Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (143)

Search Parameters:
Keywords = spatial retreat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5628 KiB  
Article
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Viewed by 219
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) [...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability. Full article
Show Figures

Figure 1

27 pages, 3599 KiB  
Article
Progressive Shrinkage of the Alpine Periglacial Weathering Zone and Its Escalating Disaster Risks in the Gongga Mountains over the Past Four Decades
by Qiuyang Zhang, Qiang Zhou, Fenggui Liu, Weidong Ma, Qiong Chen, Bo Wei, Long Li and Zemin Zhi
Remote Sens. 2025, 17(14), 2462; https://doi.org/10.3390/rs17142462 - 16 Jul 2025
Viewed by 250
Abstract
The Alpine Periglacial Weathering Zone (APWZ) is a critical transitional belt between alpine vegetation and glaciers, and a highly sensitive region to climate change. Its dynamic variations profoundly reflect the surface environment’s response to climatic shifts. Taking Gongga Mountain as the study area, [...] Read more.
The Alpine Periglacial Weathering Zone (APWZ) is a critical transitional belt between alpine vegetation and glaciers, and a highly sensitive region to climate change. Its dynamic variations profoundly reflect the surface environment’s response to climatic shifts. Taking Gongga Mountain as the study area, this study utilizes summer Landsat imagery from 1986 to 2024 and constructs a remote sensing method based on NDVI and NDSI indices using the Otsu thresholding algorithm on the Google Earth Engine platform to automatically extract the positions of the upper limit of vegetation and the snowline. Results show that over the past four decades, the APWZ in Gongga Mountain has exhibited a continuous upward shift, with the mean elevation rising from 4101 m to 4575 m. The upper limit of vegetation advanced at an average rate of 17.43 m/a, significantly faster than the snowline shift (3.9 m/a). The APWZ also experienced substantial areal shrinkage, with an average annual reduction of approximately 13.84 km2, highlighting the differential responses of various surface cover types to warming. Spatially, the most pronounced changes occurred in high-elevation zones (4200–4700 m), moderate slopes (25–33°), and sun-facing aspects (east, southeast, and south slopes), reflecting a typical climate–topography coupled driving mechanism. In the upper APWZ, glacier retreat has intensified weathering and increased debris accumulation, while the newly formed vegetation zone in the lower APWZ remains structurally fragile and unstable. Under extreme climatic disturbances, this setting is prone to triggering chain-type hazards such as landslides and debris flows. These findings enhance our capacity to monitor alpine ecological boundary changes and identify associated disaster risks, providing scientific support for managing climate-sensitive mountainous regions. Full article
Show Figures

Figure 1

24 pages, 4485 KiB  
Article
Spatiotemporal Evolution and Proximity Dynamics of “Three-Zone Spaces” in Yangtze River Basin Counties from 2000 to 2020
by Jiawuhaier Aishanjiang, Xiaofen Li, Fan Qiu, Yichen Jia, Kai Li and Junnan Xia
Land 2025, 14(7), 1380; https://doi.org/10.3390/land14071380 - 30 Jun 2025
Viewed by 271
Abstract
As the world’s third-longest river supporting 40% of China’s population, the Yangtze River Basin exemplifies the critical challenges of balancing riparian development and ecological resilience for major fluvial systems globally. This study analyzed the spatiotemporal evolution, proximity dynamics to the Yangtze River, and [...] Read more.
As the world’s third-longest river supporting 40% of China’s population, the Yangtze River Basin exemplifies the critical challenges of balancing riparian development and ecological resilience for major fluvial systems globally. This study analyzed the spatiotemporal evolution, proximity dynamics to the Yangtze River, and driving mechanisms of the “three types of spaces” (urban, agricultural, and ecological) in 130 counties along the Yangtze River mainstem from 2000 to 2020, utilizing an integrated approach incorporating land use transfer matrices, centroid-based distance metrics and GeoDetector models. Key findings reveal: (1) Urban space exhibited significant irreversible expansion while agricultural space continued to shrink, with ecological space maintaining overall stability but showing high-frequency bidirectional conversion with agricultural areas in localized zones. (2) Spatial proximity analysis demonstrated contrasting patterns—eastern riparian counties showed urban spatial agglomeration towards the river, whereas most mid-western regions experienced urban expansion away from the watercourse, with marked regional disparities in agricultural and ecological spatial changes. (3) Driving mechanism analysis identified topography as the dominant natural factor influencing ecological space evolution, while socioeconomic factors exerted stronger impacts on proximity variations of agricultural and urban spaces, with natural–socioeconomic interactive effects showing the most significant explanatory power. These spatial dynamics reflect universal trade-offs between economic development and ecosystem conservation in large river basins worldwide. We advocate differentiated spatial governance strategies, including rigorous riparian ecological redlines, eco-agricultural models in agricultural retreat zones, and proximity-based real-time monitoring for ecological early warning. The integrated methodology and spatial governance framework offer transferable solutions for sustainable management of major fluvial systems under rapid urbanization pressure. These findings provide scientific evidence and implementable pathways for coordinating socioeconomic development with ecosystem resilience in the Yangtze River Economic Belt. Full article
Show Figures

