Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = spectroscopic mapping imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 31050 KiB  
Article
Diagnostic System for Early In Situ Melanoma Detection Using Acoustic Microscopy and Infrared Spectroscopic Mapping Imaging
by Georgios th Karagiannis, Ioannis Grivas, Anastasia Tsingotjidou, Georgios Apostolidis, Eirini Tsardaka, Ioanna Dori, Kyriaki-Nefeli Poulatsidou, Ioannis Tsougos, Stefan Wesarg, Argyrios Doumas and Panagiotis Georgoulias
Cancers 2025, 17(15), 2599; https://doi.org/10.3390/cancers17152599 - 7 Aug 2025
Viewed by 392
Abstract
This study proposes a novel diagnostic system for the early detection of cutaneous melanoma based on morphological and biochemical changes during tumor formation. The methods used in this system are acoustic microscopy and infrared (IR) spectroscopy. The former identifies the anatomical parameters of [...] Read more.
This study proposes a novel diagnostic system for the early detection of cutaneous melanoma based on morphological and biochemical changes during tumor formation. The methods used in this system are acoustic microscopy and infrared (IR) spectroscopy. The former identifies the anatomical parameters of the developing tumor, whilst the latter identifies its biochemical features, both at the micron scale. To implement this diagnostic method, an animal model that mimics human melanoma was developed. The results of this investigation show that using high-frequency (>20 MHz) acoustic microscopy in conjunction with spectroscopic images provides useful information about distinct features of melanoma tumors’ 3D structures. The structures and cytoarchitecture of the tumors were assessed using conventional histology, and their malignant nature was confirmed using histological and immumohistochemical analysis. The proposed approach may provide an invaluable tool in diagnostic dermatology, as it is noninvasive and produces highly detailed and accurate data about the early appearance and development of melanoma tumors. Full article
Show Figures

Figure 1

25 pages, 5412 KiB  
Article
Non-Invasive Use of Imaging and Portable Spectrometers for On-Site Pigment Identification in Contemporary Watercolors from the Arxiu Valencià del Disseny
by Álvaro Solbes-García, Mirco Ramacciotti, Ester Alba Pagán, Gianni Gallello, María Luisa Vázquez de Ágredos Pascual and Ángel Morales Rubio
Heritage 2025, 8(8), 304; https://doi.org/10.3390/heritage8080304 - 30 Jul 2025
Viewed by 469
Abstract
Imaging techniques have revolutionized cultural heritage analysis, particularly for objects that cannot be sampled. This study investigated the utilization of spectral imaging for the identification of pigments in artifacts from the Arxiu Valencià del Disseny, in conjunction with other portable spectroscopy techniques [...] Read more.
Imaging techniques have revolutionized cultural heritage analysis, particularly for objects that cannot be sampled. This study investigated the utilization of spectral imaging for the identification of pigments in artifacts from the Arxiu Valencià del Disseny, in conjunction with other portable spectroscopy techniques such as XRF, Raman, FT-NIR, and FT-MIR. Four early 1930s watercolors were examined using point-wise elemental and molecular spectroscopic data for pigment classification. Initially, the data cubes obtained with the spectral camera were processed using various methods. The spectral behavior was analyzed pixel-point, and the reflectance curves were qualitatively compared with a set of standards. Subsequently, a computational approach was applied to the data cube to produce RGB, false-color infrared (IRFC), and principal component (PC) images. Algorithms, such as the Vector Angle (VA) mapper, were also employed to map the pigment spectra. Consequently, 19th-century pigments such as Prussian blue, chrome yellow, and alizarin red were distinguished according to their composition, combining the spatial and spectral dimensions of the data. Elemental analysis and infrared spectroscopy supported these findings. In this context, the use of reflectance imaging spectroscopy (RIS), despite its technical limitations, emerged as an essential tool for the documentation and conservation of design heritage. Full article
Show Figures

