Spatiotemporal Changes of Glaciers in the Yigong Zangbo River Basin over the Period of the 1970s to 2023 and Their Driving Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.2.1. Remote Sensing Image
2.2.2. Digital Elevation Model (DEM) Data
2.2.3. Meteorological Data
2.3. Methods
2.3.1. Glacier Boundary Interpretation
2.3.2. Calculation of Glacier-Related Attributes
2.3.3. Estimation of Glacier Mass Balance
2.4. Uncertainty Evaluation
2.4.1. Uncertainty in Glacier-Related Attributes
2.4.2. Uncertainty in Glacial Mass Balance
3. Results
3.1. Contemporary Status of Glaciers in the YZRB
3.2. Glacier Changes in the YZRB from 1988 to 2023
3.2.1. Glacier Change at Different Sizes
3.2.2. Glacier Change at Different Orientations
3.3. Glacier Changes at Sub-Basins from 1970s to 2023 in Collaboration with the Existing Glacier Inventory Data
3.4. Glacier Mass Balance Variations in the YZRB from 2000 to 2019
4. Discussion
4.1. Glacier Change Response to Climate
4.2. Local Topography and Glacial Changes
4.3. Physical Properties and Glacier Changes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Yao, T.; Pu, J.; Lu, A.; Wang, Y.; Yu, W. Recent glacial retreat and its impact on hydrological processes on the tibetan plateau, China, and sorrounding regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [CrossRef]
- Liu, X.D.; Chen, B.D. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.; Bierkens, M.F.; Lutz, A.F.; Immerzeel, W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ke, C.; Zhou, X.; Shen, X.; Yu, X.; Lhakpa, D. Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM. J. Glaciol. 2023, 69, 500–512. [Google Scholar] [CrossRef]
- Pu, J.; Yao, T.; Wang, N.; Su, Z.; Shen, Y. Fluctuations of the Glaciers on the Qinghai-Tibetan Plateau during the Past Century. J. Glaciol. Geocryol. 2004, 26, 517–522. [Google Scholar]
- Ye, Q.; Cheng, W.; Zhao, Y.; Zong, J.; Zhao, R. A Review on the Research of Glacier Changes on the Tibetan Plateau by Remote Sensing Technologies. J. Geo-Inf. Sci. 2016, 18, 920–930. [Google Scholar]
- Liu, S.; Yao, X.; Guo, W.; Xu, J.; Shangguan, D.; Wei, J.; Bao, W.; Wu, L. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 3–16. [Google Scholar]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Xiao, Y.; Ke, C.; Cai, Y.; Shen, X.; Wang, Z.; Nourani, V.; Lhakpa, D. Glacier Retreating Analysis on the Southeastern Tibetan Plateau via Multisource Remote Sensing Data. J.-STARS 2023, 16, 2035–2049. [Google Scholar] [CrossRef]
- Ke, L.; Ding, X.; Zhang, L.; Hu, J.; Shum, C.K.; Lu, Z. Compiling a new glacier inventory for southeastern Qinghai-Tibet Plateau from Landsat and PALSAR data. J. Glaciol. 2016, 62, 579–592. [Google Scholar] [CrossRef]
- Wang, S.; Ke, C.; Chen, J. Semi-automatic Update of the Second Chinese Glacier Inventory based on Deep Learning. Remote Sens. Technol. Appl. 2023, 38, 1264–1273. [Google Scholar]
