Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = space compliance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2159 KB  
Article
Benchmarking Lightweight YOLO Object Detectors for Real-Time Hygiene Compliance Monitoring
by Leen Alashrafi, Raghad Badawood, Hana Almagrabi, Mayda Alrige, Fatemah Alharbi and Omaima Almatrafi
Sensors 2025, 25(19), 6140; https://doi.org/10.3390/s25196140 - 4 Oct 2025
Viewed by 426
Abstract
Ensuring hygiene compliance in regulated environments—such as food processing facilities, hospitals, and public indoor spaces—requires reliable detection of personal protective equipment (PPE) usage, including gloves, face masks, and hairnets. Manual inspection is labor-intensive and unsuitable for continuous, real-time enforcement. This study benchmarks three [...] Read more.
Ensuring hygiene compliance in regulated environments—such as food processing facilities, hospitals, and public indoor spaces—requires reliable detection of personal protective equipment (PPE) usage, including gloves, face masks, and hairnets. Manual inspection is labor-intensive and unsuitable for continuous, real-time enforcement. This study benchmarks three lightweight object detection models—YOLOv8n, YOLOv10n, and YOLOv12n—for automated PPE compliance monitoring using a large curated dataset of over 31,000 annotated images. The dataset spans seven classes representing both compliant and non-compliant conditions: glove, no_glove, mask, no_mask, incorrect_mask, hairnet, and no_hairnet. All evaluations were conducted using both detection accuracy metrics (mAP@50, mAP@50–95, precision, recall) and deployment-relevant efficiency metrics (inference speed, model size, GFLOPs). Among the three models, YOLOv10n achieved the highest mAP@50 (85.7%) while maintaining competitive efficiency, indicating strong suitability for resource-constrained IoT-integrated deployments. YOLOv8n provided the highest localization accuracy at stricter thresholds (mAP@50–95), while YOLOv12n favored ultra-lightweight operation at the cost of reduced accuracy. The results provide practical guidance for selecting nano-scale detection models in real-time hygiene compliance systems and contribute a reproducible, deployment-aware evaluation framework for computer vision in hygiene-critical settings. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

23 pages, 317 KB  
Article
Lessons in Lockdown: Rethinking LGBTQ+ Inclusion in Post-Pandemic English Secondary Schools—Teachers’ Perspectives
by EJ-Francis Caris-Hamer
Soc. Sci. 2025, 14(10), 583; https://doi.org/10.3390/socsci14100583 - 30 Sep 2025
Viewed by 340
Abstract
The year 2025 marks the fifth anniversary of the COVID-19 pandemic, a crisis that profoundly disrupted secondary schools in England and intensified existing inequalities, including those experienced by LGBTQ+ students. Through an analysis of teacher interviews and the lens of intimate citizenship, [...] Read more.
The year 2025 marks the fifth anniversary of the COVID-19 pandemic, a crisis that profoundly disrupted secondary schools in England and intensified existing inequalities, including those experienced by LGBTQ+ students. Through an analysis of teacher interviews and the lens of intimate citizenship, this article explores how pandemic-driven changes, such as remote learning, school closures, and ‘social bubbles’, exposed the precariousness of LGBTQ+ inclusion and embodiment within educational institutions. The research highlights how cisheteronormativity was sustained through symbolic institutional compliance and cisheteronormative fragility, as LGBTQ+ inclusion was deprioritised through the erasure of safe spaces and restrictions on self-expression. While previous research has primarily focused on students’ well-being, this article centres the perspectives of teachers to consider what can be learned from their experiences to better support students in future crises. The pandemic revealed critical gaps in inclusion efforts, underscoring the urgent need for proactive strategies that extend beyond individual teacher initiatives or informal, hidden curriculum practices. The findings emphasise that LGBTQ+ visibility and inclusion must be structurally embedded within curricula, school policies, and teacher training and that the emotional and relational labour of inclusion must be institutionally recognised rather than left to individual educators. Full article
(This article belongs to the Special Issue The Embodiment of LGBTQ+ Inclusive Education)
16 pages, 4249 KB  
Article
Defining Robust NVH Requirements for an Electrified Powertrain Mounting System Based on Solution Space During Early Phase of Development
by José G. Cóndor López, Karsten Finger and Sven Herold
Appl. Sci. 2025, 15(18), 10241; https://doi.org/10.3390/app151810241 - 20 Sep 2025
Viewed by 327
Abstract
Electrification introduces additional NVH (noise, vibration and harshness) challenges during the development of powertrain mounting systems due to high-frequency excitations from the powertrain and the absence of masking effects from the combustion engine. In these frequency ranges, engine mounts can stiffen up to [...] Read more.
Electrification introduces additional NVH (noise, vibration and harshness) challenges during the development of powertrain mounting systems due to high-frequency excitations from the powertrain and the absence of masking effects from the combustion engine. In these frequency ranges, engine mounts can stiffen up to a factor of five due to continuum resonances, reducing their structure-borne sound isolation properties and negatively impacting the customer’s NVH perception. Common hardening factors used during elastomer mount development are therefore limited in terms of their applicable validation frequency range. This study presents a methodology for determining decoupled permissible stiffness ranges for a double-isolated mounting system up to 1500 Hz, based on solution space engineering. Instead of optimizing for a single best design, we seek to maximize solution boxes, resulting in robust stiffness ranges that ensure the fulfillment of the formulated system requirements. These ranges serve as NVH requirements at the component level, derived from the sound pressure level at the seat location. They provide tailored guidelines for mount development, such as geometric design or optimal resonance placement, while simultaneously offering maximum flexibility by spanning the solution space. The integration of machine learning approaches enables the application of large-scale finite-element models within the framework of solution space analysis by reducing the computational time by a factor of 7.19·103. From a design process standpoint, this facilitates frontloading by accelerating the evaluation phase as suppliers can directly benchmark their mounting concepts against the permissible ranges and immediately verify compliance with the defined targets. Full article
(This article belongs to the Special Issue Advances in Dynamic Systems by Smart Structures)
Show Figures