Figure 1

15 pages, 3542 KiB  
Article
Longitudinal Overlap and Metabolite Analysis in Spectroscopic MRI-Guided Proton Beam Therapy in Pediatric High-Grade Glioma
by Abinand C. Rejimon, Anuradha G. Trivedi, Vicki Huang, Karthik K. Ramesh, Natia Esiashvilli, Eduard Schreibmann, Hyunsuk Shim, Kartik Reddy and Bree R. Eaton
Tomography 2025, 11(6), 71; https://doi.org/10.3390/tomography11060071 - 19 Jun 2025
Viewed by 538
Abstract
Background: Pediatric high-grade glioma (pHGG) is a highly aggressive cancer with unique biology distinct from adult high-grade glioma, limiting the effectiveness of standard treatment protocols derived from adult research. Objective: The purpose of this report is to present preliminary results from an ongoing [...] Read more.
Background: Pediatric high-grade glioma (pHGG) is a highly aggressive cancer with unique biology distinct from adult high-grade glioma, limiting the effectiveness of standard treatment protocols derived from adult research. Objective: The purpose of this report is to present preliminary results from an ongoing pilot study integrating spectroscopic magnetic resonance imaging (sMRI) to guide proton beam therapy and longitudinal imaging analysis in pediatric patients with high-grade glioma (pHGG). Methods: Thirteen pediatric patients under 21 years old with supratentorial WHO grade III-IV glioma underwent baseline and serial whole-brain spectroscopic MRI alongside standard structural MRIs. Radiation targets were defined using T1-weighted contrast enhanced, T2-FLAIR, and Cho/NAA ≥ 2X maps. Longitudinal analyses included voxel-level metabolic change maps and spatial overlap metrics comparing pre-proton therapy and post-. Results: Six patients had sufficient longitudinal data; five received sMRI-guided PBT. Significant positive correlation (R2 = 0.89, p < 0.0001) was observed between T2-FLAIR and Cho/NAA ≥ 2X volumes. Voxel-level difference maps of Cho/NAA and Choline revealed dynamic metabolic changes across follow-up scans. Analyzing Cho/NAA and Cho changes over time allowed differentiation between true progression and pseudoprogression, which conventional MRI alone struggles to achieve. Conclusions: Longitudinal sMRI enhanced metabolic tracking in pHGG, detects early tumor changes, and refines RT targeting beyond structural imaging. This first in-kind study highlights the potential of sMRI biomarkers in tracking treatment effects and emphasizes the complementary roles of metabolic and radiographic metrics in evaluating therapy response in pHGG. Full article
(This article belongs to the Section Cancer Imaging)
Show Figures

Figure 1

49 pages, 68388 KiB  
Article
Improved Stereophotogrammetric and Multi-View Shape-from-Shading DTMs of Occator Crater and Its Interior Cryovolcanism-Related Bright Spots
by Alicia Neesemann, Stephan van Gasselt, Ralf Jaumann, Julie C. Castillo-Rogez, Carol A. Raymond, Sebastian H. G. Walter and Frank Postberg
Remote Sens. 2025, 17(3), 437; https://doi.org/10.3390/rs17030437 - 27 Jan 2025
Viewed by 1502
Abstract
Over the course of NASA’s Dawn Discovery mission, the onboard framing camera mapped Ceres across a wide wavelength spectrum at varying polar science orbits and altitudes. With increasing resolution, the uniqueness of the 92 km wide, young Occator crater became evident. Its central [...] Read more.
Over the course of NASA’s Dawn Discovery mission, the onboard framing camera mapped Ceres across a wide wavelength spectrum at varying polar science orbits and altitudes. With increasing resolution, the uniqueness of the 92 km wide, young Occator crater became evident. Its central cryovolcanic dome, Cerealia Tholus, and especially the associated bright carbonate and ammonium chloride deposits—named Cerealia Facula and the thinner, more dispersed Vinalia Faculae—are the surface expressions of a deep brine reservoir beneath Occator. Understandably, this made this crater the target for future sample return mission studies. The planning and preparation for this kind of mission require the characterization of potential landing sites based on the most accurate topography and orthorectified image data. In this work, we demonstrate the capabilities of the freely available and open-source USGS Integrated Software for Imagers and Spectrometers (ISIS 3) and Ames Stereo Pipeline (ASP 2.7) in creating high-quality image data products as well as stereophotogrammetric (SPG) and multi-view shape-from-shading (SfS) digital terrain models (DTMs) of the aforementioned spectroscopically challenging features. The main data products of our work are four new DTMs, including one SPG and one SfS DTM based on High-Altitude Mapping Orbit (HAMO) (CSH/CXJ) and one SPG and one SfS DTM based on Low-Altitude Mapping Orbit (LAMO) (CSL/CXL), along with selected Extended Mission Orbit 7 (XMO7) framing camera (FC) data. The SPG and SfS DTMs were calculated to a GSD of 1 and 0.5 px, corresponding to 136 m (HAMO SPG), 68 m (HAMO SfS), 34 m (LAMO SPG), and 17 m (LAMO SfS). Finally, we show that the SPG and SfS approaches we used yield consistent results even in the presence of high albedo differences and highlight how our new DTMs differ from those previously created and published by the German Aerospace Center (DLR) and the Jet Propulsion Laboratory (JPL). Full article
Show Figures

