods, the novel approach does not focus on selecting the optimal threshold values, but instead aims to choose the best segments to produce the desired output. Owing to the enumeration-based thresholding mechanism, the novel approach demonstrates greater robustness in handling the challenges in degraded circular dot images. Extensive comparative studies demonstrate the superiority of the novel approach. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 7454 KiB  
Article
Therapeutic Potential of Emricasan, a Pan-Caspase Inhibitor, in Reducing Cell Death and Extracellular Matrix Accumulation in Fuchs Endothelial Corneal Dystrophy
by Sohya Fujimoto, Mako Endo, Shigehito Tonomura, Fuuga Tsuji, Hirotaka Haraguchi, Kanna Hasegawa, Taisuke Numao, Ayaka Izumi, Theofilos Tourtas, Ursula Schlötzer-Schrehardt, Friedrich Kruse, Yuki Oyama, Masahito Ikawa, Albert S. Jun, Noriko Koizumi and Naoki Okumura
Cells 2025, 14(7), 498; https://doi.org/10.3390/cells14070498 - 27 Mar 2025
Viewed by 990
Abstract
Fuchs endothelial corneal dystrophy (FECD) is a progressive disorder characterized by endothelial cell loss and excessive extracellular matrix (ECM) accumulation leading to corneal dysfunction. Emricasan, a pan-caspase inhibitor, was investigated for its therapeutic potential in suppressing these pathological changes. Patient-derived FECD cells and [...] Read more.
Fuchs endothelial corneal dystrophy (FECD) is a progressive disorder characterized by endothelial cell loss and excessive extracellular matrix (ECM) accumulation leading to corneal dysfunction. Emricasan, a pan-caspase inhibitor, was investigated for its therapeutic potential in suppressing these pathological changes. Patient-derived FECD cells and stress-induced cell models were treated with emricasan to assess its effects on apoptosis and ECM production. Caspase-specific knockdown experiments were performed to identify key mediators. Col8a2Q455K/Q455K mice, model mice of early-onset FECD, received twice-daily administration of 0.1% emricasan eye drops from 8 to 28 weeks of age. Endothelial cell density, hexagonality, cell size variation, and guttae area were evaluated by contact specular microscopy, while transcriptomic changes were analyzed via RNA sequencing. Emricasan effectively reduced apoptosis and ECM production in vitro by selectively inhibiting caspase-7 without affecting canonical TGF-β signaling. In vivo, emricasan-treated mice exhibited significantly higher endothelial cell density, improved hexagonality, and reduced variation in cell size compared with controls. Transcriptome analysis revealed distinct gene expression changes in the corneal endothelium following emricasan treatment. These findings suggest that emricasan exerts dual protective effects by inhibiting caspase-7-mediated ECM accumulation and broadly suppressing apoptosis, highlighting its potential as a pharmacological therapy for FECD. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

10 pages, 458 KiB  
Article
Evaluation of the Effect of Body Mass Index and Waist Circumference on Ocular Health Parameters in Children and Adolescents
by İrfan Uzun, Enes Colak, Zeliha Atlıhan, Çağrı Mutaf, Ali Hakim Reyhan and Funda Yüksekyayla
Children 2025, 12(4), 413; https://doi.org/10.3390/children12040413 - 26 Mar 2025
Viewed by 666
Abstract
Background/Objectives: Childhood obesity is a significant health concern also capable of impacting ocular health. This study evaluates the effects of childhood obesity on corneal morphology, anterior chamber parameters, intraocular pressure (IOP), and corneal endothelial cell morphology. Understanding these relationships may contribute to [...] Read more.
Background/Objectives: Childhood obesity is a significant health concern also capable of impacting ocular health. This study evaluates the effects of childhood obesity on corneal morphology, anterior chamber parameters, intraocular pressure (IOP), and corneal endothelial cell morphology. Understanding these relationships may contribute to early diagnosis and management strategies. Methods: This prospective, cross-sectional study was conducted at the Harran University Faculty of Medicine between January and December, 2024. Ninety children aged 7–17 years were included, with only the right eyes being analyzed. The participants were categorized into three groups based on body mass index (BMI) percentiles: normal weight (≤85th percentile), overweight (86–94th percentiles), and obese (≥95th percentile). All participants underwent comprehensive ophthalmological examinations, including IOP measurement with a non-contact tonometer, corneal topography assessment using a Scheimpflug camera, and endothelial cell morphology evaluation via specular microscopy. Results: IOP was significantly higher in the overweight and obese groups (p < 0.001). Central corneal thickness (CCT) also increased significantly in these groups (p < 0.05). Positive correlations were determined between BMI and IOP (r = 0.493, p < 0.001) and CCT (r = 0.345, p < 0.001). Additionally, waist circumference exhibited a strong correlation with BMI (r = 0.905, p < 0.001) and a significant association with IOP (r = 0.463, p < 0.001). No significant differences were observed among the groups in terms of other anterior chamber or endothelial parameters. Conclusions: Childhood obesity is associated with increased IOP and CCT, suggesting potential alterations in corneal biomechanics and ocular physiology. These findings highlight the importance of routine ophthalmological evaluation in obese children to detect early ocular changes and prevent long-term complications. Full article
(This article belongs to the Section Pediatric Ophthalmology)
Show Figures