Figure 1

17 pages, 15165 KB  
Article
Analysis and Evaluation of a Joint Path Planning Algorithm for the Quasi-Spherical Parallel Manipulator, a Master Device for Telesurgery
by Daniel Pacheco Quiñones, Daniela Maffiodo and Med Amine Laribi
Machines 2025, 13(9), 858; https://doi.org/10.3390/machines13090858 - 16 Sep 2025
Viewed by 313
Abstract
This work presents the experimental validation of a reset control mode for a Quasi-Spherical Parallel Manipulator (qSPM), designed as a master device for bilaterally teleoperated telesurgical systems. The reset functionality enables autonomous repositioning of the master device to its central configuration via a [...] Read more.
This work presents the experimental validation of a reset control mode for a Quasi-Spherical Parallel Manipulator (qSPM), designed as a master device for bilaterally teleoperated telesurgical systems. The reset functionality enables autonomous repositioning of the master device to its central configuration via a joint-space path planning algorithm, executed entirely within the local control loop. Given the non-convex nature of the joint space, the algorithm computes feasible trajectories using a simplified optimization scheme that ensures compliance with mechanical and kinematic constraints. The algorithm was implemented within an ROS Noetic framework and tested across multiple scenarios, including both simulated and physical configurations. The experimental results confirm the device’s ability to reset to the central position in approximately 5 s, maintaining an average residual error below 0.25°. Computational evaluations demonstrate that each path is generated in less than 10 milliseconds, supporting real-time execution. Additional trials show successful motion toward arbitrary points within the joint space, suggesting the potential for future integration of user-driven repositioning features. These findings highlight the responsiveness, reliability, and experimental feasibility of the proposed control mode, marking a key step toward improving usability in telesurgical environments. Full article
Show Figures

Figure 1

16 pages, 7120 KB  
Article
Ultra-Long, Minor-Diameter, Untethered Growing Continuum Robot via Tip Actuation and Steering
by Pan Zhou, Zhaoyi Lin, Lang Zhou, Haili Li, Michael Basin and Jiantao Yao
Machines 2025, 13(9), 851; https://doi.org/10.3390/machines13090851 - 15 Sep 2025
Viewed by 547
Abstract
Continuum robots with outstanding compliance, dexterity, and lean bodies are successfully applied in medicine, aerospace engineering, the nuclear industry, rescue operations, construction, service, and manipulation. However, the inherent low stiffness characteristics of continuum bodies make it challenging to develop ultra-long and small-diameter continuum [...] Read more.
Continuum robots with outstanding compliance, dexterity, and lean bodies are successfully applied in medicine, aerospace engineering, the nuclear industry, rescue operations, construction, service, and manipulation. However, the inherent low stiffness characteristics of continuum bodies make it challenging to develop ultra-long and small-diameter continuum robots. To address this size–scale challenge of continuum robots, we developed an 8 m long continuum robot with a diameter of 23 mm by a tip actuation and growth mechanism. Meanwhile, we also realized the untethered design of the continuum robot, which greatly increased its usable space range, portability, and mobility. Demonstration experiments prove that the developed growing continuum robot has good flexibility and manipulability, as well as the ability to cross obstacles and search for targets. Its continuum body can transport liquids over long distances, providing water, medicine, and other rescue items for trapped individuals. The functionality of an untethered growing continuum robot (UGCR) can be expanded by installing multiple tools, such as a grasping tool at its tip to pick up objects in deep wells, pits, and other scenarios. In addition, we established a static model to predict the deformation of UGCR, and the prediction error of its tip position was within 2.6% of its length. We verified the motion performance of the continuum robot through a series of tests involving workspace, disturbance resistance, collision with obstacles, and load performance, thus proving its good anti-interference ability and collision stability. The main contribution of this work is to provide a technical reference for the development of ultra-long continuum robots based on the tip actuation and steering principle. Full article
(This article belongs to the Special Issue Advances and Challenges in Robotic Manipulation)
Show Figures