Figure 1

13 pages, 3667 KiB  
Article
An Accelerated Spectroscopic MRI Metabolite Quantification Based on a Deep Learning Method for Radiation Therapy Planning in Brain Tumor Patients
by Alexander S. Giuffrida, Karthik Ramesh, Sulaiman Sheriff, Andrew A. Maudsley, Brent D. Weinberg, Lee A. D. Cooper and Hyunsuk Shim
Cancers 2025, 17(3), 423; https://doi.org/10.3390/cancers17030423 - 27 Jan 2025
Viewed by 1087
Abstract
Background: Spectroscopic MRI (sMRI) is a quantitative imaging technique that maps infiltrated tumors in the brain without contrast injections. In a previous study (NCT03137888), sMRI-guided radiation treatment extended patient survival, showing promise for clinical translation. The spectral fitting of individual voxels in an [...] Read more.
Background: Spectroscopic MRI (sMRI) is a quantitative imaging technique that maps infiltrated tumors in the brain without contrast injections. In a previous study (NCT03137888), sMRI-guided radiation treatment extended patient survival, showing promise for clinical translation. The spectral fitting of individual voxels in an sMRI dataset generate metabolite concentration maps that guide treatment. The established spectral analysis methods use iterative least-squares fitting (FITT) that are computationally demanding. This study compares the performance of NNFit, a neural network-based, accelerated spectral fitting model, to the established FITT for metabolite quantification and radiation treatment planning. Methods: NNFit is a self-supervised deep learning model trained on 50 ms echo-time (TE) sMRI data to estimate metabolite levels of choline (Cho), creatine (Cr), and NAA. We trained the model on 30 GBM patients (56 scans) and tested it on 17 GBM patients (29 scans). NNFit’s performance was compared to the FITT using structural similarity indices (SSIM) and the Dice coefficient. Results: NNFit significantly improved processing speed while maintaining strong agreement with FITT. The radiation target volumes defined by Cho/NAA ≥ 2x were visually comparable, with fewer artifacts in NNFit. Structural similarity indices (SSIM) indicated minimal bias and high consistency across methods. Conclusions: This study highlights NNFit’s potential for rapid, accurate, and artifact-reduced metabolic imaging, enabling faster radiotherapy planning. Full article
(This article belongs to the Special Issue Magnetic Resonance in Cancer Research)
Show Figures