Figure 1

20 pages, 2119 KiB  
Article
Quantifying the Impacts of Grain Plantation Decline on Domestic Grain Supply in China During the Past Two Decades
by Yizhu Liu, Jing Zhu, Tingting He and Hang Liu
Land 2025, 14(6), 1283; https://doi.org/10.3390/land14061283 - 16 Jun 2025
Viewed by 514
Abstract
An adequate food supply is a core issue for sustainable development worldwide. Amid greater instability in the food supply triggered by more armed conflicts, trade disputes, and climate change, a decline in grain cultivation area still plagues many regions. China, a major food [...] Read more.
An adequate food supply is a core issue for sustainable development worldwide. Amid greater instability in the food supply triggered by more armed conflicts, trade disputes, and climate change, a decline in grain cultivation area still plagues many regions. China, a major food producer globally, is a case in point. The truth is that at the moment, the formulation and implementation of policies as well as academic discussions regarding this issue are predominantly based on the sown area of grains, overlooking the fundamental role co-played by population, yield efficiency, and sown area in determining food supply. Furthermore, the commonly used indicator, the non-grain cultivation rate, fails to directly reflect the impact of the phenomenon on the grain supply. To address these gaps, this study introduces trend-change detection and factor-contribution analysis, uses long-term grain sown area data to identify regions with significant grain retreat, and quantifies the relative influence of population shifts, crop yield improvements, and sown area changes on food supply. Key findings include the following: China’s total grain production maintained steady growth from 2003 to 2023, far exceeding conventional food security thresholds. Temporary reductions in grain sown area (2015–2019, 2021–2022) were offset by rising yields, with no substantial decline in supply. Twelve provinces/municipalities, Beijing, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi, Guizhou, Shaanxi, Ningxia, Sichuan, Chongqing, and Hainan, exhibited substantial declines in grain plantation. However, Sichuan and Shaanxi achieved counter-trend growth in food supply, while Ningxia and Guizhou experienced frequent fluctuations. The sown area was not always the dominant factor in per capita grain availability. Yield increases neutralized cropland reduction in Sichuan, Shaanxi, Guizhou, and Ningxia, whereas population inflows outweighed the sown area effect in the other eight provinces. The study concludes that China’s grain cropland reduction has not yet posed a threat to national food security. That said, the spatial concentration of these affected regions and their ongoing output reductions may raise domestic grain redistribution costs and intensify inter-regional conflicts over cropland protection. Meanwhile, population influx plays a similarly important role to that of grain plantation decline in the grain supply. Considering that, we believe that more moderate measures should be adopted to address the shrinkage of grain planting areas, with pre-set food self-sufficiency standards. These measures include, but are not limited to, improving productivity and adopting integrated farming. Methodologically, this work lowers distortions from normal annual cropland fluctuations, enabling more precise identification of non-grain production zones. By quantifying the separate impacts of population, crop yield, and sown area changes, it supplements existing observations on grain cropland decline and provides better targeted suggestions on policy formulation and coordination. Full article
Show Figures