- Luo, L.-H.; Ke, C.; Fan, Y.-B.; Wang, Z.-F. Accelerated glacier mass loss in the southeastern Tibetan Plateau since the 1970s. Adv. Clim. Chang. Res. 2023, 14, 372–386. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.; Liu, S.; Wang, X. Review of maritime glacier mass balance in the southeastern Tibetan Plateau. J. Glaciol. Geocryol. 2022, 44, 930–945. [Google Scholar]
- Yang, W.; Yao, T.; Xu, B.; Ma, L.; Wang, Z.; Wan, M. Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo River basin, southeast Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 2097–2102. [Google Scholar] [CrossRef]
- Neckel, N.; Loibl, D.; Rankl, M. Recent slowdown and thinning of debris-covered glaciers in south-eastern Tibet. Earth Planet. Sci. Lett. 2017, 464, 95–102. [Google Scholar] [CrossRef]
- Wu, K.; Xiao, L.; Liu, S.; Yang, W. Simulation of mass balance of glaciers in the Parlung Zangbo Basin in southeast Tibet from 1980 to 2019. J. Glaciol. Geocryol. 2023, 45, 1829–1839. [Google Scholar]
- An, G.; Han, L.; Huang, S.; Gu, Y.; Guo, Z.; Wang, S. Dynamic Variation of Glaciers in Nyaingentanglha Mountain During 1999-2015: Evidence from Remote Sensing. Geoscience 2019, 33, 176. [Google Scholar]
- Di, B. Glacier Change in the Nianqing Tanggula Mountains in 36 Years and Its Response to Climate Change. Master’s Thesis, China University of Geosciences, Beijing, China, 2019. [Google Scholar]
- Zhang, B. InSAR Monitoring Technology for Geological Hazards in Eastern Jia li Fault. Master’s Thesis, Chang’an University, Xi’an, China, 2022. [Google Scholar]
- Yao, T.; Yu, W.; Wu, G.; Xu, B.; Yang, W.; Zhao, H.; Wang, W.; Li, S.; Wang, N.; Li, Z. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chin. Sci. Bull. 2019, 64, 2770–2782. [Google Scholar]
- Feng, W.; Changqing, K. Glacier recognition in the Yigong Zangbo River Basin based on the optical and thermal infrared remote sensing image. China Sci. Pap. 2016, 11, 245–250. [Google Scholar]
- Zhang, T.; Zhang, J.; Wu, H. Variation of the glaciers in Nyingchi Municipality of Tibet autonomous region during 1990–2000. J. Glaciol. Geocryol. 2011, 33, 14–20. [Google Scholar]
- Neckel, N.; Kropáček, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Li, L. Research on glacier elevation changes in Southeast Tibet based ICESat and CryoSat-2 Data. IOP Conf. Ser. Earth Environ. Sci. 2021, 865, 294–300. [Google Scholar] [CrossRef]
- Lingzhi, X.; Zhihong, L.; Jinbao, L.; Xiao, Z. Ynamic Variation of Glaciers in Bomi County of Tibet During 1980∼2010. Procedia Environ. Sci. 2011, 10, 1654–1660. [Google Scholar] [CrossRef]
- Ke, C.-Q.; Lee, H.; Han, Y.-F. Glacier Change in the Yigong Zangbo Basin, Tibetan Plateau, China. Korean J. Remote Sens. 2019, 35, 491–502. [Google Scholar]
- Zhang, T.-T.; Ren, J.-W.; Kang, S.-C. Lanong Glacier Retreat in Nyainqentanglha Range of Tibetan Plateau during 1970–2003. J. Glaciol. Geocryol. 2004, 26, 736–739. [Google Scholar]
- Wu, K.; Liu, S.; Jiang, Z.; Xu, J.; Wei, J.; Guo, W. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. Cryosphere 2018, 12, 103–121. [Google Scholar] [CrossRef]
