Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = spacer-filled channel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 6517 KiB  
Article
Review and Analysis of Heat Transfer in Spacer-Filled Channels of Membrane Distillation Systems
by Sebastian Schilling and Heike Glade
Membranes 2023, 13(10), 842; https://doi.org/10.3390/membranes13100842 - 22 Oct 2023
Cited by 3 | Viewed by 2210
Abstract
Membrane distillation (MD) is an attractive process for the concentration of seawater brines. Modelling and simulation of membrane distillation processes requires a better knowledge of the heat transfer coefficients in spacer-filled channels which are usually determined by applying empirical correlations for the Nusselt [...] Read more.
Membrane distillation (MD) is an attractive process for the concentration of seawater brines. Modelling and simulation of membrane distillation processes requires a better knowledge of the heat transfer coefficients in spacer-filled channels which are usually determined by applying empirical correlations for the Nusselt number. In this study, first, a comprehensive literature review on heat transfer correlations was conducted. It was found that the empirical correlations often used for MD simulation result in strongly varying Nusselt numbers that differ by up to an order of magnitude at low Reynolds numbers. Then, heat transfer in spacer-filled channels was investigated experimentally in a membrane distillation system using an aluminum plate instead of a flat-sheet membrane. Numerous tests were carried out with sodium chloride solutions in a wide range of salinities, between 1 g/kg and 95 g/kg, and temperatures, between 30 °C and 80 °C, yielding high heat transfer coefficients in a range of 1500 to 8300 W/(m2K) at relatively low Reynolds numbers, between 100 and 1500, clearly showing the influence of the spacers on heat transfer. A new empirical Nusselt correlation (Nu=0.158Re0.652Pr0.277) was derived which represents the experimental data with a deviation of 10% and is valid for 100<Re<1500 and 2<Pr<7. Computational fluid dynamics simulations were performed to analyze the variations of the fluid properties across the boundary layer due to temperature differences. The simulations showed only minor deviations of the heat transfer coefficients in the hot and cold fluid channels for small driving temperature differences. Full article
Show Figures

Figure 1

16 pages, 4239 KiB  
Article
Incipient Biofouling Detection via Fiber Optical Sensing and Image Analysis in Reverse Osmosis Processes
by Helge Oesinghaus, Daniel Wanken, Kilian Lupp, Martina Gastl, Martin Elsner and Karl Glas
Membranes 2023, 13(6), 553; https://doi.org/10.3390/membranes13060553 - 25 May 2023
Cited by 4 | Viewed by 2323
Abstract
Reverse osmosis (RO) is a widely used membrane technology for producing process water or tap water that is receiving increased attention due to water scarcity caused by climate change. A significant challenge in any membrane filtration is the presence of deposits on the [...] Read more.
Reverse osmosis (RO) is a widely used membrane technology for producing process water or tap water that is receiving increased attention due to water scarcity caused by climate change. A significant challenge in any membrane filtration is the presence of deposits on the membrane surfaces, which negatively affect filtration performance. Biofouling, the formation of biological deposits, poses a significant challenge in RO processes. Early detection and removal of biofouling are essential for effective sanitation and prevention of biological growth in RO-spiral wound modules. This study introduces two methods for the early detection of biofouling, capable of identifying initial stages of biological growth and biofouling in the spacer-filled feed channel. One method utilizes polymer optical fibre sensors that can be easily integrated into standard spiral wound modules. Additionally, image analysis was used to monitor and analyze biofouling in laboratory experiments, providing a complementary approach. To validate the effectiveness of the developed sensing approaches, accelerated biofouling experiments were conducted using a membrane flat module, and the results were compared with common online and offline detection methods. The reported approaches enable the detection of biofouling before known online parameters become indicative, effectively providing an online detection with sensitivities otherwise only achieved through offline characterization methods. Full article
Show Figures