Figure 1

27 pages, 24251 KiB  
Article
Anthropogenic and Climate-Induced Water Storage Dynamics over the Past Two Decades in the China–Mongolia Arid Region Adjacent to Altai Mountain
by Yingjie Yan, Yuan Su, Hongfei Zhou, Siyu Wang, Linlin Yao and Dashlkham Batmunkh
Remote Sens. 2025, 17(11), 1949; https://doi.org/10.3390/rs17111949 - 4 Jun 2025
Cited by 1 | Viewed by 564
Abstract
The China–Mongolia arid region adjacent to the Altai Mountain (CMA) has a sensitive ecosystem that relies heavily on both terrestrial water (TWS) and groundwater storage (GWS). However, during the 2003–2016 period, the CMA experienced significant glacier retreat, lake shrinkage, and grassland degradation. To [...] Read more.
The China–Mongolia arid region adjacent to the Altai Mountain (CMA) has a sensitive ecosystem that relies heavily on both terrestrial water (TWS) and groundwater storage (GWS). However, during the 2003–2016 period, the CMA experienced significant glacier retreat, lake shrinkage, and grassland degradation. To illuminate the TWS and GWS dynamics in the CMA and the dominant driving factors, we employed high-resolution (0.1°) GRACE (Gravity Recovery and Climate Experiment) data generated through random forest (RF) combined with residual correction. The downscaled data at a 0.1° resolution illustrate the spatial heterogeneity of TWS and GWS depletion. The highest TWS and GWS decline rates were both on the north slope of the Tianshan River Basin (NTRB) of the Junggar Basin of Northwestern China (JBNWC) (27.96 mm/yr and −32.98 mm/yr, respectively). Human impact played a primary role in TWS decreases in the JBNWC, with a relative contribution rate of 62.22% compared to the climatic contribution (37.78%). A notable shift—from climatic (2002–2010) to anthropogenic factors (2011–2020)—was observed as the primary driver of TWS decline in the Great Lakes Depression region of western Mongolia (GLDWM). To maintain ecological stability and promote sustainable regional development, effective action is urgently required to save essential TWS from further depletion. Full article
Show Figures

Figure 1

20 pages, 8803 KiB  
Article
A Novel Geospatial Approach for Analyzing Coastal Roadway Vulnerability to Shoreline Changes
by Soomin Kim, Jaeyoung Lee and Sungchul Hong
Land 2025, 14(6), 1158; https://doi.org/10.3390/land14061158 - 28 May 2025
Viewed by 408
Abstract
Climate changes and coastal development pose growing risks to coastal roadways constructed on flat and low-elevation terrains near retreating shorelines. Although GIS has been widely used for shoreline change analysis and roadway management, significant limitations remain in accurately analyzing shoreline changes relative to [...] Read more.
Climate changes and coastal development pose growing risks to coastal roadways constructed on flat and low-elevation terrains near retreating shorelines. Although GIS has been widely used for shoreline change analysis and roadway management, significant limitations remain in accurately analyzing shoreline changes relative to roadways and integrating the analysis results into roadway spatial databases in the Geographic Information System (GIS). In this regard, this study proposes a novel geospatial approach that integrates the linear referencing system (LRS) with the vector-offset based analysis method for shoreline change. The LRS, implemented in GIS, defines the specific positions of a roadway using relative distances from predefined referents. Vector offsets, representing the shortest distance and direction from historical shorelines to the roadway, are then employed to analyze shoreline changes. The proposed approach was applied to a coastal roadway experiencing significant shoreline changes driven by climate change and the construction of coastal infrastructure. The results demonstrate the effectiveness of the proposed approach in analyzing shoreline retreat caused by coastal infrastructure development, as well as shoreline accretion following the installation of erosion control structures. These results, which closely reflect the actual erosion pattern, indicate that the proposed approach can effectively support planning for roadway maintenance and reinforcement. Full article
Show Figures

