Particularities of Cataract Surgery in Elderly Patients: Corneal Structure and Endothelial Morphological Changes after Phacoemulsification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pre-, Intra- and Postoperatively Ophthalmological Evaluation
2.2. Inclusion and Exclusion Criteria
2.3. Surgical Procedure
2.4. Statistical Analysis
3. Results
3.1. Anterior Chamber Depth (ACD) and Axial Length (AXL)
3.2. Ultrasound Energy (US) and Effective Phaco Time (EPT)
3.3. Endothelial Cell Density (CD)
3.4. Central Corneal Thickness (CCT)
3.5. Hexagonal Cell Percentage (HEX)
3.6. Correlation Matrix
3.7. Multiple Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bourne, R.; Steinmetz, J.D.; Flaxman, S. GBD 2019 Blindness and Vision Impairment Collaborators, Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef] [PubMed]
- Michael, R.; Bron, A.J. The ageing lens and cataract: A model of normal and pathological ageing. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 1278–1292. [Google Scholar] [CrossRef] [PubMed]
- Das, G.K.; Boriwal, K.; Chhabra, P.; Sahu, P.K.; Kumar, S.; Kumar, N. Presenile cataract and its risk factors: A case control study. J. Fam. Med. Prim. Care 2019, 8, 2120–2123. [Google Scholar] [CrossRef] [PubMed]
- Shichi, H. Cataract formation and prevention. Expert Opin. Investig. Drugs 2004, 13, 691–701. [Google Scholar] [CrossRef] [PubMed]
- The Relation of Socioeconomic Factors to Age-Related Cataract, Maculopathy, and Impaired Vision: The Beaver Dam Eye Study—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S016164201331077X (accessed on 28 November 2023).
- Hiller, R.; Sperduto, R.D.; Podgor, M.J.; Wilson, P.W.; Ferris, F.L.; Colton, T.; Milton, R.C. Cigarette smoking and the risk of development of lens opacities: The Framingham studies. Arch. Ophthalmol. 1997, 115, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Hennis, A.; Wu, S.Y.; Nemesure, B.; Leske, M.C.; Barbados Eye Studies Group. Risk factors for incident cortical and posterior subcapsular lens opacities in the Barbados Eye Studies. Arch. Ophthalmol. 2004, 122, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Richter, G.M.; Choudhury, F.; Torres, M.; Azen, S.P.; Varma, R.; Los Angeles Latino Eye Study Group. Risk factors for incident cortical, nuclear, posterior subcapsular, and mixed lens opacities: The Los Angeles Latino eye study. Ophthalmology 2012, 119, 2040–2047. [Google Scholar] [CrossRef]
- Li, L.; Wan, X.H.; Zhao, G.H. Meta-analysis of the risk of cataract in type 2 diabetes. BMC Ophthalmol. 2014, 14, 94. [Google Scholar] [CrossRef]
- Goldmann, H.; Chrenková, A.; Cornaro, S. Retinal visual acuity in cataractous eyes: Determination with interference fringes. Arch. Ophthalmol. 1980, 98, 1778–1781. [Google Scholar] [CrossRef]
- Li, X.; Cao, X.; Yu, Y.; Bao, Y. Correlation of Sunlight Exposure and Different Morphological Types of Age-Related Cataract. Biomed. Res. Int. 2021, 2021, 8748463. [Google Scholar] [CrossRef]
- Cruickshanks, K.J.; Klein, B.E.; Klein, R. Ultraviolet light exposure and lens opacities: The Beaver Dam Eye Study. Am. J. Public Health 1992, 82, 1658–1662. [Google Scholar] [CrossRef] [PubMed]