Figure 1

14 pages, 3688 KiB  
Article
The Effect of Gap Reduction on Fluid Dynamics and Mass Transfer in Membrane Narrow Channels Filled with Novel Spacers—A Detailed Computational Study
by Panagiotis Saliakellis, Chrysafenia Koutsou and Anastasios Karabelas
Membranes 2023, 13(1), 20; https://doi.org/10.3390/membranes13010020 - 23 Dec 2022
Cited by 3 | Viewed by 1955
Abstract
The effect of gap thickness reduction 2h (i.e., the reduction h at each membrane surface) is studied on the flow field and mass transfer, in membrane channels filled with novel spacers, under conditions representative of those prevailing in RO desalination modules. The patented [...] Read more.
The effect of gap thickness reduction 2h (i.e., the reduction h at each membrane surface) is studied on the flow field and mass transfer, in membrane channels filled with novel spacers, under conditions representative of those prevailing in RO desalination modules. The patented novel net-type spacers are comprised of regularly-spaced spherical nodes (in contact with the membranes) and interconnecting cylindrical filaments at the midplane of the channel. Advanced 3D flow simulations, performed at “unit cell” level, show the strong effect of a modest gap reduction on the flow field. Analysis of the computational results leads to new insights regarding flow development as well as to useful correlations of key process parameters (i.e., for friction losses, mass-transfer rates, wall shear stresses) accounting for the effect of gap reduction. Contrary to conventional spacers, the novel spacer geometry, under conditions of usual/modest channel-gap reduction, exhibits no stagnant flow zones and relatively high shear stresses on both the membranes and the filaments, which leads to desirable mitigation of fouling and a reduction in concentration polarization. The developed correlations can be adapted to existing advanced simulators of RO module performance for improved process design and optimization. Full article
(This article belongs to the Section Membrane Processing and Engineering)
Show Figures

Figure 1

18 pages, 4538 KiB  
Article
Solar Energy Driven Membrane Desalination: Experimental Heat Transfer Analysis
by Hosam Faqeha, Mohammed Bawahab, Quoc Linh Ve, Oranit Traisak, Ravi Koirala, Aliakbar Akbarzadeh and Abhijit Date
Energies 2022, 15(21), 8051; https://doi.org/10.3390/en15218051 - 29 Oct 2022
Viewed by 1848
Abstract
In the direct contact membrane distillation (DCMD) system, the temperature polarization due to boundary layer formation limits the system performance. This study presents the experimental results and heat transfer analysis of a DCMD module coupled with a salinity gradient solar pond (SGSP) under [...] Read more.
In the direct contact membrane distillation (DCMD) system, the temperature polarization due to boundary layer formation limits the system performance. This study presents the experimental results and heat transfer analysis of a DCMD module coupled with a salinity gradient solar pond (SGSP) under three different flow channel configurations. In the first case, the feed and permeate channels were both empty, while in the next two cases, the feed and permeate channels were filled with a porous spacer material. Two different spacer geometries are examined: 1.5 mm thick with a filament angle of 65°, and 2 mm thick with a filament angle of 90°. The study considers only the heat transfer due to conduction by replacing the hydrophobic membrane normally used in a DCMD module with a thin polypropylene sheet so that no mass transfer can occur between the feed and permeate channels. The Reynolds number for all three configurations was found to be between 1000 and 2000, indicating the flow regime was laminar. The flow rate through both the feed and permeate sides was the same, and experiments were conducted for flow rates of 5 L/min and 3 L/min. It has been found that the highest overall heat transfer coefficient was obtained with the spacer of 2 mm thickness and filament angle of 90°. Full article
(This article belongs to the Special Issue Thermal Performance of Membrane Distillation)
Show Figures