Figure 1

22 pages, 5776 KiB  
Article
Using Pleiades Satellite Imagery to Monitor Multi-Annual Coastal Dune Morphological Changes
by Olivier Burvingt, Bruno Castelle, Vincent Marieu, Bertrand Lubac, Alexandre Nicolae Lerma and Nicolas Robin
Remote Sens. 2025, 17(9), 1522; https://doi.org/10.3390/rs17091522 - 25 Apr 2025
Viewed by 858
Abstract
In the context of sea levels rising, monitoring spatial and temporal topographic changes along coastal dunes is crucial to understand their dynamics since they represent natural barriers against coastal flooding and large sources of sediment that can mitigate coastal erosion. Different technologies are [...] Read more.
In the context of sea levels rising, monitoring spatial and temporal topographic changes along coastal dunes is crucial to understand their dynamics since they represent natural barriers against coastal flooding and large sources of sediment that can mitigate coastal erosion. Different technologies are currently used to monitor coastal dune topographic changes (GNSS, UAV, airborne LiDAR, etc.). Satellites recently emerged as a new source of topographic data by providing high-resolution images with a rather short revisit time at the global scale. Stereoscopic or tri-stereoscopic acquisition of some of these images enables the creation of 3D models using stereophotogrammetry methods. Here, the Ames Stereo Pipeline was used to produce digital elevation models (DEMs) from tri-stereo panchromatic and high-resolution Pleiades images along three 19 km long stretches of coastal dunes in SW France. The vertical errors of the Pleiades-derived DEMs were assessed by comparing them with DEMs produced from airborne LiDAR data collected a few months apart from the Pleiades images in 2017 and 2021 at the same three study sites. Results showed that the Pleiades-derived DEMs could reproduce the overall dune topography well, with averaged root mean square errors that ranged from 0.5 to 1.1 m for the six sets of tri-stereo images. The differences between DEMs also showed that Pleiades images can be used to monitor multi-annual coastal dune morphological changes. Strong erosion and accretion patterns over spatial scales ranging from hundreds of meters (e.g., blowouts) to tens of kilometers (e.g., dune retreat) were captured well, and allowed to quantify changes with reasonable errors (30%). Furthermore, relatively small averaged root mean square errors (0.63 m) can be obtained with a limited number of field-collected elevation points (five ground control points) to perform a simple vertical correction on the generated Pleiades DEMs. Among different potential sources of errors, shadow areas due to the steepness of the dune stoss slope and crest, along with planimetric errors that can also occur due to the steepness of the terrain, remain the major causes of errors still limiting accurate enough volumetric change assessment. However, ongoing improvements on the stereo matching algorithms and spatial resolution of the satellite sensors (e.g., Pleiades Neo) highlight the growing potential of Pleiades images as a cost-effective alternative to other mapping techniques of coastal dune topography. Full article
Show Figures

Figure 1

36 pages, 10687 KiB  
Article
Coastal Vulnerability of Archaeological Sites of Southeastern Crete, Greece
by Anna V. Novikova, Athanasios V. Argyriou, Nafsika C. Andriopoulou, George Alexandrakis and Nikos Papadopoulos
Land 2025, 14(4), 892; https://doi.org/10.3390/land14040892 - 17 Apr 2025
Viewed by 1610
Abstract
The study assesses coastal evolution and the vulnerability of archaeological sites in Southeastern Crete. Shoreline dynamics since the 1940s were examined through the interpretation of high-resolution aerial photographs and satellite images. A set of climatic variables, as well as data on geomorphological and [...] Read more.
The study assesses coastal evolution and the vulnerability of archaeological sites in Southeastern Crete. Shoreline dynamics since the 1940s were examined through the interpretation of high-resolution aerial photographs and satellite images. A set of climatic variables, as well as data on geomorphological and geological factors obtained from fieldwork, images interpretation, archives, and open-source datasets, were analysed. The influence of these variables on coastal dynamics was evaluated using regression analysis, correlating their spatial distribution with rates of shoreline retreat/advance. Based on this, variables for the Coastal Vulnerability Index (CVI) calculation were selected, and the weighting for the weighted CVI (CVIw) was determined. The classical CVI identified 13.7% of the study area’s coastline as having very high vulnerability to coastal hazards, 15.5% as highly vulnerable. In the case of CVIw, 17.5% of the coasts of the area were classified as having very high level of vulnerability, 39.6%—as highly vulnerable. Both approaches, the CVI and the weighted CVI, highlighted the most vulnerable areas in the north, east, and southeast of Koufonisi Island, as well as the north and east of Chrisi Island. The least vulnerable areas include the wide beaches in enclosed bays, such as Gra Lygia, Ierapetra, and Ferma, along with rocky capes east of Ierapetra. Among the five archaeological sites examined, two (Lefki Roman Town and Stomio Roman Villa) fall within zones of high or very high coastal vulnerability. This study provides the first in-depth analysis of coastal dynamics and vulnerability of Southeastern Crete, a region with significant cultural heritage yet previously under-researched. Full article
Show Figures