Figure 1

15 pages, 3871 KiB  
Article
Comprehensive Characterization of Bi1.34Fe0.66Nb1.34O6.35 Ceramics: Structural, Morphological, Electrical, and Magnetic Properties
by Susana Devesa, Carlos Oliveira Amorim, João Horta Belo, João P. Araújo, Sílvia Soreto Teixeira, Manuel P. F. Graça and Luís Cadillon Costa
Magnetochemistry 2024, 10(10), 79; https://doi.org/10.3390/magnetochemistry10100079 - 20 Oct 2024
Cited by 5 | Viewed by 1361
Abstract
Recent research in solid-state physics and materials engineering focuses on the development of new dielectric materials, with bismuth-based pyrochlores being already extensively applied in communications technology for their excellent dielectric properties and relatively low sintering temperatures. Herein, the structural, morphological, electrical, and magnetic [...] Read more.
Recent research in solid-state physics and materials engineering focuses on the development of new dielectric materials, with bismuth-based pyrochlores being already extensively applied in communications technology for their excellent dielectric properties and relatively low sintering temperatures. Herein, the structural, morphological, electrical, and magnetic properties of Bi1.34Fe0.66Nb1.34O6.35 ceramic, prepared by the sol–gel method and sintered at 500 °C, are investigated. The Rietveld refinement of the XRD pattern showed a cubic phase belonging to the space group Fd-3m and a crystallite size of 42 nm. Transmission electron microscopy further confirmed the crystallite size and the homogeneous distribution of Bi, Fe, Nb, and O elements, as evidenced by high-angle annular dark field imaging and STEM-EDX mapping. The morphology of the sample, assessed by scanning electron microscopy, is characterized by submicron-sized spherical particles. Dielectric spectroscopic studies revealed that the dielectric properties, strongly influenced by frequency and temperature, indicate the material’s potential for energy storage due to lower dielectric loss compared to the dielectric constant. The observed relaxation phenomena, confirmed through variations in dielectric loss and loss tangent, highlight the influence of grain boundaries and temperature on electron hopping and charge carrier dynamics. Using SQUID magnetometry, we identified two distinct magnetic phases. The primary phase, corresponding to the Bi1.34Fe0.66Nb1.34O6.35 ceramic, exhibits an antiferromagnetic behavior below its Néel temperature at around 8.8 K. A secondary high-Curie temperature ferrimagnetic phase, likely vestigial maghemite and/or magnetite, was also detected, indicating an estimated fraction below 0.02 wt.%. Full article
Show Figures

Figure 1

22 pages, 16238 KiB  
Article
Spectroscopic Phenological Characterization of Mangrove Communities
by Christopher Small and Daniel Sousa
Remote Sens. 2024, 16(15), 2796; https://doi.org/10.3390/rs16152796 - 30 Jul 2024
Viewed by 1774
Abstract
Spaceborne spectroscopic imaging offers the potential to improve our understanding of biodiversity and ecosystem services, particularly for challenging and rich environments like mangroves. Understanding the signals present in large volumes of high-dimensional spectroscopic observations of vegetation communities requires the characterization of seasonal phenology [...] Read more.
Spaceborne spectroscopic imaging offers the potential to improve our understanding of biodiversity and ecosystem services, particularly for challenging and rich environments like mangroves. Understanding the signals present in large volumes of high-dimensional spectroscopic observations of vegetation communities requires the characterization of seasonal phenology and response to environmental conditions. This analysis leverages both spectroscopic and phenological information to characterize vegetation communities in the Sundarban riverine mangrove forest of the Ganges–Brahmaputra delta. Parallel analyses of surface reflectance spectra from NASA’s EMIT imaging spectrometer and MODIS vegetation abundance time series (2000–2022) reveal the spectroscopic and phenological diversity of the Sundarban mangrove communities. A comparison of spectral and temporal feature spaces rendered with low-order principal components and 3D embeddings from Uniform Manifold Approximation and Projection (UMAP) reveals similar structures with multiple spectral and temporal endmembers and multiple internal amplitude continua for both EMIT reflectance and MODIS Enhanced Vegetation Index (EVI) phenology. The spectral and temporal feature spaces of the Sundarban represent independent observations sharing a common structure that is driven by the physical processes controlling tree canopy spectral properties and their temporal evolution. Spectral and phenological endmembers reside at the peripheries of the mangrove forest with multiple outward gradients in amplitude of reflectance and phenology within the forest. Longitudinal gradients of both phenology and reflectance amplitude coincide with LiDAR-derived gradients in tree canopy height and sub-canopy ground elevation, suggesting the influence of surface hydrology and sediment deposition. RGB composite maps of both linear (PC) and nonlinear (UMAP) 3D feature spaces reveal a strong contrast between the phenological and spectroscopic diversity of the eastern Sundarban and the less diverse western Sundarban. Full article
(This article belongs to the Special Issue Remote Sensing of Land Surface Phenology II)
Show Figures