Figure 1

17 pages, 5605 KiB  
Article
Friction and Heat Transfer in Membrane Distillation Channels: An Experimental Study on Conventional and Novel Spacers
by Nunzio Cancilla, Alessandro Tamburini, Antonino Tarantino, Salvatore Visconti and Michele Ciofalo
Membranes 2022, 12(11), 1029; https://doi.org/10.3390/membranes12111029 - 22 Oct 2022
Cited by 8 | Viewed by 1898
Abstract
The results of an experimental investigation on pressure drop and heat transfer in spacer-filled plane channels, which are representative of Membrane Distillation units, are presented and discussed. Local and mean heat transfer coefficients were obtained by using Thermochromic Liquid Crystals and Digital Image [...] Read more.
The results of an experimental investigation on pressure drop and heat transfer in spacer-filled plane channels, which are representative of Membrane Distillation units, are presented and discussed. Local and mean heat transfer coefficients were obtained by using Thermochromic Liquid Crystals and Digital Image Processing. The performances of a novel spacer geometry, consisting of spheres that are connected by cylindrical rods, and are hereafter named spheres spacers, were compared with those of more conventional woven and overlapped spacers at equal values of the Reynolds number Re (in the range ~150 to ~2500), the pitch-to-channel height ratio, the flow attack angle and the thermal boundary conditions (two-side heat transfer). For any flow rate, the novel spacer geometry provided the least friction coefficient and a mean Nusselt number intermediate between those of the overlapped and the woven spacers. For any pressure drop and for any pumping power, the novel spacer provided the highest mean Nusselt number over the whole Reynolds number range that was investigated. The influence of buoyancy was also assessed for the case of the horizontal channels. Under the experimental conditions (channel height H ≈ 1 cm, ΔT ≈ 10 °C), it was found to be large in empty (spacer-less) channels that were up to Re ≈ 1200 (corresponding to a Richardson number Ri of ~0.1), but it was much smaller and limited to the range Re < ~500 (Ri < ~0.5) in the spacer-filled channels. Full article
(This article belongs to the Special Issue Membrane Process Systems and Techniques)
Show Figures

Figure 1

17 pages, 33819 KiB  
Article
High-Throughput Optimal Design of Spacers Using Triply Periodic Minimal Surfaces in BWRO
by Qiang Chen, Jiu Luo and Yi Heng
Separations 2022, 9(3), 62; https://doi.org/10.3390/separations9030062 - 27 Feb 2022
Cited by 6 | Viewed by 3293
Abstract
The development of advanced feed spacers under different working conditions can enhance the performance of the reverse osmosis (RO) desalination process. The 3D-printed experimental results on triply periodic minimal surfaces (TPMS)-based spacers in previous literature indicate that the spacers have higher permeation flux [...] Read more.
The development of advanced feed spacers under different working conditions can enhance the performance of the reverse osmosis (RO) desalination process. The 3D-printed experimental results on triply periodic minimal surfaces (TPMS)-based spacers in previous literature indicate that the spacers have higher permeation flux of water compared to those of the common commercial spacers. In this paper, a hybrid modeling approach is developed and applied to predict and evaluate the performance of TPMS-based spacers. The effect of feed channels’ height and porosity on the performance of spacers in brackish water RO (BWRO) process is studied by using a high-throughput approach. The predicted pressure drop by new simulations using the TPMS-based spacers (≈0.09–0.27 bar) from inlet to outlet in a typical two-stage BWRO system is reduced by more than 89% than that of using the commercial spacer (≈2.57 bar). Using the designed advanced spacers, the average permeation flux of water increases more than 8.6% compared to that of the commercial one. With the increase in feed channel height and porosity, the performance of spacers is gradually improved. TPMS-based spacers have significant industrial application prospects. Full article
(This article belongs to the Special Issue Modeling, Simulation, and Optimization of Membrane Processes)
Show Figures