Figure 1

23 pages, 24141 KiB  
Article
Glacier Area and Surface Flow Velocity Variations for 2016–2024 in the West Kunlun Mountains Based on Time-Series Sentinel-2 Images
by Decai Jiang, Shanshan Wang, Bin Zhu, Zhuoyu Lv, Gaoqiang Zhang, Dan Zhao and Tianqi Li
Remote Sens. 2025, 17(7), 1290; https://doi.org/10.3390/rs17071290 - 4 Apr 2025
Viewed by 654
Abstract
The West Kunlun Mountains (WKL) gather lots of large-scale glaciers, which play an important role in the climate and freshwater resource for central Asia. Despite extensive studies on glaciers in this region, a comprehensive understanding of inter-annual variations in glacier area, flow velocity, [...] Read more.
The West Kunlun Mountains (WKL) gather lots of large-scale glaciers, which play an important role in the climate and freshwater resource for central Asia. Despite extensive studies on glaciers in this region, a comprehensive understanding of inter-annual variations in glacier area, flow velocity, and terminus remains lacking. This study used a deep learning model to derive time-series glacier boundaries and the sub-pixel cross-correlation method to calculate inter-annual surface flow velocity in this region from 71 Sentinel-2 images acquired between 2016 and 2024. We analyzed the spatial-temporal variations of glacier area, velocity, and terminus. The results indicate that, as follows: (1) The glacier area in the WKL remained relatively stable, with three glaciers expanding by more than 0.5 km2 and five glaciers shrinking by over 0.5 km2 from 2016 to 2024. (2) Five glaciers exhibited surging behavior during the study period. (3) Six glaciers, with velocities exceeding 50 m/y, have the potential to surge. (4) There were eight obvious advancing glaciers and nine obvious retreating glaciers during the study period. Our study demonstrates the potential of Sentinel-2 for comprehensively monitoring inter-annual changes in mountain glacier area, velocity, and terminus, as well as identifying glacier surging events in regions beyond the study area. Full article
(This article belongs to the Special Issue Remote Sensing for Terrestrial Hydrologic Variables)
Show Figures

Figure 1

28 pages, 7266 KiB  
Article
Multi-Decadal Shoreline Variability Along the Cap Ferret Sand Spit (SW France) Derived from Satellite Images
by Arthur Robinet, Nicolas Bernon and Alexandre Nicolae Lerma
Remote Sens. 2025, 17(7), 1200; https://doi.org/10.3390/rs17071200 - 28 Mar 2025
Viewed by 818
Abstract
Building shoreline position databases able to capture event- to centennial-scale coastal changes is critical for scientists to improve knowledge of past coastal dynamics and predict future changes. Thanks to the commissioning of several satellites acquiring recurrent high-resolution optical images over coastal areas, coastal [...] Read more.
Building shoreline position databases able to capture event- to centennial-scale coastal changes is critical for scientists to improve knowledge of past coastal dynamics and predict future changes. Thanks to the commissioning of several satellites acquiring recurrent high-resolution optical images over coastal areas, coastal scientists have developed methods for detecting the shoreline position from satellite images in most parts of the world. These methods use image band analyses to delineate the waterline and require post-processing to produce time-consistent satellite-derived shorelines. However, the detection accuracy generally decreases with increasing tidal range. This work investigates an alternative approach for meso- and macrotidal coasts, which relies on the delineation of the boundary between dry and wet sand surfaces. The method was applied to the high-energy meso-macrotidal km-scale Cap Ferret sand spit, SW France, which has undergone large and contrasted shoreline changes over the last decades. Comparisons with topographic surveys conducted at Cap Ferret between 2014 and 2020 have shown that the raw satellite-derived wet/dry line reproduces well the mean high water shoreline, with an overall bias of 1.7 m, RMSE of 20.2 m, and R2 of 0.86. Building on this, the shoreline variability at Cap Ferret was investigated over the 1984–2021 period. Results have evidenced an alongshore gradient in the dominant modes of variability in the last 2 km of the sand spit. Near the tip, the shoreline has chronically retreated on the decadal scale at about 8.4 m/year and has been strongly affected on the interannual scale by the onset and migration of shoreline undulations having a wavelength of 500–1200 m and a cross-shore amplitude of 100–200 m. Some 3 km away from the sand spit extremity, the shoreline has been relatively stable in the long term, with a dominance of seasonal and interannual variability. This work brings new arguments for using the wet/dry line to monitor shoreline changes from spatial imagery at meso- and macrotidal sandy coasts. Full article
Show Figures