- Liu, S.; Shangguan, D.; Ding, Y.; Han, H.; Xie, C.; Zhang, Y.; Li, J.; Wang, J.; Li, G. Glacier changes during the past century in the Gangrigabu mountains, southeast Qinghai–Xizang (Tibetan) Plateau, China. Ann. Glaciol. 2006, 43, 187–193. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, X.; Zheng, D.; Li, Z. Evolution of geodetic mass balance over the largest lake-terminating glacier in the Tibetan Plateau with a revised radar penetration depth based on multi-source high-resolution satellite data. Remote Sens. Environ. 2022, 275, 113029. [Google Scholar] [CrossRef]
- Li, L. Study on variation and mass balance estimations of glacier in Yigong Zangbu basin, Tibet by using multi-source remote sensing data. Ph.D. Thesis, Nanjing University, Nanjing, China, 2017. [Google Scholar]
- Zhang, Y.; Yao, X.; Duan, H.; Wang, Q. Simulation of Glacial Lake Outburst Flood in Southeastern Qinghai-Tibet Plateau—A Case Study of JiwenCo Glacial Lake. Front. Earth Sci. 2022, 10, 819526. [Google Scholar] [CrossRef]
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Wang, Q.; Duan, H.; Liu, N.; Du, Z.; Wang, P.; Yi, B.; Xu, J.; Huang, J.; Zhang, Y.; Yao, X. Change of moraine-dammed glacial lakes and simulation of glacial lake outburst flood in the Yi’ong Zangbo River basin. Front. Earth Sci. 2022, 10, 881285. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kaab, A.; Treichler, D.A. A spatially resolved estimate of High Mountain Asia glacier mass balances, 2000–2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Storey, J.; Choate, M.; Lee, K. Landsat 8 Operational Land Imager On-Orbit Geometric Calibration and Performance. Remote Sens. 2014, 6, 11127–11152. [Google Scholar] [CrossRef]
- Paul, F.; Kääb, A.; Maisch, M.; Kellenberger, T.; Haeberli, W. The new remote-sensingderived Swiss glacier inventory: Methods. Ann. Glaciol. 2002, 34, 355–361. [Google Scholar] [CrossRef]
- Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M. NASADEM global elevation model: Methods and progress. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 125–128. [Google Scholar] [CrossRef]
- Takaku, J.; Tadono, T.; Tsutsui, K.; Ichikawa, M. Validation of “AW3D” global DSM generated from Alos Prism. ISPRS Ann. Photogramm. Remote Sens. Spat. Lnf. Sci. 2016, 3, 25–31. [Google Scholar]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Munoz-Sabater, J.; Dutra, E.; Agusti-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, M.; Zhang, G.; Wang, Y.; Li, J. Evaluation of ERA5 Reanalysis Precipitation Data in the Yarlung Zangbo River Basin of the Tibetan Plateau. J. Hydrometeorol. 2023, 24, 1491–1507. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z.; Ma, D.; Wang, W. Evaluation of ERA5-Land reanalysis datasets for extreme temperatures in the Qilian Mountains of China. Front. Ecol. Evol. 2023, 11, 1135895. [Google Scholar] [CrossRef]