Figure 1

19 pages, 11243 KiB  
Article
A Simple Polarization-Based Fringe Projection Profilometry Method for Three-Dimensional Reconstruction of High-Dynamic-Range Surfaces
by Xiang Sun, Zhenjun Luo, Shizhao Wang, Jianhua Wang, Yunpeng Zhang and Dandan Zou
Photonics 2025, 12(1), 27; https://doi.org/10.3390/photonics12010027 - 31 Dec 2024
Viewed by 1129
Abstract
Three-dimensional (3D) reconstruction of high-dynamic-range (HDR) surfaces plays an important role in the fields of computer vision and image processing. Traditional 3D measurement methods often face the risk of information loss when dealing with surfaces that have HDR characteristics. To address this issue, [...] Read more.
Three-dimensional (3D) reconstruction of high-dynamic-range (HDR) surfaces plays an important role in the fields of computer vision and image processing. Traditional 3D measurement methods often face the risk of information loss when dealing with surfaces that have HDR characteristics. To address this issue, this paper proposes a simple 3D reconstruction method, which combines the features of non-overexposed regions in polarized and unpolarized images to improve the reconstruction quality of HDR surface objects. The optimum fringe regions are extracted from images with different polarization angles, and the non-overexposed regions in normally captured unpolarized images typically contain complete fringe information and are less affected by specular highlights. The optimal fringe information from different polarized image groups is gradually used to replace the incorrect fringe information in the unpolarized image, resulting in a complete set of fringe data. Experimental results show that the proposed method requires only 24~36 images and simple phase fusion to achieve successful 3D reconstruction. It can effectively mitigate the negative impact of overexposed regions on absolute phase calculation and 3D reconstruction when reconstructing objects with strongly reflective surfaces. Full article
(This article belongs to the Special Issue New Perspectives in Optical Design)
Show Figures