Figure 1

18 pages, 24260 KiB  
Article
Sedimentary Characteristics of the Sandstone Intervals in the Fourth Member of Triassic Akekule Formation, Tarim Basin: Implications for Petroleum Exploration
by Zehua Liu, Ye Yu, Li Wang, Haidong Wu and Qi Lin
Appl. Sci. 2025, 15(6), 3297; https://doi.org/10.3390/app15063297 - 18 Mar 2025
Viewed by 436
Abstract
The fourth member of the Triassic in the Tahe Oilfield, as one of the key strata for clastic rock reservoirs, poses significant challenges to oil and gas exploration due to unclear identification of its depositional environments and sedimentary microfacies. Based on the guidance [...] Read more.
The fourth member of the Triassic in the Tahe Oilfield, as one of the key strata for clastic rock reservoirs, poses significant challenges to oil and gas exploration due to unclear identification of its depositional environments and sedimentary microfacies. Based on the guidance of sequence stratigraphy and sedimentological theories, this study comprehensively analyzed well logging data from more than 130 wells, core analysis from 9 coring wells (including lithology, sedimentary structures, and facies sequence characteristics), 3D seismic data (covering an area of 360 km2), and regional geological background. Combined with screening and settling method granularity experiments, the sedimentary characteristics of the sand body in the fourth member were systematically characterized. The results indicate the following: (1) In the Tahe Oilfield, the strata within the fourth member of the Triassic are predominantly characterized by marginal lacustrine subfacies deposits, with delta-front subfacies deposits developing in localized areas. (2) From the planar distribution perspective, influenced by the northwestern provenance, a small deltaic depositional system developed in the early stage of the fourth member in the northwestern part of the Triassic Akekule Formation. This system was dominated by subaqueous distributary channel sand bodies, which were subjected to erosion and reshaping by lake water, leading to the formation of several stable sand bars along the lake shoreline. In the later stage of the fourth member, as the lake level continued to recede, the area of deltaic deposition expanded westward, and deltaic deposits also developed in the central to slightly eastern parts of the study area. Based on this, a depositional model for the fourth member of the Triassic in the Tahe Oilfield has been established. (3) In the Tahe Oilfield, the sand bodies within the fourth member of the Triassic system gradually pinch out into mudstone, forming lithological pinch-out traps. Among these, the channel sand bodies and long belt sand ridges, due to their good sorting and high permeability, become favorable reservoirs for oil and gas accumulation. This study clarifies the sedimentary model of the fourth member and reveals the spatial differentiation mechanism of sand bodies under the control of lake-level fluctuations and ancient structures. It can provide exploration guidance for delta lake sedimentary systems similar to the edge of foreland basins, especially for efficient development of complex lithological oil and gas reservoirs controlled by multistage lake invasion–lake retreat cycles. Full article
Show Figures

Figure 1

16 pages, 32369 KiB  
Article
A Preliminary Assessment of Land Restoration Progress in the Great Green Wall Initiative Region Using Satellite Remote Sensing Measurements
by Andy Deng, Xianjun Hao and John J. Qu
Remote Sens. 2024, 16(23), 4461; https://doi.org/10.3390/rs16234461 - 28 Nov 2024
Viewed by 2734
Abstract
The Great Green Wall (GGW) initiative, which started in 2007 and is still in development as of 2024, aims to combat desertification and enhance sustainability over 8000 km across Africa’s Sahel-Sahara region, encompassing 11 key countries and 7 countries associated with the initiative. [...] Read more.
The Great Green Wall (GGW) initiative, which started in 2007 and is still in development as of 2024, aims to combat desertification and enhance sustainability over 8000 km across Africa’s Sahel-Sahara region, encompassing 11 key countries and 7 countries associated with the initiative. Because of limited ground measurements for the GGW project, the progress and impacts of the GGW initiative have been a challenging problem to monitor and assess. This study aims to utilize satellite remote sensing data to analyze changes in the key factors related to the sustainability of the GGW region, including land cover type, vegetation index, precipitation rate, land surface temperature (LST), surface soil moisture, etc. Results from temporal analysis of these factors indicate that the deserts along the GGW are retreating and the regional mean of the Normalized Difference Vegetation Index (NDVI) has an increasing trend, although the precipitation has a slightly decreasing trend, over the past two decades. Further analysis shows spatial heterogeneity of vegetation, precipitation, and soil moisture changes. Desertification is still a challenging issue in some GGW countries. These results are helpful in understanding climate change in the GGW regions and the impacts of the Great Green Wall initiative. Full article
(This article belongs to the Special Issue Satellite-Based Climate Change and Sustainability Studies)
Show Figures