- Hiller, R.; Podgor, M.J.; Sperduto, R.D.; Nowroozi, L.; Wilson, P.W.; D’Agostino, R.B.; Colton, T.; The Framingham Eye Studies Group. A longitudinal study of body mass index and lens opacities: The Framingham Studies. Ophthalmology 1998, 105, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Ng Yin Ling, C.; Lim, S.C.; Jonas, J.B.; Sabanayagam, C. Obesity and risk of age-related eye diseases: A systematic review of prospective population-based studies. Int. J. Obes. 2021, 45, 1863–1885. [Google Scholar] [CrossRef] [PubMed]
- Kanthan, G.L.; Wang, J.J.; Burlutsky, G.; Rochtchina, E.; Cumming, R.G.; Mitchell, P. Exogenous oestrogen exposure, female reproductive factors and the long-term incidence of cataract: The Blue Mountains Eye Study. Acta Ophthalmol. 2010, 88, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Cumming, R.G.; Mitchell, P. Hormone Replacement Therapy, Reproductive Factors, and Cataract the Blue Mountains Eye Study. Am. J. Epidemiol. 1997, 145, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Rochtchina, E.; Tan, A.G.; Cumming, R.G.; Leeder, S.R.; Mitchell, P. Use of inhaled and oral corticosteroids and the long-term risk of cataract. Ophthalmology 2009, 116, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Cumming, R.G.; Mitchell, P. Inhaled corticosteroids and cataract: Prevalence, prevention and management. Drug Saf. 1999, 20, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Abrahamson, I.A. Cataract update. Am. Fam. Physician 1981, 24, 111–119. [Google Scholar] [PubMed]
- Trevor-Roper, P.D. Cataracts. Br. Med. J. 1970, 3, 33–35. [Google Scholar] [CrossRef]
- Gupta, P.K.; Berdahl, J.P.; Chan, C.C.; Rocha, K.M.; Yeu, E.; Ayres, B.; Farid, M.; Lee, W.B.; Beckman, K.A.; Kim, T.; et al. The corneal endothelium: Clinical review of endothelial cell health and function. J. Cataract. Refract. Surg. 2021, 47, 1218–1226. [Google Scholar] [CrossRef]
- Bourne, W.M. Biology of the corneal endothelium in health and disease. Eye 2003, 17, 912–918. [Google Scholar] [CrossRef] [PubMed]
- Vital, M.C.; Jong, K.Y.; Trinh, C.E.; Starck, T.; Sretavan, D. Endothelial Cell Loss Following Cataract Surgery Using Continuous Curvilinear Capsulorhexis or Precision Pulse Capsulotomy. Clin. Ophthalmol. 2023, 17, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Bourne, W.M. Corneal endothelium--past, present, and future. Eye Contact Lens. 2010, 36, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.W.; Afshari, N.A. Advances in cataract surgery: Preserving the corneal endothelium. Curr. Opin. Ophthalmol. 2015, 26, 22–27. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.D.; Fitzpatrick, P.; Kilmartin, D.J.; Beatty, S. Risk factors for endothelial cell loss after phacoemulsification surgery by a junior resident. J. Cataract. Refract. Surg. 2004, 30, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Gurnani, B.; Kaur, K. Pseudophakic Bullous Keratopathy. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: http://www.ncbi.nlm.nih.gov/books/NBK574505/ (accessed on 28 November 2023).
- Romania Life Expectancy 1950–2023. Available online: https://www.macrotrends.net/countries/ROU/romania/life-expectancy (accessed on 28 November 2023).
- Takahashi, H. Corneal Endothelium and Phacoemulsification. Cornea 2016, 35 (Suppl. S1), S3–S7. [Google Scholar] [CrossRef]