Figure 1

38 pages, 8196 KB  
Review
Morph and Function: Exploring Origami-Inspired Structures in Versatile Robotics Systems
by Tran Vy Khanh Vo, Tan Kai Noel Quah, Li Ting Chua and King Ho Holden Li
Micromachines 2025, 16(9), 1047; https://doi.org/10.3390/mi16091047 - 13 Sep 2025
Viewed by 881
Abstract
The art of folding paper, named “origami”, has transformed from serving religious and cultural purposes to various educational and entertainment purposes in the modern world. Significantly, the fundamental folds and creases in origami, which enable the creation of 3D structures from a simple [...] Read more.
The art of folding paper, named “origami”, has transformed from serving religious and cultural purposes to various educational and entertainment purposes in the modern world. Significantly, the fundamental folds and creases in origami, which enable the creation of 3D structures from a simple flat sheet with unique crease patterns, serve as a great inspiration in engineering applications such as deployable mechanisms for space exploration, self-folding structures for exoskeletons and surgical procedures, micro-grippers, energy absorption, and programmable robotic morphologies. Therefore, this paper will provide a systematic review of the state-of-the-art origami-inspired structures that have been adopted and exploited in robotics design and operation, called origami-inspired robots (OIRs). The advantages of the flexibility and adaptability of these folding mechanisms enable robots to achieve agile mobility and shape-shifting capabilities that are suited to diverse tasks. Furthermore, the inherent compliance structure, meaning that stiffness can be tuned from rigid to soft with different folding states, allows these robots to perform versatile functions, ranging from soft interactions to robust manipulation and a high-DOF system. In addition, the potential to simplify the fabrication and assembly processes, together with its integration into a wide range of actuation systems, further broadens its capabilities. However, these mechanisms increase the complexity in theoretical analysis and modelling, as well as posing a challenge in control algorithms when the robot’s DOF and reconfigurations are significantly increased. By leveraging the principles of folding and integrating actuation and design strategies, these robots can adapt their shapes, stiffness, and functionality to meet the demands of diverse tasks and environments, offering significant advantages over traditional rigid robots. Full article
Show Figures

Figure 1

24 pages, 4372 KB  
Article
Performance Analysis of Multi-OEM TV White Space Radios in Outdoor Environments
by Mla Vilakazi, Koketso Makaleng, Lwando Ngcama, Mofolo Mofolo and Luzango Mfupe
Appl. Sci. 2025, 15(18), 9977; https://doi.org/10.3390/app15189977 - 12 Sep 2025
Viewed by 583
Abstract
The television white space (TVWS) spectrum presents a promising opportunity to extend wireless broadband access, particularly in rural, underserved, and hard-to-reach communities. To leverage this potential, low-power radio communication equipment must efficiently utilise the TVWS spectrum on a secondary basis while ensuring strict [...] Read more.
The television white space (TVWS) spectrum presents a promising opportunity to extend wireless broadband access, particularly in rural, underserved, and hard-to-reach communities. To leverage this potential, low-power radio communication equipment must efficiently utilise the TVWS spectrum on a secondary basis while ensuring strict compliance with regulatory requirements to prevent harmful interference to primary services. This paper presents a comparative performance analysis of TVWS radio equipment from three original equipment manufacturers (OEMs). The equipment under test was identified to reflect each OEM, as follows: OEM 1 and OEM 2 from South Korea and OEM 3 from the USA. We evaluated their performance in two real-world field scenarios, namely outdoor short-distance and outdoor long-distance. The evaluation was based on the following key metrics: (i) spectrum utilisation efficiency (SUE), (ii) received signal strength (RSS), (iii) downlink throughput, and (iv) connectivity to the Geo-Location Spectrum Database (GLSD) in compliance with the South African TVWS regulatory framework. The overall preliminary experimental results indicate that in both scenarios, white space devices (WSDs) based on the Institute of Electrical and Electronics Engineers (IEEE) 802.11af Standard demonstrated better performance than those based on the 3rd Generation Partnership Project Long-Term Evolution-Advanced (3GPP LTE-A) Standard in terms of the SUE, downlink throughput, and RSS metrics. All WSDs under test demonstrated sufficient compliance with the regulatory requirement metric. Full article
(This article belongs to the Special Issue Applications of Wireless and Mobile Communications)
Show Figures