Graphical abstract

17 pages, 17273 KiB  
Article
Monitoring Coastal Evolution and Geomorphological Processes Using Time-Series Remote Sensing and Geospatial Analysis: Application Between Cape Serrat and Kef Abbed, Northern Tunisia
by Zeineb Kassouk, Emna Ayari, Benoit Deffontaines and Mohamed Ouaja
Remote Sens. 2024, 16(20), 3895; https://doi.org/10.3390/rs16203895 - 19 Oct 2024
Cited by 2 | Viewed by 2095
Abstract
The monitoring of coastal evolution (coastline and associated geomorphological features) caused by episodic and persistent processes associated with climatic and anthropic activities is required for coastal management decisions. The availability of open access, remotely sensed data with increasing spatial, temporal, and spectral resolutions, [...] Read more.
The monitoring of coastal evolution (coastline and associated geomorphological features) caused by episodic and persistent processes associated with climatic and anthropic activities is required for coastal management decisions. The availability of open access, remotely sensed data with increasing spatial, temporal, and spectral resolutions, is promising in this context. The coastline of Northern Tunisia is currently showing geomorphic process, such as increasing erosion associated with lateral sedimentation. This study aims to investigate the potential of time-series optical data, namely Landsat (from 1985–2019) and Google Earth® satellite imagery (from 2007 to 2023), to analyze shoreline changes and morphosedimentary and geomorphological processes between Cape Serrat and Kef Abbed, Northern Tunisia. The Digital Shoreline Analysis System (DSAS) was used to quantify the multitemporal rates of shoreline using two metrics: the net shoreline movement (NSM) and the end-point rate (EPR). Erosion was observed around the tombolo and near river mouths, exacerbated by the presence of surrounding dams, where the NSM is up to −8.31 m/year. Despite a total NSM of −15 m, seasonal dynamics revealed a maximum erosion in winter (71% negative NSM) and accretion in spring (57% positive NSM). The effects of currents, winds, and dams on dune dynamics were studied using historical images of Google Earth®. In the period from 1994 to 2023, the area is marked by dune face retreat and removal in more than 40% of the site, showing the increasing erosion. At finer spatial resolution and according to the synergy of field observations and photointerpretation, four key geomorphic processes shaping the coastline were identified: wave/tide action, wind transport, pedogenesis, and deposition. Given the frequent changes in coastal areas, this method facilitates the maintenance and updating of coastline databases, which are essential for analyzing the impacts of the sea level rise in the southern Mediterranean region. Furthermore, the developed approach could be implemented with a range of forecast scenarios to simulate the impacts of a higher future sea-level enhanced climate change. Full article
(This article belongs to the Special Issue Advances in Remote Sensing in Coastal Geomorphology (Third Edition))
Show Figures