- Dewan, T.; Malik, P.K.; Tomar, P. Comparison of effective phacoemulsification time and corneal endothelial cell loss using three different ultrasound frequencies: A randomized controlled trial. Indian J. Ophthalmol. 2022, 70, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, T.; Chan, C.C.; Bradley, M.; Braga-Mele, R.; Olson, R.J. Ultrasound-induced corneal incision contracture survey in the United States and Canada. J. Cataract. Refract. Surg. 2012, 38, 227–233. [Google Scholar] [CrossRef]
- Bradley, M.J.; Olson, R.J. A Survey About Phacoemulsification Incision Thermal Contraction Incidence and Causal Relationships. Am. J. Ophthalmol. 2006, 141, 222–224. [Google Scholar] [CrossRef]
- Klein, B.E.; Klein, R.; Lee, K.E. Diabetes, cardiovascular disease, selected cardiovascular disease risk factors, and the 5-year incidence of age-related cataract and progression of lens opacities: The Beaver Dam Eye Study. Am. J. Ophthalmol. 1998, 126, 782–790. [Google Scholar] [CrossRef]
- Cumming, R.G.; Mitchell, P. Alcohol, smoking, and cataracts: The Blue Mountains Eye Study. Arch. Ophthalmol. 1997, 115, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.J.; Akaichi, F. Vitamin D deficiency and posterior subcapsular cataract. Clin. Ophthalmol. 2015, 9, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Cui, Y.; Tang, X.; He, S.; Yao, X.; Huang, Q.; Lei, H.; Li, H.; Liao, X. Changes in visual function and quality of life in patients with senile cataract following phacoemulsification. Ann. Palliat. Med. 2020, 9, 3802–3809. [Google Scholar] [CrossRef] [PubMed]
- Salvi, S.M.; Soong, T.K.; Kumar, B.V.; Hawksworth, N.R. Central corneal thickness changes after phacoemulsification cataract surgery. J. Cataract. Refract. Surg. 2007, 33, 1426–1428. [Google Scholar] [CrossRef] [PubMed]
- Urban, B.; Raczyńska, D.; Bakunowicz-Łazarczyk, A.; Raczyńska, K.; Krętowska, M. Evaluation of Corneal Endothelium in Children and Adolescents with Type 1 Diabetes Mellitus. Mediat. Inflamm. 2013, 2013, 913754. [Google Scholar] [CrossRef] [PubMed]
- Ataş, M.; Demircan, S.; Karatepe Haşhaş, A.S.; Gülhan, A.; Zararsız, G. Comparison of corneal endothelial changes following phacoemulsification with transversal and torsional phacoemulsification machines. Int. J. Ophthalmol. 2014, 7, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Walkow, T.; Anders, N.; Klebe, S. Endothelial cell loss after phacoemulsification: Relation to preoperative and intraoperative parameters. J. Cataract. Refract. Surg. 2000, 26, 727–732. [Google Scholar] [CrossRef] [PubMed]
- McCarey, B.E.; Polack, F.M.; Marshall, W. The phacoemulsification procedure. I. The effect of intraocular irrigating solutions on the corneal endothelium. Investig. Ophthalmol. 1976, 15, 449–457. [Google Scholar]
- Hwang, H.B.; Lyu, B.; Yim, H.B.; Lee, N.Y. Endothelial Cell Loss after Phacoemulsification according to Different Anterior Chamber Depths. J. Ophthalmol. 2015, 2015, 210716. [Google Scholar] [CrossRef]
- Reuschel, A.; Bogatsch, H.; Oertel, N.; Wiedemann, R. Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefes Arch. Clin. Exp. Ophthalmol. 2015, 253, 745–752. [Google Scholar] [CrossRef]
- Yu, H.J.; Kuo, M.T.; Wu, P.C. Clinical Characteristics of Presenile Cataract: Change over 10 Years in Southern Taiwan. Biomed. Res. Int. 2021, 2021, 9385293. [Google Scholar] [CrossRef] [PubMed]