Figure 1

18 pages, 2322 KiB  
Article
The Impact of Corneal Oedema on UV Light Transmission: An Experimental Study in Porcine Eyes
by Celeste Briceno-Lopez, Mª Carmen García-Domene, Cristina Peris-Martínez, Mª Jose Luque-Cobija, Mª Amparo Díez-Ajenjo and Neus Burguera-Giménez
J. Clin. Med. 2024, 13(23), 7228; https://doi.org/10.3390/jcm13237228 - 28 Nov 2024
Viewed by 862
Abstract
Background/Objectives: Corneal oedema is known for changing the cornea’s optical properties, particularly its ability to transmit ultraviolet (UV) light, which is crucial for visual clarity and eye health. This study explores how changes in corneal thickness in oedematous states affect UV light transmission. [...] Read more.
Background/Objectives: Corneal oedema is known for changing the cornea’s optical properties, particularly its ability to transmit ultraviolet (UV) light, which is crucial for visual clarity and eye health. This study explores how changes in corneal thickness in oedematous states affect UV light transmission. Methods: This study included 107 porcine eyes with artificially induced corneal oedema. Corneal thickness (CCT) was measured histologically, UV transmittance was assessed using a UV/VIS spectrometer, and endothelial cell parameters were evaluated with specular microscopy. Statistical analyses included the Kruskal–Wallis test, Mann–Whitney U test, and Spearman’s correlation. Results: The findings indicated a significant increase in CCT in oedematous corneas at 24 and 48 h post extraction compared to controls, with median CCT values of 816.59 ± 139.71 μm for controls, 1022.40 ± 234.48 μm at 24 h, and 1074.21 ± 220.83 μm at 48 h (p < 0.001). UV transmittance (395–280 nm) decreased substantially, dropping from 50.79 ± 7.65% in controls to 43.24 ± 5.35% at 24 h and 39.66 ± 6.51% at 48 h (p < 0.001). There was a significant negative correlation between CCT and UV transmittance (ρ = −0.346, p < 0.001). Endothelial parameters showed notable changes: maximum cell area (AreaMAX) decreased at 24 and 48 h, while endothelial cell density (ECD) increased at 24 h. Conclusions: Our study found a substantial inverse link between CCT and UV light transmission in oedematous corneas, highlighting the importance of UV protection, especially in individuals who are prone to recurrent oedema. Changes in CCT and endothelial measures, such as AreaMAX and ECD, are useful signs of corneal integrity. However, the study’s small sample size and potential tissue modifications during processing need more research with bigger, in vivo samples to corroborate these findings and improve therapeutic use. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

16 pages, 2006 KiB  
Article
Weakly Supervised Specular Highlight Removal Using Only Highlight Images
by Yuanfeng Zheng, Guangwei Hu, Hao Jiang, Hao Wang and Lihua Wu
Mathematics 2024, 12(16), 2578; https://doi.org/10.3390/math12162578 - 21 Aug 2024
Viewed by 1371
Abstract
Specular highlight removal is a challenging task in the field of image enhancement, while it can significantly improve the quality of image in highlight regions. Recently, deep learning-based methods have been widely adopted in this task, demonstrating excellent performance by training on either [...] Read more.
Specular highlight removal is a challenging task in the field of image enhancement, while it can significantly improve the quality of image in highlight regions. Recently, deep learning-based methods have been widely adopted in this task, demonstrating excellent performance by training on either massive paired data, wherein both the highlighted and highlight-free versions of the same image are available, or unpaired datasets where the one-to-one correspondence is inapplicable. However, it is difficult to obtain the corresponding highlight-free version of a highlight image, as the latter has already been produced under specific lighting conditions. In this paper, we propose a method for weakly supervised specular highlight removal that only requires highlight images. This method involves generating highlight-free images from highlight images with the guidance of masks estimated using non-negative matrix factorization (NMF). These highlight-free images are then fed consecutively into a series of modules derived from a Cycle Generative Adversarial Network (Cycle-GAN)-style network, namely the highlight generation, highlight removal, and reconstruction modules in sequential order. These modules are trained jointly, resulting in a highly effective highlight removal module during the verification. On the specular highlight image quadruples (SHIQ) and the LIME datasets, our method achieves an accuracy of 0.90 and a balance error rate (BER) of 8.6 on SHIQ, and an accuracy of 0.89 and a BER of 9.1 on LIME, outperforming existing methods and demonstrating its potential for improving image quality in various applications. Full article
(This article belongs to the Special Issue Advances in Applied Mathematics in Computer Vision)
Show Figures