- Bolch, T.; Buchroithner, M.F.; Peters, J.; Baessler, M.; Bajracharya, S. Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Nat. Hazards Earth Syst. Sci. 2008, 8, 1329–1340. [Google Scholar] [CrossRef]
- Racoviteanu, A.E.; Williams, M.W.; Barry, R.G. Optical remote sensing of glacier characteristics: A review with focus on the Himalaya. Sensors 2008, 8, 3355–3383. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Yao, X.; Zhang, Y.; Zhang, D.; Liu, J.; Duan, H. Glacier changes in the Qaidam Basin from 1977 to 2018. Sci. Cold Arid Reg. 2021, 12, 491–502. [Google Scholar]
- Radic, V.; Hock, R. Regional and global volumes of glaciers derived from statistical upscaling of glacier inventory data. J. Geophys. Res. Earth Surf. 2010, 115, 1–10. [Google Scholar] [CrossRef]
- Cheng, C.; Du, W.; Li, J.; Bao, A.; Ge, W.; Wang, S.; Ma, D.; Pan, Y. Spatiotemporal Variations of Glacier Mass Balance in the Tomur Peak Region Based on Multi-Source Altimetry Remote Sensing Data. Remote Sens. 2023, 15, 4143. [Google Scholar] [CrossRef]
- Wu, S.; Yao, Z.; Jiang, L.; Liu, Z. Method Review of Modern Glacier Volume Change. Adv. Earth Sci. 2015, 30, 237–246. [Google Scholar]
- Li, P.; Li, Z.; Shi, C.; Liu, J. Quality evaluation of 1 arc second version SRTM DEM in China. Bull. Surv. Mapp. 2016, 9, 24–28. [Google Scholar]
- Huss, M. Density assumptions for converting geodetic glacier volume change to mass change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef]
- Li, Z.; Wang, N.; Chen, A.A.; Liang, Q.; Yang, D. Slight change of glaciers in the Pamir over the period 2000–2017. Arct. Antarct. Alp. Res. 2022, 54, 13–24. [Google Scholar] [CrossRef]
- Wang, R.; Ding, Y.; Shangguan, D.; Guo, W.; Zhao, Q.; Li, Y.; Song, M. Influence of Topographic Shading on the Mass Balance of the High Mountain Asia Glaciers. Remote Sens. 2022, 14, 1576. [Google Scholar] [CrossRef]
- Rupper, S.; Roe, G. Glacier changes and regional climate: A mass and energy balance approach. J. Clim. 2008, 21, 5384–5401. [Google Scholar] [CrossRef]
- Garg, P.K.; Shukla, A.; Jasrotia, A.S. On the strongly imbalanced state of glaciers in the Sikkim, eastern Himalaya, India. Sci. Total Environ. 2019, 691, 16–35. [Google Scholar] [CrossRef] [PubMed]
- Zemp, M.; Hoelzle, M.; Haeberli, W. Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Ann. Glaciol. 2009, 50, 101–111. [Google Scholar] [CrossRef]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A systematic, regional assessment of high mountain Asia glacier mass balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef]
- Zhao, F.; Long, D.; Li, X.; Huang, Q.; Han, P. Rapid glacier mass loss in the Southeastern Tibetan Plateau since the year 2000 from satellite observations. Remote Sens. Environ. 2022, 270, 112853. [Google Scholar] [CrossRef]
- Hock, R.; Huss, M. Glaciers and climate change. In Climate Change; Elsevier: Amsterdam, The Netherlands, 2021; pp. 157–176. [Google Scholar]