Figure 1

32 pages, 1470 KiB  
Review
The Study of Pigments in Cultural Heritage: A Review Using Machine Learning
by Astrid Harth
Heritage 2024, 7(7), 3664-3695; https://doi.org/10.3390/heritage7070174 - 11 Jul 2024
Cited by 8 | Viewed by 4741
Abstract
In this review, topic modeling—an unsupervised machine learning tool—is employed to analyze research on pigments in cultural heritage published from 1999–2023. The review answers the following question: What are topics and time trends in the past three decades in the analytical study of [...] Read more.
In this review, topic modeling—an unsupervised machine learning tool—is employed to analyze research on pigments in cultural heritage published from 1999–2023. The review answers the following question: What are topics and time trends in the past three decades in the analytical study of pigments within cultural heritage (CH) assets? In total, 932 articles are reviewed, ten topics are identified and time trends in the share of these topics are revealed. Each topic is discussed in-depth to elucidate the community, purpose and tools involved in the topic. The time trend analysis shows that dominant topics over time include T1 (the spectroscopic and microscopic study of the stratigraphy of painted CH assets) and T5 (X-ray based techniques for CH, conservation science and archaeometry). However, both topics have experienced a decrease in attention in favor of other topics that more than doubled their topic share, enabled by new technologies and methods for imaging spectroscopy and imaging processing. These topics include T6 (spectral imaging techniques for chemical mapping of painting surfaces) and T10 (the technical study of the pigments and painting methods of historical and contemporary artists). Implications for the field are discussed in conclusion. Full article
Show Figures

Figure 1

18 pages, 9458 KiB  
Article
Four-Dimensional Digital Monitoring and Registering of Historical Architecture for the Preservation of Cultural Heritage
by Mohamed Saleh Sedek, Mabrouk Touahmia, Ghazy Abdullah Albaqawy, Enamur Latifee, Tarek Mahioub and Ahmed Sallam
Buildings 2024, 14(7), 2101; https://doi.org/10.3390/buildings14072101 - 9 Jul 2024
Cited by 2 | Viewed by 1650
Abstract
Preserving cultural heritage through monitoring, registering, and analyzing damage in historical architectural structures presents significant financial and logistical burdens. Developed approaches for monitoring and registering 4D (4-dimensional)-scanned range and raster images of damaged objects were investigated in a case study of historical Baron [...] Read more.
Preserving cultural heritage through monitoring, registering, and analyzing damage in historical architectural structures presents significant financial and logistical burdens. Developed approaches for monitoring and registering 4D (4-dimensional)-scanned range and raster images of damaged objects were investigated in a case study of historical Baron Palace in Egypt. In the methodology, we first prepared and observed the damaged historical models. The damaged historical models were scanned using a laser scanner at a predetermined date and time. Simultaneously, digital images of the models were captured (by a calibrated digital camera) and stored on a researcher’s tablet device. By observing and comparing the scanned models with the digital images, geometric defects and their extent are identified. Then, the observed data components were detected on the map. Then, damaged statue materials were investigated using system of energy dispersive (SEM; scanning electron microscope, Gemini Zeiss-Ultra 55) and XRF (X-ray fluorescence) spectroscopic analysis to identify the statue’s marble elements, and the results indicate that SEM-EDX and XRF analyses accurately identify major and minor compositions of the damaged statue. Then, the damaged models were registered in two stages. In the registration stages, the corresponding points were determined automatically by detecting the closest points in the clouds and ICP (iterative closest point) algorithm in RiSCAN. The point clouds (of the Palace and damaged statues) gave very detailed resolutions and more realistic images in RiSCAN, but it is a costly program. Finally, the accuracies of the registration tasks were assessed; the standard deviations are within acceptable limits and tend to increase irregularly as the number of polydata observations used in the registration calculations increase. Full article
Show Figures