Figure 1

18 pages, 21505 KiB  
Article
Correction Compensation and Adaptive Cost Aggregation for Deep Laparoscopic Stereo Matching
by Jian Zhang, Bo Yang, Xuanchi Zhao and Yi Shi
Appl. Sci. 2024, 14(14), 6176; https://doi.org/10.3390/app14146176 - 16 Jul 2024
Viewed by 1032
Abstract
Perception of digitized depth is a prerequisite for enabling the intelligence of three-dimensional (3D) laparoscopic systems. In this context, stereo matching of laparoscopic stereoscopic images presents a promising solution. However, the current research in this field still faces challenges. First, the acquisition of [...] Read more.
Perception of digitized depth is a prerequisite for enabling the intelligence of three-dimensional (3D) laparoscopic systems. In this context, stereo matching of laparoscopic stereoscopic images presents a promising solution. However, the current research in this field still faces challenges. First, the acquisition of accurate depth labels in a laparoscopic environment proves to be a difficult task. Second, errors in the correction of laparoscopic images are prevalent. Finally, laparoscopic image registration suffers from ill-posed regions such as specular highlights and textureless areas. In this paper, we make significant contributions by developing (1) a correction compensation module to overcome correction errors; (2) an adaptive cost aggregation module to improve prediction performance in ill-posed regions; (3) a novel self-supervised stereo matching framework based on these two modules. Specifically, our framework rectifies features and images based on learned pixel offsets, and performs differentiated aggregation on cost volumes based on their value. The experimental results demonstrate the effectiveness of the proposed modules. On the SCARED dataset, our model reduces the mean depth error by 12.6% compared to the baseline model and outperforms the state-of-the-art unsupervised methods and well-generalized models. Full article
(This article belongs to the Special Issue Application of Machine Vision and Deep Learning Technology)
Show Figures

Figure 1

15 pages, 6286 KiB  
Article
Lights off the Image: Highlight Suppression for Single Texture-Rich Images in Optical Inspection Based on Wavelet Transform and Fusion Strategy
by Xiang Sun, Lingbao Kong, Xiaoqing Wang, Xing Peng and Guangxi Dong
Photonics 2024, 11(7), 623; https://doi.org/10.3390/photonics11070623 - 28 Jun 2024
Cited by 5 | Viewed by 1289
Abstract
A wavelet-transform-based highlight suppression method is presented, aiming at suppressing the highlights of single image with complex texture. The strategy involves the rough extraction of specular information, followed by extracting the high-frequency information in specular information based on multi-level wavelet transform to enhance [...] Read more.
A wavelet-transform-based highlight suppression method is presented, aiming at suppressing the highlights of single image with complex texture. The strategy involves the rough extraction of specular information, followed by extracting the high-frequency information in specular information based on multi-level wavelet transform to enhance the texture information in the original images by fusion strategy, and fusing with the same-level specular information to achieve the highlight suppression image. The experimental results demonstrate that the proposed method effectively removed large-area highlights while preserving texture details, and demonstrated the authenticity of the highlight estimation and the ‘lights off’ effect in the highlight-suppressed images. Overall, the method offers a feasibility for addressing the challenges of highlight suppression for visual detection image with rich texture and large-area highlights. Full article
(This article belongs to the Special Issue New Perspectives in Optical Design)
Show Figures

Graphical abstract

14 pages, 9575 KiB  
Article
Analysis of Gloss Unevenness and Bidirectional Reflectance Distribution Function in Specular Reflection
by So Nakamura, Shinichi Inoue, Yoshinori Igarashi, Hiromi Sato and Yoko Mizokami
J. Imaging 2024, 10(6), 146; https://doi.org/10.3390/jimaging10060146 - 17 Jun 2024
Cited by 1 | Viewed by 1595
Abstract
Gloss is associated significantly with material appearance, and observers often focus on gloss unevenness. Gloss unevenness is the intensity distribution of reflected light observed within a highlight area, that is, the variability. However, it cannot be analyzed easily because it exists only within [...] Read more.
Gloss is associated significantly with material appearance, and observers often focus on gloss unevenness. Gloss unevenness is the intensity distribution of reflected light observed within a highlight area, that is, the variability. However, it cannot be analyzed easily because it exists only within the highlight area and varies in appearance across the reflection angles. In recent years, gloss has been analyzed in terms of the intensity of specular reflection and its angular spread, or the bidirectional reflectance distribution function (BRDF). In this study, we develop an apparatus to measure gloss unevenness that can alter the angle with an angular resolution of 0.02°. Additionally, we analyze the gloss unevenness and BRDF in terms of specular reflection. Using a high angular resolution, we measure and analyze high-gloss materials, such as mirrors and plastics, and glossy materials, such as photo-like inkjet paper and coated paper. Our results show that the magnitude of gloss unevenness is the largest at angles marginally off the center of the specular reflection angle. We discuss an approach for physically defining gloss unevenness based on the BRDF. Full article
(This article belongs to the Special Issue Imaging Technologies for Understanding Material Appearance)
Show Figures