- He, Z.; Zhou, T.; Chen, J.; Fu, Y.; Peng, Y.; Zhang, L.; Yao, T.; Farooq, T.H.; Wu, X.; Yan, W.; et al. Impacts of Climate Warming and Humidification on Vegetation Activity over the Tibetan Plateau. Forests 2023, 14, 2055. [Google Scholar] [CrossRef]
- Bohner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 2006, 35, 279–295. [Google Scholar] [CrossRef]
- Yang, W.; Guo, X.; Yao, T.; Zhu, M.; Wang, Y. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Clim. Dyn. 2016, 47, 805–815. [Google Scholar] [CrossRef]
- Jouberton, A.; Shaw, T.E.; Miles, E.; McCarthy, M.; Fugger, S.; Ren, S.; Dehecq, A.; Yang, W.; Pellicciotti, F. Warming-induced monsoon precipitation phase change intensifies glacier mass loss in the southeastern Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2022, 119, e2109796119. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, X.; Wei, J.; Jiang, Z.; Zhang, Y.; Liu, S. Spatiotemporal variability of glacier changes and their controlling factors in the Kanchenjunga region, Himalaya based on multi-source remote sensing data from 1975 to 2015. Sci. Total Environ. 2020, 745, 140995. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qin, X.; Li, X.; Zhao, J.; Liu, Y. Estimation of Shortwave Solar Radiation on Clear-Sky Days for a Valley Glacier with Sentinel-2 Time Series. Remote Sens. 2020, 12, 927. [Google Scholar] [CrossRef]
- Hu, M.; Zhou, G.; Lv, X.; Zhou, L.; Wang, X.; He, X.; Tian, Z. Warming Has Accelerated the Melting of Glaciers on the Tibetan Plateau, but the Debris-Covered Glaciers Are Rapidly Expanding. Remote Sens. 2022, 15, 132. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y. Topographic and geometric controls on glacier changes in the central Tien Shan, China, since the Little Ice Age. Ann. Glaciol. 2014, 55, 177–186. [Google Scholar] [CrossRef]
- Sam, L.; Bhardwaj, A.; Kumar, R.; Buchroithner, M.F.; Martín-Torres, F.J. Heterogeneity in topographic control on velocities of Western Himalayan glaciers. Sci. Rep. 2018, 8, 12843. [Google Scholar] [CrossRef]
- Aubry-Wake, C.; Zephir, D.; Baraer, M.; McKenzie, J.M.; Mark, B.G. Importance of longwave emissions from adjacent terrain on patterns of tropical glacier melt and recession. J. Glaciol. 2018, 64, 49–60. [Google Scholar] [CrossRef]
- DeBEER, C.M.; Sharp, M.J. Topographic influences on recent changes of very small glaciers in the Monashee Mountains, British Columbia, Canada. J. Glaciol. 2009, 55, 691–700. [Google Scholar] [CrossRef]
- Su, D.; Wen, L.; Huang, A.; Wu, Y.; Gao, X.; Wang, M.; Zhao, Y.; Kirillin, G. Simulation of the potential impacts of lakes on glacier behavior over the Tibetan Plateau in summer. Clim. Dyn. 2023, 60, 3435–3454. [Google Scholar] [CrossRef]
- King, O.; Bhattacharya, A.; Bhambri, R.; Bolch, T. Glacial lakes exacerbate Himalayan glacier mass loss. Sci. Rep. 2019, 9, 18145. [Google Scholar] [CrossRef]
- Banerjee, A. Brief communication: Thinning of debris-covered and debris-free glaciers in a warming climate. Cryosphere 2017, 11, 133–138. [Google Scholar] [CrossRef]