Figure 1

14 pages, 2235 KiB  
Article
Highly Efficient Piezoelectrets through Ultra-Soft Elastomeric Spacers
by Heinz von Seggern, Sergey Zhukov, Omar Ben Dali, Claas Hartmann, Gerhard M. Sessler and Mario Kupnik
Polymers 2021, 13(21), 3751; https://doi.org/10.3390/polym13213751 - 29 Oct 2021
Cited by 23 | Viewed by 4034
Abstract
Piezoelectrets are artificial ferroelectrics that are produced from non-polar air-filled porous polymers by symmetry breaking through high-voltage-induced Paschen breakdown in air. A new strategy for three-layer polymer sandwiches is introduced by separating the electrical from the mechanical response. A 3D-printed grid of periodically [...] Read more.
Piezoelectrets are artificial ferroelectrics that are produced from non-polar air-filled porous polymers by symmetry breaking through high-voltage-induced Paschen breakdown in air. A new strategy for three-layer polymer sandwiches is introduced by separating the electrical from the mechanical response. A 3D-printed grid of periodically spaced thermoplastic polyurethane (TPU) spacers and air channels was sandwiched between two thin fluoroethylene propylene (FEP) films. After corona charging, the air-filled sections acted as electroactive elements, while the ultra-soft TPU sections determined the mechanical stiffness. Due to the ultra-soft TPU sections, very high quasi-static (22,000 pC N−1) and dynamic (7500 pC N−1) d33 coefficients were achieved. The isothermal stability of the d33 coefficients showed a strong dependence on poling temperature. Furthermore, the thermally stimulated discharge currents revealed well-known instability of positive charge carriers in FEP, thereby offering the possibility of stabilization by high-temperature poling. The dependences of the dynamic d33 coefficient on seismic mass and acceleration showed high coefficients, even at accelerations approaching that of gravity. An advanced analytical model rationalizes the magnitude of the obtained quasi-static d33 coefficients of the suggested structure indicating a potential for further optimization. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

19 pages, 3113 KiB  
Article
Correlations for Concentration Polarization and Pressure Drop in Spacer-Filled RO Membrane Modules Based on CFD Simulations
by Boram Gu, Claire S. Adjiman and Xiao Yun Xu
Membranes 2021, 11(5), 338; https://doi.org/10.3390/membranes11050338 - 1 May 2021
Cited by 26 | Viewed by 5724
Abstract
Empirical correlations for mass transfer coefficient and friction factor are often used in process models for reverse osmosis (RO) membrane systems. These usually involve four dimensionless groups, namely Reynolds number (Re), Sherwood number (Sh), friction factor (f), and Schmidt number (Sc), [...] Read more.
Empirical correlations for mass transfer coefficient and friction factor are often used in process models for reverse osmosis (RO) membrane systems. These usually involve four dimensionless groups, namely Reynolds number (Re), Sherwood number (Sh), friction factor (f), and Schmidt number (Sc), with the associated coefficients and exponents being obtained by fitting to experimental data. However, the range of geometric and operating conditions covered by the experiments is often limited. In this study, new dimensionless correlations for concentration polarization (CP) modulus and friction factor are presented, which are obtained by dimensional analysis and using simulation data from computational fluid dynamics (CFD). Two-dimensional CFD simulations are performed on three configurations of spacer-filled channels with 76 combinations of operating and geometric conditions for each configuration, covering a broad range of conditions encountered in RO membrane systems. Results obtained with the new correlations are compared with those from existing correlations in the literature. There is good consistency in the predicted CP with mean discrepancies less than 6%, but larger discrepancies for pressure gradient are found among the various friction factor correlations. Furthermore, the new correlations are implemented in a process model with six spiral wound modules in series and the predicted recovery, pressure drop, and specific energy consumption are compared with a reference case obtained by ROSA (Reverse Osmosis System Analysis, The Dow Chemical Company). Differences in predicted recovery and pressure drop are up to 5% and 83%, respectively, highlighting the need for careful selection of correlations when using predictive models in process design. Compared to existing mass transfer correlations, a distinct advantage of our correlations for CP modulus is that they can be directly used to estimate the impact of permeate flux on CP at a membrane surface without having to resort to the film theory. Full article
(This article belongs to the Special Issue Numerical Modelling in Membrane Processes)
Show Figures