Figure 1

24 pages, 4841 KiB  
Article
A Comparative Study of Different CFD Codes for Fluidized Beds
by Parindra Kusriantoko, Per Fredrik Daun and Kristian Etienne Einarsrud
Dynamics 2024, 4(2), 475-498; https://doi.org/10.3390/dynamics4020025 - 16 Jun 2024
Cited by 2 | Viewed by 2837
Abstract
Fluidized beds are pivotal in the process industry and chemical engineering, with Computational Fluid Dynamics (CFD) playing a crucial role in their design and optimization. Challenges in CFD modeling stem from the scarcity or inconsistency of experimental data for validation, along with the [...] Read more.
Fluidized beds are pivotal in the process industry and chemical engineering, with Computational Fluid Dynamics (CFD) playing a crucial role in their design and optimization. Challenges in CFD modeling stem from the scarcity or inconsistency of experimental data for validation, along with the uncertainties introduced by numerous parameters and assumptions across different CFD codes. This study navigates these complexities by comparing simulation results from the open-source MFIX and OpenFOAM, and the commercial ANSYS FLUENT, against experimental data. Utilizing a Eulerian–Eulerian framework and the kinetic theory of granular flow (KTGF), the investigation focuses on solid-phase properties through the classical drag laws of Gidaspow and Syamlal–O’Brien across varied parameters. Findings indicate that ANSYS Fluent, MFiX, and OpenFOAM can achieve reasonable agreement with experimental benchmarks, each showcasing distinct strengths and weaknesses. The study also emphasizes that both the Syamlal–O’Brien and Gidaspow drag models exhibit reasonable agreement with experimental benchmarks across the examined CFD codes, suggesting a moderated sensitivity to the choice of drag model. Moreover, analyses were also carried out for 2D and 3D simulations, revealing that the dimensional approach impacts the predictive accuracy to a certain extent, with both models adapting well to the complexities of each simulation environment. The study highlights the significant influence of restitution coefficients on bed expansion due to their effect on particle–particle collisions, with a value of 0.9 deemed optimal for balancing simulation accuracy and computational efficiency. Conversely, the specularity coefficient, impacting particle–wall interactions, exhibits a more subtle effect on bed dynamics. This finding emphasizes the critical role of carefully choosing these coefficients to effectively simulate the nuanced behaviors of fluidized beds. Full article
Show Figures

Figure 1

17 pages, 3158 KiB  
Article
Particularities of Cataract Surgery in Elderly Patients: Corneal Structure and Endothelial Morphological Changes after Phacoemulsification
by Adela Laura Ciorba, Alin Teusdea, George Roiu and Daniela Simona Cavalu
Geriatrics 2024, 9(3), 77; https://doi.org/10.3390/geriatrics9030077 - 8 Jun 2024
Cited by 2 | Viewed by 1831
Abstract
The aim of this study was to evaluate the influence of ultrasounds used in phacoemulsification during cataract surgery on the corneal structure and morphology in patients over 65 years. We compared the outcomes of phacoemulsification techniques in terms of corneal cell morphology in [...] Read more.
The aim of this study was to evaluate the influence of ultrasounds used in phacoemulsification during cataract surgery on the corneal structure and morphology in patients over 65 years. We compared the outcomes of phacoemulsification techniques in terms of corneal cell morphology in 77 patients over 65 years old and 43 patients under 65 years old. Corneal cell density, central corneal thickness and hexagonality were measured preoperatively and post-surgery (at 1 and 4 weeks) by specular microscopy. The effect of gender, axial length and anterior chamber depth on the parameters of corneal endothelium were evaluated. In both groups, a progressive decrease in endothelial cells was observed, starting from the first week post-surgery until the fourth postoperative week. The central corneal thickness increased in both groups with maximum values at the first week postoperatively, while their initial values were restored in the fourth week post-surgery, with no statistical difference between groups. Statistically significant differences were noticed in terms of cell hexagonality in the group over 65, showing smaller hexagonality at all preoperative and postoperative time points compared to group under 65. Our result highlights the importance of routine specular microscopy performed before surgery, regardless the age of the patients, with caution and careful attention to the phaco power intensity, ultrasound energy consumption and intraoperative manipulation of instruments, as well as proper use of viscoelastic substances to reduce corneal endothelium damage, especially in elderly patients. Full article
Show Figures