- Wei, Y.; Tandong, Y.; Baiqing, X.; Hang, Z. Influence of supraglacial debris on summer ablation and mass balance in the 24K Glacier, southeast Tibetan Plateau. Geogr. Ann. Ser. A Phys. Geogr. 2010, 92, 353–360. [Google Scholar] [CrossRef]
- Reznichenko, N.; Davies, T.; Shulmeister, J.; McSaveney, M. Effects of debris on ice-surface melting rates: An experimental study. J. Glaciol. 2010, 56, 384–394. [Google Scholar] [CrossRef]
- Duan, H.; Yao, X.; Zhang, D.; Qi, M.; Liu, J. Glacial Lake changes and identification of potentially dangerous glacial lakes in the Yi’ong Zangbo River Basin. Water 2020, 12, 538. [Google Scholar] [CrossRef]
- Cheng, Z.; Liu, J.; Liu, J. Debris flow induced by glacial lake break in southeast Tibet. WIT Trans. Eng. Sci. 2010, 67, 101–111. [Google Scholar]
- Cheng, Z.-l.; Zhu, P.; Dang, C.; Liu, J. Hazards of debris flow due to glacier-lake outburst in southeastern Tibet. J. Glaciol. Geocryol 2008, 30, 954–959. [Google Scholar]
Landsat Scene Identifier | Date Acquired | Land Cloud Cover (%) |
---|---|---|
LT51350391988212BKT00 | 30 July 1988 | 35.00 |
LT51350391988228BJC01 | 15 August 1988 | 48.00 |
LT51350391989198BJC00 | 17 July1989 | 78.00 |
LT51360391989173BKT00 | 22 June 1989 | 31.00 |
LT51360391988283BJC00 | 9 October 1988 | 1.00 |
LT51360391989173BKT00 | 22 June 1989 | 31.00 |
LE71350392016265EDC00 | 21 September 2016 | 54.00 |
LE71350392016233EDC00 | 20 August 2016 | 35.00 |
LE71350392016217EDC00 | 4 August 2016 | 47.00 |
LE71350392015294EDC00 | 21 October 2015 | 20.00 |
LE71350392015214EDC00 | 2 August 2015 | 25.00 |
LC81350392016209LGN01 | 27 July 2016 | 27.13 |
LC81350392015206LGN01 | 25 July 2015 | 5.59 |
LC81360392016232LGN01 | 19 August 2016 | 11.94 |
LC81360392015293LGN01 | 20 October 2015 | 3.16 |
LC81360392014290LGN01 | 17 October 2014 | 26.79 |
LE71360392016240EDC00 | 27 August 2016 | 39.00 |
LE71360392015205EDC00 | 24 July 2015 | 28.00 |
LE71360392015221EDC00 | 9 August 2015 | 8.00 |
LE71360392014298EDC00 | 25 October 2014 | 5.00 |
LE71350392022197NPA00 | 16 July 2022 | 13.00 |
LC91350392022201LGN01 | 20 July 2022 | 34.02 |
LC91350392022185LGN01 | 4 July 2022 | 29.23 |
LC81350392022209LGN00 | 28 July 2022 | 30.39 |
LC81350392023244LGN00 | 1 September 2023 | 49.10 |
LE71360392023244NPA00 | 1 September 2023 | 22.00 |
LC91360392023259LGN00 | 16 September 2023 | 39.83 |
LC91360392022224LGN01 | 12 August 2022 | 18.04 |
LC81360392023203LGN00 | 22 July 2023 | 38.98 |
LC81360392022200LGN00 | 19 July 2022 | 35.08 |
LC81360392023235LGN00 | 23 August 2023 | 72.80 |
LC91360392023211LGN00 | 30 July 2023 | 60.74 |
1988–2023 | 1988–2015 | 2015–2023 | ||||
---|---|---|---|---|---|---|
Area Shrinkage (km2) | Area Shrinkage Rate (%·a−1) | Area Shrinkage (km2) | Area Shrinkage Rate (%·a−1) | Area Shrinkage (km2) | Area Shrinkage Rate (%·a−1) | |
SUM | 588.35 ± 83.92 | 0.76 ± 0.11 | 468.35 ± 74.84 | 0.78 ± 0.12 | 120.00 ± 46.19 | 0.85 ± 0.33 |