Figure 1

30 pages, 2765 KiB  
Review
A Review of CFD Modelling and Performance Metrics for Osmotic Membrane Processes
by Kang Yang Toh, Yong Yeow Liang, Woei Jye Lau and Gustavo A. Fimbres Weihs
Membranes 2020, 10(10), 285; https://doi.org/10.3390/membranes10100285 - 15 Oct 2020
Cited by 43 | Viewed by 8256
Abstract
Simulation via Computational Fluid Dynamics (CFD) offers a convenient way for visualising hydrodynamics and mass transport in spacer-filled membrane channels, facilitating further developments in spiral wound membrane (SWM) modules for desalination processes. This paper provides a review on the use of CFD modelling [...] Read more.
Simulation via Computational Fluid Dynamics (CFD) offers a convenient way for visualising hydrodynamics and mass transport in spacer-filled membrane channels, facilitating further developments in spiral wound membrane (SWM) modules for desalination processes. This paper provides a review on the use of CFD modelling for the development of novel spacers used in the SWM modules for three types of osmotic membrane processes: reverse osmosis (RO), forward osmosis (FO) and pressure retarded osmosis (PRO). Currently, the modelling of mass transfer and fouling for complex spacer geometries is still limited. Compared with RO, CFD modelling for PRO is very rare owing to the relative infancy of this osmotically driven membrane process. Despite the rising popularity of multi-scale modelling of osmotic membrane processes, CFD can only be used for predicting process performance in the absence of fouling. This paper also reviews the most common metrics used for evaluating membrane module performance at the small and large scales. Full article
(This article belongs to the Section Membrane Physics and Theory)
Show Figures

Figure 1

21 pages, 15555 KiB  
Article
Computational Fluid Dynamics Modeling of the Resistivity and Power Density in Reverse Electrodialysis: A Parametric Study
by Zohreh Jalili, Odne Stokke Burheim and Kristian Etienne Einarsrud
Membranes 2020, 10(9), 209; https://doi.org/10.3390/membranes10090209 - 29 Aug 2020
Cited by 5 | Viewed by 3288
Abstract
Electrodialysis (ED) and reverse electrodialysis (RED) are enabling technologies which can facilitate renewable energy generation, dynamic energy storage, and hydrogen production from low-grade waste heat. This paper presents a computational fluid dynamics (CFD) study for maximizing the net produced power density of RED [...] Read more.
Electrodialysis (ED) and reverse electrodialysis (RED) are enabling technologies which can facilitate renewable energy generation, dynamic energy storage, and hydrogen production from low-grade waste heat. This paper presents a computational fluid dynamics (CFD) study for maximizing the net produced power density of RED by coupling the Navier–Stokes and Nernst–Planck equations, using the OpenFOAM software. The relative influences of several parameters, such as flow velocities, membrane topology (i.e., flat or spacer-filled channels with different surface corrugation geometries), and temperature, on the resistivity, electrical potential, and power density are addressed by applying a factorial design and a parametric study. The results demonstrate that temperature is the most influential parameter on the net produced power density, resulting in a 43% increase in the net peak power density compared to the base case, for cylindrical corrugated channels. Full article
(This article belongs to the Special Issue Electromembrane Processes: Experiments and Modelling)
Show Figures

Figure 1

13 pages, 5845 KiB  
Article
CFD Investigation of Spacer-Filled Channels for Membrane Distillation
by Mariagiorgia La Cerva, Andrea Cipollina, Michele Ciofalo, Mohammed Albeirutty, Nedim Turkmen, Salah Bouguecha and Giorgio Micale
Membranes 2019, 9(8), 91; https://doi.org/10.3390/membranes9080091 - 25 Jul 2019
Cited by 12 | Viewed by 4254
Abstract
The membrane distillation (MD) process for water desalination is affected by temperature polarization, which reduces the driving force and the efficiency of the process. To counteract this phenomenon, spacer-filled channels are used, which enhance mixing and heat transfer but also cause higher pressure [...] Read more.
The membrane distillation (MD) process for water desalination is affected by temperature polarization, which reduces the driving force and the efficiency of the process. To counteract this phenomenon, spacer-filled channels are used, which enhance mixing and heat transfer but also cause higher pressure drops. Therefore, in the design of MD modules, the choice of the spacer is crucial for process efficiency. In the present work, different overlapped spacers are investigated by computational fluid dynamics (CFD) and results are compared with experiments carried out with thermochromic liquid crystals (TLC). Results are reported for different flow attack angles and for Reynolds numbers (Re) ranging from ~200 to ~800. A good qualitative agreement between simulations and experiments can be observed for the areal distribution of the normalized heat transfer coefficient. Trends of the average heat transfer coefficient are reported as functions of Re for the geometries investigated, thus providing the basis for CFD-based correlations to be used in higher-scale process models. Full article
(This article belongs to the Special Issue Membrane Distillation Process)
Show Figures