Figure 1

14 pages, 1394 KiB  
Article
Spectral Signatures of Macroalgae on Hawaiian Reefs
by Kimberly Fuller, Roberta E. Martin and Gregory P. Asner
Remote Sens. 2024, 16(7), 1140; https://doi.org/10.3390/rs16071140 - 25 Mar 2024
Cited by 2 | Viewed by 1849
Abstract
In Hawaiʻi, native macroalgae or “limu” are of ecological, cultural, and economic value. Invasive algae threaten native macroalgae and coral, which serve a key role in the reef ecosystem. Spectroscopy can be a valuable tool for species discrimination, while simultaneously providing insight into [...] Read more.
In Hawaiʻi, native macroalgae or “limu” are of ecological, cultural, and economic value. Invasive algae threaten native macroalgae and coral, which serve a key role in the reef ecosystem. Spectroscopy can be a valuable tool for species discrimination, while simultaneously providing insight into chemical processes occurring within photosynthetic organisms. The spectral identity and separability of Hawaiian macroalgal taxonomic groups and invasive and native macroalgae are poorly known and thus were the focus of this study. A macroalgal spectroscopic library of 30 species and species complexes found in Hawaiʻi was created. Spectral reflectance signatures were aligned with known absorption bands of taxonomic division-specific photosynthetic pigments. Quadratic discriminant analysis was used to explore if taxonomic groups of algae and native versus invasive algae could be classified spectrally. Algae were correctly classified based on taxonomic divisions 96.5% of the time and by species 83.2% of the time. Invasive versus native algae were correctly classified at a rate of 93% and higher, although the number of invasive algal species tested was limited. Analyses suggest that there is promise for the spectral separability of algae investigated in this study by algal taxonomic divisions and native-invasive status. This study created a spectral library that lays the groundwork for testing the spectral mapping of algae using current airborne and forthcoming spaceborne imaging spectroscopy, which could have significant implications for coastal management. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

14 pages, 2842 KiB  
Article
Enhancing Whole-Brain Magnetic Field Homogeneity for 3D-Magnetic Resonance Spectroscopic Imaging with a Novel Unified Coil: A Preliminary Study
by Archana Vadiraj Malagi, Xinqi Li, Na Zhang, Yucen Liu, Yuheng Huang, Fardad Michael Serry, Ziyang Long, Chia-Chi Yang, Yujie Shan, Yubin Cai, Jeremy Zepeda, Nader Binesh, Debiao Li, Hsin-Jung Yang and Hui Han
Cancers 2024, 16(6), 1233; https://doi.org/10.3390/cancers16061233 - 21 Mar 2024
Cited by 2 | Viewed by 2048
Abstract
The spectral quality of magnetic resonance spectroscopic imaging (MRSI) can be affected by strong magnetic field inhomogeneities, posing a challenge for 3D-MRSI’s widespread clinical use with standard scanner-equipped 2nd-order shim coils. To overcome this, we designed an empirical unified shim–RF head coil (32-ch [...] Read more.
The spectral quality of magnetic resonance spectroscopic imaging (MRSI) can be affected by strong magnetic field inhomogeneities, posing a challenge for 3D-MRSI’s widespread clinical use with standard scanner-equipped 2nd-order shim coils. To overcome this, we designed an empirical unified shim–RF head coil (32-ch RF receive and 51-ch shim) for 3D-MRSI improvement. We compared its shimming performance and 3D-MRSI brain coverages against the standard scanner shim (2nd-order spherical harmonic (SH) shim coils) and integrated parallel reception, excitation, and shimming (iPRES) 32-ch AC/DC head coil. We also simulated a theoretical 3rd-, 4th-, and 5th-order SH shim as a benchmark to assess the UNIfied shim–RF coil (UNIC) improvements. In this preliminary study, the whole-brain coverage was simulated by using B0 field maps of twenty-four healthy human subjects (n = 24). Our results demonstrated that UNIC substantially improves brain field homogeneity, reducing whole-brain frequency standard deviations by 27% compared to the standard 2nd-order scanner shim and 17% compared to the iPRES shim. Moreover, UNIC enhances whole-brain coverage of 3D-MRSI by up to 34% compared to the standard 2nd-order scanner shim and up to 13% compared to the iPRES shim. UNIC markedly increases coverage in the prefrontal cortex by 147% and 47% and in the medial temporal lobe and temporal pole by 29% and 13%, respectively, at voxel resolutions of 1.4 cc and 0.09 cc for 3D-MRSI. Furthermore, UNIC effectively reduces variations in shim quality and brain coverage among different subjects compared to scanner shim and iPRES shim. Anticipated advancements in higher-order shimming (beyond 6th order) are expected via optimized designs using dimensionality reduction methods. Full article
(This article belongs to the Special Issue Advanced Imaging in Brain Tumor Patient Management)
Show Figures