≤0.5 | 159.64 ± 26.69 | 1.53 ± 0.26 | 123.34 ± 11.46 | 1.53 ± 0.14 | 36.30 ± 18.23 | 2.60 ± 0.87 |
0.5–1 | 76.15 ± 15.36 | 0.98 ± 0.20 | 57.29 ± 12.74 | 0.96 ± 0.21 | 18.86 ± 9.47 | 1.43 ± 0.72 |
1–2 | 65.35 ± 13.06 | 0.76 ± 0.15 | 49.69 ± 10.59 | 0.75 ± 0.16 | 15.66 ± 7.27 | 1.00 ± 0.47 |
2–5 | 62.08 ± 9.70 | 0.60 ± 0.09 | 47.54 ± 7.68 | 0.60 ± 0.10 | 14.54 ± 5.73 | 0.74 ± 0.29 |
5–10 | 42.04 ± 5.55 | 0.47 ± 0.06 | 29.65 ± 4.13 | 0.43 ± 0.06 | 12.39 ± 2.91 | 0.69 ± 0.16 |
10–20 | 29.19 ± 1.77 | 0.57 ± 0.03 | 23.70 ± 1.66 | 0.60 ± 0.04 | 5.49 ± 1.03 | 0.56 ± 0.11 |
20–50 | 24.75 ± 1.54 | 0.27 ± 0.02 | 18.15 ± 2.90 | 0.25 ± 0.04 | 6.60 ± 0.64 | 0.33 ± 0.03 |
≥50 | 129.15 ± 1.71 | 0.74 ± 0.01 | 118.99 ± 23.68 | 0.88 ± 0.18 | 10.16 ± 0.91 | 0.35 ± 0.04 |
1970s–2023 | 1970s–1988 | 1988–2015 | 2015–2023 | |||||
---|---|---|---|---|---|---|---|---|
Area Shrinkage (km2) | Shrinkage Rate (%·a−1) | Area Shrinkage (km2) | Shrinkage Rate (%·a−1) | Area Shrinkage (km2) | Shrinkage Rate (%·a−1) | Area Shrinkage (km2) | Shrinkage Rate (%·a−1) | |
SUM | 947.20 ± 136.36 | 0.76 ± 0.11 | 358.85 ± 78.96 | 1.07 ± 0.24 | 468.35 ± 74.84 | 0.78 ± 0.12 | 120 ± 46.19 | 0.85 ± 0.33 |
Aso Longbu | 50.90 ± 7.11 | 0.82 ± 0.09 | 17.04 ± 4.09 | 1.43 ± 0.34 | 27.30 ± 5.45 | 1.36 ± 0.27 | 6.56 ± 3.56 | 1.74 ± 0.95 |
Xiuda Qu | 39.01 ± 8.12 | 0.56 ± 0.12 | 5.06 ± 3.44 | 0.37 ± 0.25 | 26.96 ± 5.75 | 1.00 ± 0.21 | 6.95 ± 2.93 | 1.19 ± 0.50 |
Jiagong Nongbu | 170.49 ± 31.38 | 0.74 ± 0.14 | 58.91 ± 18.48 | 0.95 ± 0.30 | 85.00 ± 18.89 | 0.75 ± 0.17 | 26.58 ± 11.38 | 0.99 ± 0.42 |
Nidu Zangbu | 130.50 ± 28.39 | 0.77 ± 0.16 | 37.35 ± 15.30 | 0.59 ± 0.24 | 66.24 ± 15.95 | 0.55 ± 0.13 | 26.95 ± 11.44 | 0.88 ± 0.37 |
Niwu Zangbu | 556.30 ± 61.36 | 1.16 ± 0.16 | 240.49 ± 37.65 | 1.30 ± 0.20 | 262.85 ± 28.80 | 0.82 ± 0.09 | 52.96 ± 16.88 | 0.72 ± 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Wang, N.; Chang, J.; Zhou, S.; Shi, C.; Zhao, M. Spatiotemporal Changes of Glaciers in the Yigong Zangbo River Basin over the Period of the 1970s to 2023 and Their Driving Factors. Remote Sens. 2024, 16, 3272. https://doi.org/10.3390/rs16173272
Yuan S, Wang N, Chang J, Zhou S, Shi C, Zhao M. Spatiotemporal Changes of Glaciers in the Yigong Zangbo River Basin over the Period of the 1970s to 2023 and Their Driving Factors. Remote Sensing. 2024; 16(17):3272. https://doi.org/10.3390/rs16173272
Chicago/Turabian StyleYuan, Suo, Ninglian Wang, Jiawen Chang, Sugang Zhou, Chenlie Shi, and Mingjie Zhao. 2024. "Spatiotemporal Changes of Glaciers in the Yigong Zangbo River Basin over the Period of the 1970s to 2023 and Their Driving Factors" Remote Sensing 16, no. 17: 3272. https://doi.org/10.3390/rs16173272
APA StyleYuan, S., Wang, N., Chang, J., Zhou, S., Shi, C., & Zhao, M. (2024). Spatiotemporal Changes of Glaciers in the Yigong Zangbo River Basin over the Period of the 1970s to 2023 and Their Driving Factors. Remote Sensing, 16(17), 3272. https://doi.org/10.3390/rs16173272