- Ianchulev, T.; Lane, S.; Masis, M.; Lass, J.H.; Benetz, B.A.; Menegay, H.J.; Price, F.W.; Lin, S. Corneal Endothelial Cell Density and Morphology After Phacoemulsification in Patients with Primary Open-Angle Glaucoma and Cataracts: 2-Year Results of a Randomized Multicenter Trial. Cornea 2019, 38, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Gogate, P.; Ambardekar, P.; Kulkarni, S.; Deshpande, R.; Joshi, S.; Deshpande, M. Comparison of endothelial cell loss after cataract surgery: Phacoemulsification versus manual small-incision cataract surgery: Six-week results of a randomized control trial. J. Cataract. Refract. Surg. 2010, 36, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Mencucci, R.; Stefanini, S.; Favuzza, E.; Cennamo, M.; De Vitto, C.; Mossello, E. Beyond vision: Cataract and health status in old age, a narrative review. Front. Med. 2023, 10, 1110383. [Google Scholar] [CrossRef] [PubMed]
- Puzo, P.; D’Oria, F.; Imburgia, A.; Incandela, C.; Sborgia, A.; Marchegiani, E.B.; Rania, L.; Mularoni, A.; Alessio, G. Live surgery outcomes in cataract surgery. Eur. J. Ophthalmol. 2022, 32, 3444–3450. [Google Scholar] [CrossRef]
- Yamauchi, T.; Tabuchi, H.; Takase, K.; Ohara, Z.; Imamura, H.; Kiuchi, Y. Comparison of visual performance of toric vs. non-toric intraocular lenses with same material. Clin. Ophthalmol. 2018, 12, 2237–2243. [Google Scholar] [CrossRef]
No. Patients | AgeGrp | AXL | ACD | U/S | EPT |
---|---|---|---|---|---|
77 | >65 | 23.327 b ± 2.588 | 3.146 a ± 0.582 | 11.974 a ± 4.193 | 10.329 a ± 5.670 |
43 | ≤65 | 25.040 a ± 3.409 | 3.314 a ± 0.518 | 9.674 b ± 4.648 | 6.927 b ± 5.839 |
No. Patients | Gender_AgeGrp | AXL | ACD | U/S | EPT |
---|---|---|---|---|---|
38 | Female_ > 65 | 22.524 b ± 2.174 | 3.064 b ± 0.573 | 12.211 a ± 4.140 | 10.258 a ± 5.678 |
21 | Female_ ≤ 65 | 26.232 a ± 3.525 | 3.481 a ± 0.468 | 10.619 a,b ± 5.296 | 7.610 a ± 7.127 |
39 | Male_ > 65 | 24.111 b ± 2.742 | 3.225 a,b ± 0.587 | 11.744 a,b ± 4.284 | 10.397 a ± 5.735 |
22 | Male_ ≤ 65 | 23.902 b ± 2.938 | 3.154 a,b ± 0.523 | 8.773 b ± 3.841 | 6.275 a ± 4.348 |
No. Patients | AgeGrp | CD_pre | CD_post1w | CD_post4w |
---|---|---|---|---|
77 | >65 | 2353.649 b ± 458.247 | 2036.169 b ± 517.853 | 1916.143 b ± 501.560 |
43 | ≤65 | 2567.860 a ± 426.972 | 2372.581 a ± 544.728 | 2274.581 a ± 572.560 |
No. patients | AgeGrp | CCT_pre | CCT_post1w | CCT_post4w |
77 | >65 | 530.156 a ± 28.807 | 543.494 a ± 29.625 | 542.364 a ± 32.693 |
43 | ≤65 | 533.558 a ± 30.726 | 550.651 a ± 27.498 | 541.488 a ± 27.812 |
No. patients | AgeGrp | HEX_pre | HEX_post1w | HEX_post4w |
77 | >65 | 54.688 b ± 7.212 | 44.416 b ± 10.710 | 38.442 b ± 12.052 |
43 | ≤65 | 60.535 a ± 9.349 | 50.860 a ± 10.426 | 45.977 a ± 11.903 |
Group A (>65) | Group B (≤65) | p Value (Group A > 65 vs. Group B ≤ 65) | |
---|---|---|---|
CD_pre | 2353.649 b ± 458.247 | 2567.860 a ± 426.972 | 0.013 |
CD_post1w | 2036.169 b ± 517.853 | 2372.581 a ± 544.728 | 0.001 |
Endothelial cell loss (n) | 318.0519 a ± 212.6977 | 212.6977 a ± 261.7497 | 0.1460 |
Endothelial Cell loss % | 13.358 a ± 8.5320 | 8.532 b ± 9.5452 | 0.0428 |
No. patients | Gender_AgeGrp | CD_pre | CD_post1w | CD_post4w |
---|---|---|---|---|
38 | Female_ > 65 | 2435.553 a,b ± 524.287 | 2091.026 b ± 621.578 | 1955.763 b ± 581.763 |
21 | Female_ ≤ 65 | 2507.714 a,b ± 441.443 | 2256.571 a,b ± 622.338 | 2151.571 a,b ± 627.473 |
39 | Male_ > 65 | 2273.846 b ± 372.953 | 1982.718 b ± 392.695 | 1877.538 b ± 412.896 |