Figure 1

17 pages, 18779 KiB  
Article
Impact of Modified Spacer on Flow Pattern in Narrow Spacer-Filled Channels for Spiral-Wound Membrane Modules
by Zhiming Han, Mitsuharu Terashima, Bing Liu and Hidenari Yasui
Environments 2018, 5(11), 116; https://doi.org/10.3390/environments5110116 - 28 Oct 2018
Cited by 6 | Viewed by 5503
Abstract
A modified spacer, which was constructed with arched filaments and zigzag filaments, was designed to improve vortex shedding and generate a directional change in flow patterns of membrane modules, especially in the vicinity of the feed spacer filament, which is most affected by [...] Read more.
A modified spacer, which was constructed with arched filaments and zigzag filaments, was designed to improve vortex shedding and generate a directional change in flow patterns of membrane modules, especially in the vicinity of the feed spacer filament, which is most affected by fouling. A unit cell was investigated by using a three-dimensional computational fluid dynamics (CFD) model for hydrodynamic simulation. The results of CFD simulations were carried out for the fluid flow in order to understand the effect of the modified spacer on vortices to the performance of arched filaments at different distances. From 2D velocity vectors and shear stress contour mixing, the flow pattern and dead zone flushing were depicted. The ratio of low shear stress area to the total area increased with the inlet velocity closed to 20%. The energy consumption with respect to flow direction for the arched filament was 80% lower than that in the zigzag filament. Compared with previous commercial spacers’ simulation, the friction factor was lower when the main flow was normal to the arched filament and the modified friction factor was close to the commercial spacers. The homogenization was realized through the flow pattern created by the modified spacer. Full article
(This article belongs to the Special Issue Environmental Applications of Membrane Technology)
Show Figures

Figure 1

24 pages, 5625 KiB  
Article
Temperature and Velocity Effects on Mass and Momentum Transport in Spacer-Filled Channels for Reverse Electrodialysis: A Numerical Study
by Zohreh Jalili, Jon G. Pharoah, Odne Stokke Burheim and Kristian Etienne Einarsrud
Energies 2018, 11(8), 2028; https://doi.org/10.3390/en11082028 - 4 Aug 2018
Cited by 19 | Viewed by 4232
Abstract
Concentration polarization is one of the main challenges of membrane-based processes such as power generation by reverse electrodialysis. Spacers in the compartments can enhance mass transfer by reducing concentration polarization. Active spacers increase the available membrane surface area, thus avoiding the shadow effect [...] Read more.
Concentration polarization is one of the main challenges of membrane-based processes such as power generation by reverse electrodialysis. Spacers in the compartments can enhance mass transfer by reducing concentration polarization. Active spacers increase the available membrane surface area, thus avoiding the shadow effect introduced by inactive spacers. Optimizing the spacer-filled channels is crucial for improving mass transfer while maintaining reasonable pressure losses. The main objective of this work was to develop a numerical model based upon the Navier–Stokes and Nernst–Planck equations in OpenFOAM, for detailed investigation of mass transfer efficiency and pressure drop. The model is utilized in different spacer-filled geometries for varying Reynolds numbers, spacer conductivity and fluid temperature. Triangular corrugations are found to be the optimum geometry, particularly at low flow velocities. Cylindrical corrugations are better at high flow velocities due to lower pressure drop. Enhanced mass transfer and lower pressure drop by elevating temperature is demonstrated. Full article
Show Figures