Figure 1

20 pages, 63035 KiB  
Article
S-LIGHT: Synthetic Dataset for the Separation of Diffuse and Specular Reflection Images
by Sangho Jo, Ohtae Jang, Chaitali Bhattacharyya, Minjun Kim, Taeseok Lee, Yewon Jang, Haekang Song, Hyukmin Kwon, Saebyeol Do and Sungho Kim
Sensors 2024, 24(7), 2286; https://doi.org/10.3390/s24072286 - 3 Apr 2024
Cited by 2 | Viewed by 2398
Abstract
Several studies in computer vision have examined specular removal, which is crucial for object detection and recognition. This research has traditionally been divided into two tasks: specular highlight removal, which focuses on removing specular highlights on object surfaces, and reflection removal, which deals [...] Read more.
Several studies in computer vision have examined specular removal, which is crucial for object detection and recognition. This research has traditionally been divided into two tasks: specular highlight removal, which focuses on removing specular highlights on object surfaces, and reflection removal, which deals with specular reflections occurring on glass surfaces. In reality, however, both types of specular effects often coexist, making it a fundamental challenge that has not been adequately addressed. Recognizing the necessity of integrating specular components handled in both tasks, we constructed a specular-light (S-Light) DB for training single-image-based deep learning models. Moreover, considering the absence of benchmark datasets for quantitative evaluation, the multi-scale normalized cross correlation (MS-NCC) metric, which considers the correlation between specular and diffuse components, was introduced to assess the learning outcomes. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

16 pages, 9434 KiB  
Article
Omnidirectional-Sensor-System-Based Texture Noise Correction in Large-Scale 3D Reconstruction
by Wenya Xie and Xiaoping Hong
Sensors 2024, 24(1), 78; https://doi.org/10.3390/s24010078 - 22 Dec 2023
Viewed by 1456
Abstract
The evolution of cameras and LiDAR has propelled the techniques and applications of three-dimensional (3D) reconstruction. However, due to inherent sensor limitations and environmental interference, the reconstruction process often entails significant texture noise, such as specular highlight, color inconsistency, and object occlusion. Traditional [...] Read more.
The evolution of cameras and LiDAR has propelled the techniques and applications of three-dimensional (3D) reconstruction. However, due to inherent sensor limitations and environmental interference, the reconstruction process often entails significant texture noise, such as specular highlight, color inconsistency, and object occlusion. Traditional methodologies grapple to mitigate such noise, particularly in large-scale scenes, due to the voluminous data produced by imaging sensors. In response, this paper introduces an omnidirectional-sensor-system-based texture noise correction framework for large-scale scenes, which consists of three parts. Initially, we obtain a colored point cloud with luminance value through LiDAR points and RGB images organization. Next, we apply a voxel hashing algorithm during the geometry reconstruction to accelerate the computation speed and save the computer memory. Finally, we propose the key innovation of our paper, the frame-voting rendering and the neighbor-aided rendering mechanisms, which effectively eliminates the aforementioned texture noise. From the experimental results, the processing rate of one million points per second shows its real-time applicability, and the output figures of texture optimization exhibit a significant reduction in texture noise. These results indicate that our framework has advanced performance in correcting multiple texture noise in large-scale 3D reconstruction. Full article
(This article belongs to the Special Issue Sensing and Processing for 3D Computer Vision: 2nd Edition)
Show Figures

Figure 1

Back to TopTop