Figure 1

37 pages, 9960 KiB  
Review
On-Chip Photonic Detection Techniques for Non-Invasive In Situ Characterizations at the Microfluidic Scale
by Tamar Kurdadze, Fabrice Lamadie, Karen A. Nehme, Sébastien Teychené, Béatrice Biscans and Isaac Rodriguez-Ruiz
Sensors 2024, 24(5), 1529; https://doi.org/10.3390/s24051529 - 27 Feb 2024
Cited by 10 | Viewed by 4537
Abstract
Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is [...] Read more.
Microfluidics has emerged as a robust technology for diverse applications, ranging from bio-medical diagnostics to chemical analysis. Among the different characterization techniques that can be used to analyze samples at the microfluidic scale, the coupling of photonic detection techniques and on-chip configurations is particularly advantageous due to its non-invasive nature, which permits sensitive, real-time, high throughput, and rapid analyses, taking advantage of the microfluidic special environments and reduced sample volumes. Putting a special emphasis on integrated detection schemes, this review article explores the most relevant advances in the on-chip implementation of UV–vis, near-infrared, terahertz, and X-ray-based techniques for different characterizations, ranging from punctual spectroscopic or scattering-based measurements to different types of mapping/imaging. The principles of the techniques and their interest are discussed through their application to different systems. Full article
(This article belongs to the Collection Microfluidic Sensors)
Show Figures

Figure 1

15 pages, 3037 KiB  
Article
A Comparison of 7 Tesla MR Spectroscopic Imaging and 3 Tesla MR Fingerprinting for Tumor Localization in Glioma Patients
by Philipp Lazen, Pedro Lima Cardoso, Sukrit Sharma, Cornelius Cadrien, Thomas Roetzer-Pejrimovsky, Julia Furtner, Bernhard Strasser, Lukas Hingerl, Alexandra Lipka, Matthias Preusser, Wolfgang Marik, Wolfgang Bogner, Georg Widhalm, Karl Rössler, Siegfried Trattnig and Gilbert Hangel
Cancers 2024, 16(5), 943; https://doi.org/10.3390/cancers16050943 - 26 Feb 2024
Cited by 1 | Viewed by 1989
Abstract
This paper investigated the correlation between magnetic resonance spectroscopic imaging (MRSI) and magnetic resonance fingerprinting (MRF) in glioma patients by comparing neuro-oncological markers obtained from MRSI to T1/T2 maps from MRF. Data from 12 consenting patients with gliomas were analyzed by defining hotspots [...] Read more.
This paper investigated the correlation between magnetic resonance spectroscopic imaging (MRSI) and magnetic resonance fingerprinting (MRF) in glioma patients by comparing neuro-oncological markers obtained from MRSI to T1/T2 maps from MRF. Data from 12 consenting patients with gliomas were analyzed by defining hotspots for T1, T2, and various metabolic ratios, and comparing them using Sørensen–Dice similarity coefficients (DSCs) and the distances between their centers of intensity (COIDs). The median DSCs between MRF and the tumor segmentation were 0.73 (T1) and 0.79 (T2). The DSCs between MRSI and MRF were the highest for Gln/tNAA (T1: 0.75, T2: 0.80, tumor: 0.78), followed by Gly/tNAA (T1: 0.57, T2: 0.62, tumor: 0.54) and tCho/tNAA (T1: 0.61, T2: 0.58, tumor: 0.45). The median values in the tumor hotspot were T1 = 1724 ms, T2 = 86 ms, Gln/tNAA = 0.61, Gly/tNAA = 0.28, Ins/tNAA = 1.15, and tCho/tNAA = 0.48, and, in the peritumoral region, were T1 = 1756 ms, T2 = 102 ms, Gln/tNAA = 0.38, Gly/tNAA = 0.20, Ins/tNAA = 1.06, and tCho/tNAA = 0.38, and, in the NAWM, were T1 = 950 ms, T2 = 43 ms, Gln/tNAA = 0.16, Gly/tNAA = 0.07, Ins/tNAA = 0.54, and tCho/tNAA = 0.20. The results of this study constitute the first comparison of 7T MRSI and 3T MRF, showing a good correspondence between these methods. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