Figure 1

20 pages, 8416 KiB  
Article
Fluid Dynamics and Mass Transfer in Spacer-Filled Membrane Channels: Effect of Uniform Channel-Gap Reduction Due to Fouling
by Chrysafenia P. Koutsou, Anastasios J. Karabelas and Margaritis Kostoglou
Fluids 2018, 3(1), 12; https://doi.org/10.3390/fluids3010012 - 2 Feb 2018
Cited by 17 | Viewed by 4607
Abstract
The time-varying flow field in spacer-filled channels of spiral-wound membrane (SWM) modules is mainly due to the development of fouling layers on the membranes that modify the channel geometry. The present study is part of an approach to tackling this extremely difficult dynamic [...] Read more.
The time-varying flow field in spacer-filled channels of spiral-wound membrane (SWM) modules is mainly due to the development of fouling layers on the membranes that modify the channel geometry. The present study is part of an approach to tackling this extremely difficult dynamic problem at a small spatial scale, by uncoupling the fluid dynamics and mass transfer from the fouling-layer growth process. Therefore, fluid dynamics and mass transfer are studied for a spacer-filled channel whose geometry is altered by a uniform deposit thickness h. For this purpose, 3D direct numerical simulations are performed employing the “unit cell” approach with periodic boundary conditions. Specific thickness values are considered in the range 2.5–10% of the spacer-filament diameter D as well as other conditions of practical significance. The qualitative characteristics of the altered flow field are found to be very similar to those of the reference geometry with no gap reduction. For a given flow rate, the pressure drop, time-average wall-shear stresses and mass-transfer coefficients significantly increase with increasing thickness h due to reduced channel-gap, as expected. Correlations are obtained, applicable at the “unit cell” scale, of the friction factor f and Sherwood number Sh, which exhibit similar functional dependence of f and Sh on the Reynolds and Schmidt numbers as in the reference no-fouling case. In these correlations the effect of channel-gap reduction is incorporated, permitting predictions in the studied range of fouling-layer thickness (h/D) = 0–0.10. The usefulness of the new results and correlations is discussed in the context of ongoing research toward improved modeling and dynamic simulation of SWM-module operation. Full article
(This article belongs to the Special Issue Flow and Heat or Mass Transfer in the Chemical Process Industry)
Show Figures

Figure 1

17 pages, 9140 KiB  
Article
Computational Fluid Dynamics Simulation Study of a Novel Membrane Contactor for Simultaneous Carbon Dioxide Absorption and Stripping
by Hsuan Chang, Hau-Yu Gan, Yih-Hang Chen and Chii-Dong Ho
Energies 2017, 10(8), 1136; https://doi.org/10.3390/en10081136 - 2 Aug 2017
Cited by 5 | Viewed by 4409
Abstract
Physical absorption is a potential technology for economic carbon capture due to its low energy consumption, however, the absorption efficiency of current systems must be improved. In this study, novel hybrid absorption/stripping membrane contactors (HASMCs) for physical solvent carbon capture are proposed. The [...] Read more.
Physical absorption is a potential technology for economic carbon capture due to its low energy consumption, however, the absorption efficiency of current systems must be improved. In this study, novel hybrid absorption/stripping membrane contactors (HASMCs) for physical solvent carbon capture are proposed. The simultaneous absorption and stripping within one module provides instant regeneration of the solvent and results in the enhancement of absorption. HASMCs with parallel-flow and cross-flow configurations and using empty or spacer-filled channels are investigated by rigorous computational fluid dynamics simulation. The internal profiles of transmembrane mass fluxes reveal that cross-flow HASMCs are much more effective than the parallel-flow ones and the modules using spacer-filled channels give better performance than the ones using empty channels. The mass transfer coefficients of HASMCs are much higher than predicted by correlations in the literature. Full article
Show Figures

Figure 1

Back to TopTop