22 | Male_ ≤ 65 | 2625.273 a ± 414.665 | 2483.318 a ± 445.299 | 2392.000 a ± 501.099 |
No. patients | Gender_AgeGrp | CCT_pre | CCT_post1w | CCT_post4w |
38 | Female_ > 65 | 533.132 a ± 30.521 | 547.184 a ± 33.706 | 544.105 a ± 37.429 |
21 | Female_ ≤ 65 | 535.429 a ± 33.345 | 549.571 a ± 25.443 | 540.381 a ± 26.352 |
39 | Male_ > 65 | 527.256 a ± 27.114 | 539.897 a ± 24.943 | 540.667 a ± 27.706 |
22 | Male_ ≤ 65 | 531.773 a ± 28.679 | 551.682 a ± 29.891 | 542.545 a ± 29.719 |
No. patients | Gender_AgeGrp | HEX_pre | HEX_post1w | HEX_post4w |
38 | Female_ > 65 | 54.632 b ± 7.492 | 45.395 a,b ± 11.081 | 39.184 b ± 12.781 |
21 | Female_ ≤ 65 | 61.524 a ± 9.169 | 52.905 a ± 9.823 | 49.714 a ± 10.311 |
39 | Male_ > 65 | 54.744 b ± 7.025 | 43.462 b ± 10.389 | 37.718 b ± 11.418 |
22 | Male_ ≤ 65 | 59.591 a,b ± 9.635 | 48.909 a,b ± 10.832 | 42.409 a,b ± 12.443 |
Group A (>65 y) | Group B (≤65 y) | |||
---|---|---|---|---|
Correlation Coefficient (R) | p Value | Correlation Coefficient (R) | p Value | |
AXL | 0.2038 | 0.2197 | 0.3405 | 0.1309 |
ACD | 0.1289 | 0.4406 | 0.2078 | 0.3660 |
U/S | 0.2720 | 0.0985 | 0.2987 | 0.1885 |
EPT | 0.2265 | 0.1714 | 0.3518 | 0.1179 |
CCT_pre | 0.2325 | 0.1600 | 0.1872 | 0.4165 |
CD_pre | 0.1384 | 0.4073 | −0.0424 | 0.8552 |
HEX_pre | 0.0589 | 0.7253 | −0.1466 | 0.5260 |
Group A (>65 y) | Group B (≤65 y) | ||||||
---|---|---|---|---|---|---|---|
Factor | Coefficient | Standard error | p Value | Factor | Coefficient | Standard Error | p Value |
U/S | −24.2216 | 9.136519 | 0.0100 * | AXL | −24.9617 | 12.48921 | 0.0530 * |
CD_pre | 0.827274 | 0.083201 | 0.0000 * | U/S | −12.3783 | 9.477861 | 0.1990 |
CCT_pre | 0.71207 | 0.45167 | 0.1190 * | CD_pre | 1.059313 | 0.099469 | 0.0000 * |
HEX_pre | 6.503726 | 4.942817 | 0.1960 |
Prob > F = 0.0000 | ||||
R-squared = 0.9791 | ||||
Adj R-squared = 0.9789 | ||||
CD_post1w | Coefficient | Std. err. | t | p > |t| |
pred_CD_1w, Age ≤ 65 | 0.9709181 | 0.013 | 74.69 | 0.0000 |
Prob > F = 0.0000 | ||||
R-squared = 0.9798 | ||||
Adj R-squared = 0.9797 | ||||
CD_post1w | Coefficient | Std. err. | t | p > |t| |
pred_CD_1w_Age > 65 | 1.019773 | 0.013408 | 76.06 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciorba, A.L.; Teusdea, A.; Roiu, G.; Cavalu, D.S. Particularities of Cataract Surgery in Elderly Patients: Corneal Structure and Endothelial Morphological Changes after Phacoemulsification. Geriatrics 2024, 9, 77. https://doi.org/10.3390/geriatrics9030077
Ciorba AL, Teusdea A, Roiu G, Cavalu DS. Particularities of Cataract Surgery in Elderly Patients: Corneal Structure and Endothelial Morphological Changes after Phacoemulsification. Geriatrics. 2024; 9(3):77. https://doi.org/10.3390/geriatrics9030077
Chicago/Turabian StyleCiorba, Adela Laura, Alin Teusdea, George Roiu, and Daniela Simona Cavalu. 2024. "Particularities of Cataract Surgery in Elderly Patients: Corneal Structure and Endothelial Morphological Changes after Phacoemulsification" Geriatrics 9, no. 3: 77. https://doi.org/10.3390/geriatrics9030077
APA StyleCiorba, A. L., Teusdea, A., Roiu, G., & Cavalu, D. S. (2024). Particularities of Cataract Surgery in Elderly Patients: Corneal Structure and Endothelial Morphological Changes after Phacoemulsification. Geriatrics, 9(3), 77. https://doi.org/10.3390/geriatrics9030077