Figure 1

18 pages, 3532 KiB  
Article
Health Risk of Heavy Metals in Drinking Water Sources of Water-Carrying Lakes Affected by Retreating Polder: A Case Study of Luoma Lake
by Jindong Wang, Xiaolong Zhu, Yicong Dai, Minyue Xu, Dongmei Wang, Yingcai Han, Wenguang Liang, Yifan Shi, Fanhao Song, Li Yao, Yiming Zhen and Qiuheng Zhu
Water 2024, 16(18), 2699; https://doi.org/10.3390/w16182699 - 23 Sep 2024
Cited by 1 | Viewed by 2683
Abstract
Heavy metal pollution is a critical issue affecting the safety of drinking water sources. However, the impact of human activities on heavy metal risk levels in water-carrying lakes remains unclear. This study aims to explore the risk mechanisms of heavy metals in Luoma [...] Read more.
Heavy metal pollution is a critical issue affecting the safety of drinking water sources. However, the impact of human activities on heavy metal risk levels in water-carrying lakes remains unclear. This study aims to explore the risk mechanisms of heavy metals in Luoma Lake, an important water-carrying lake for the South-to-North Water Diversion Project. We explored the spatial and temporal differences in the distribution of heavy metals in Lake Luoma using methods such as the heavy metal pollution index (HPI) and assessed the risk variations using a health assessment model. The results indicated that heavy metal concentrations in water-carrying lakes generally decreased during the dry season, with Mn and Zn levels decreasing by 89.3% and 56.2%, respectively. The comprehensive score of HPI decreased by 13.16% following the retreating polder compared to the control area (Non-retreating polder area). Furthermore, the HPI at the drinking water intake was lower, which is closely associated with the elevated dissolved oxygen (DO) and oxidation–reduction potential (ORP) resulting from water diversion. The annual average health risk across the entire lake was not significant, with higher levels observed in the control area. The annual non-carcinogenic risk levels of Mn, Ni, Cu, Zn, and Pb range from 10−13 to 10−9, which are considered negligible risk levels. Notably, the carcinogenic risk posed by arsenic (As) through the drinking pathway reached 10−5 a−1, exceeding the maximum levels recommended by certain organizations. These findings provide a critical foundation for managing heavy metals in water-carrying drinking water sources. Full article
Show Figures

Figure 1

22 pages, 6670 KiB  
Article
Spatiotemporal Changes of Glaciers in the Yigong Zangbo River Basin over the Period of the 1970s to 2023 and Their Driving Factors
by Suo Yuan, Ninglian Wang, Jiawen Chang, Sugang Zhou, Chenlie Shi and Mingjie Zhao
Remote Sens. 2024, 16(17), 3272; https://doi.org/10.3390/rs16173272 - 3 Sep 2024
Viewed by 1345
Abstract
The glaciers in southeastern Tibet Plateau (SETP) influenced by oceanic climate are sensitive to global warming, and there remains a notable deficiency in accurate multitemporal change analyses of these glaciers. We conduct glacier inventories in the Yigong Zangbo River Basin (YZRB) in SETP [...] Read more.
The glaciers in southeastern Tibet Plateau (SETP) influenced by oceanic climate are sensitive to global warming, and there remains a notable deficiency in accurate multitemporal change analyses of these glaciers. We conduct glacier inventories in the Yigong Zangbo River Basin (YZRB) in SETP for the years 1988, 2015, and 2023 utilizing Landsat and Sentinel-2 imagery, and analyze the glacier spatiotemporal variation incorporating the existing glacier inventory data. Since the 1970s until 2023, the glaciers significantly retreated at a rate of 0.76 ± 0.11%·a−1, with the area decreasing from 2583.09 ± 88.80 km2 to 1635.89 ± 71.74 km2, and the ice volume reducing from 221.7017 ± 7.9618 km3 to 152.7429 ± 6.1747 km3. The most significant retreat occurred in glaciers smaller than 1 km2. Additionally, glaciers on southern aspects retreated slower than the northern counterparts. The glaciers in the western YZRB witnessed a significantly greater shrinkage rate than those in the eastern section, with the most pronounced changes occurring in Aso Longbu River Basin. Furthermore, severe glacier mass deficits were observed from 2000 to 2019, averaging a loss rate of 0.57 ± 0.06 m w.e. a−1. The continuous rise in air temperature has primarily induced a general widespread glacier change in the YZRB. However, diverse topography led to spatial variability in glacier changes with discrepancies as large as several times. The features of individual glaciers, such as glacier size, debris cover, and the development of ice-contact glacial lakes enhanced the local complexity of glacier change and elusive response behaviors to climate warming led by the different topographic conditions. Full article
(This article belongs to the Special Issue Remote Sensing of the Cryosphere (Second Edition))
Show Figures

Figure 1

Back to TopTop