10 pages, 2522 KiB  
Article
Automated High-Order Shimming for Neuroimaging Studies
by Jia Xu, Baolian Yang, Douglas Kelley and Vincent A. Magnotta
Tomography 2023, 9(6), 2148-2157; https://doi.org/10.3390/tomography9060168 - 1 Dec 2023
Cited by 3 | Viewed by 2801
Abstract
B0 inhomogeneity presents a significant challenge in MRI and MR spectroscopy, particularly at high-field strengths, leading to image distortion, signal loss, and spectral broadening. Existing high-order shimming methods can alleviate these issues but often require time-consuming and subjective manual selection of regions [...] Read more.
B0 inhomogeneity presents a significant challenge in MRI and MR spectroscopy, particularly at high-field strengths, leading to image distortion, signal loss, and spectral broadening. Existing high-order shimming methods can alleviate these issues but often require time-consuming and subjective manual selection of regions of interest (ROIs). To address this, we proposed an automated high-order shimming (autoHOS) method, incorporating deep-learning-based brain extraction and image-based high-order shimming. This approach performs automated real-time brain extraction to define the ROI of the field map to be used in the shimming algorithm. The shimming performance of autoHOS was assessed through in vivo echo-planar imaging (EPI) and spectroscopic studies at both 3T and 7T field strengths. AutoHOS outperforms linear shimming and manual high-order shimming, enhancing both the image and spectral quality by reducing the EPI image distortion and narrowing the MRS spectral lineshapes. Therefore, autoHOS demonstrated a significant improvement in correcting B0 inhomogeneity while eliminating the need for additional user interaction. Full article
(This article belongs to the Section Brain Imaging)
Show Figures

Graphical abstract

20 pages, 1772 KiB  
Article
Tracking Therapy Response in Glioblastoma Using 1D Convolutional Neural Networks
by Sandra Ortega-Martorell, Ivan Olier, Orlando Hernandez, Paula D. Restrepo-Galvis, Ryan A. A. Bellfield and Ana Paula Candiota
Cancers 2023, 15(15), 4002; https://doi.org/10.3390/cancers15154002 - 7 Aug 2023
Cited by 3 | Viewed by 2320
Abstract
Background: Glioblastoma (GB) is a malignant brain tumour that is challenging to treat, often relapsing even after aggressive therapy. Evaluating therapy response relies on magnetic resonance imaging (MRI) following the Response Assessment in Neuro-Oncology (RANO) criteria. However, early assessment is hindered by phenomena [...] Read more.
Background: Glioblastoma (GB) is a malignant brain tumour that is challenging to treat, often relapsing even after aggressive therapy. Evaluating therapy response relies on magnetic resonance imaging (MRI) following the Response Assessment in Neuro-Oncology (RANO) criteria. However, early assessment is hindered by phenomena such as pseudoprogression and pseudoresponse. Magnetic resonance spectroscopy (MRS/MRSI) provides metabolomics information but is underutilised due to a lack of familiarity and standardisation. Methods: This study explores the potential of spectroscopic imaging (MRSI) in combination with several machine learning approaches, including one-dimensional convolutional neural networks (1D-CNNs), to improve therapy response assessment. Preclinical GB (GL261-bearing mice) were studied for method optimisation and validation. Results: The proposed 1D-CNN models successfully identify different regions of tumours sampled by MRSI, i.e., normal brain (N), control/unresponsive tumour (T), and tumour responding to treatment (R). Class activation maps using Grad-CAM enabled the study of the key areas relevant to the models, providing model explainability. The generated colour-coded maps showing the N, T and R regions were highly accurate (according to Dice scores) when compared against ground truth and outperformed our previous method. Conclusions: The proposed methodology may provide new and better opportunities for therapy response assessment, potentially providing earlier hints of tumour relapsing stages. Full article
(This article belongs to the Special Issue Decision-Support Systems for Cancer Diagnosis and Prognosis)
Show Figures

Figure 1

Back to TopTop