Figure 1

28 pages, 23116 KB  
Article
Evaluation of Pedestrian Movement and Sustainable Public Realm in Planned Residential Areas, Mersin, Türkiye
by Züleyha Sara Belge, Burak Belge, Hayriye Oya Saf and Elvan Elif Özdemir
Sustainability 2025, 17(18), 8205; https://doi.org/10.3390/su17188205 - 11 Sep 2025
Viewed by 706
Abstract
The study investigates the disconnect between formal urban planning standards and experiential walkability outcomes in Viranşehir, a planned neighborhood in Mersin, Türkiye. Although the area complies with national regulations on the provision of public services, it exhibits systemic limitations, including car-oriented street layouts, [...] Read more.
The study investigates the disconnect between formal urban planning standards and experiential walkability outcomes in Viranşehir, a planned neighborhood in Mersin, Türkiye. Although the area complies with national regulations on the provision of public services, it exhibits systemic limitations, including car-oriented street layouts, fragmented pedestrian networks, and underutilized public spaces. Employing a mixed-methods case study, the research integrates archival sources (aerial imagery, zoning plans, satellite data) with field observations to assess pedestrian environments. A light coding of sidewalk continuity, crossings, and edge conditions indicates that many streets are bounded by extensive inactive walls, protected crossings are absent along critical routes such as the school–park axis, and sidewalks are frequently narrow, obstructed, or discontinuous. These built-form features undermine safety, comfort, and social interaction despite formal regulatory compliance. The findings demonstrate how grid-pattern street systems prioritize vehicular mobility, while gated developments restrict permeability and diminish everyday encounters. In response, the study proposes a hierarchy of interventions: immediate measures such as school streets, protected crossings, and traffic calming, followed by medium- to long-term strategies including shaded seating, sidewalk widening, and participatory design guidelines. By linking statutory standards with lived experience, the paper conceptualizes walkability not only as a technical planning requirement but also as a socio-cultural right, offering transferable insights for the creation of more inclusive urban environments. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

29 pages, 4547 KB  
Article
Process Modeling and Micromolding Optimization of HA- and TiO2-Reinforced PLA/PCL Composites for Cannulated Bone Screws via AI Techniques
by Min-Wen Wang, Jui-Chia Liu and Ming-Lu Sung
Materials 2025, 18(17), 4192; https://doi.org/10.3390/ma18174192 - 6 Sep 2025
Viewed by 688
Abstract
A bioresorbable cannulated bone screw was developed using PLA/PCL-based composites reinforced with hydroxyapatite (HA) and titanium dioxide (TiO2), two additives previously reported to enhance mechanical compliance, biocompatibility, and molding feasibility in biodegradable polymer systems. The design incorporated a crest-trimmed thread and [...] Read more.
A bioresorbable cannulated bone screw was developed using PLA/PCL-based composites reinforced with hydroxyapatite (HA) and titanium dioxide (TiO2), two additives previously reported to enhance mechanical compliance, biocompatibility, and molding feasibility in biodegradable polymer systems. The design incorporated a crest-trimmed thread and a strategically positioned gate in the thin-wall zone opposite the hexagonal socket to preserve torque-transmitting geometry during micromolding. To investigate shrinkage behavior, a Taguchi orthogonal array was employed to systematically vary micromolding parameters, generating a structured dataset for training a back-propagation neural network (BPNN). Analysis of variance (ANOVA) identified melt temperature as the most influential factor affecting shrinkage quality, defined by a combination of shrinkage rate and dimensional variation. A hybrid AI framework integrating the BPNN with genetic algorithms and particle swarm optimization (GA–PSO) was applied to predict the optimal shrinkage conditions. This is the first use of BPNN–GA–PSO for cannulated bone screw molding, with the shrinkage rate as a targeted output. The AI-predicted solution, interpolated within the Taguchi design space, achieved improved shrinkage quality over all nine experimental groups. Beyond the specific PLA/PCL-based systems studied, the modeling framework—which combines geometry-specific gate design and normalized shrinkage prediction—offers broader applicability to other bioresorbable polymers and hollow implant geometries requiring high-dimensional fidelity. This study integrates composite formulation, geometric design, and data-driven modeling to advance the precision micromolding of biodegradable orthopedic devices. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Nanocomposites)
Show Figures

Figure 1

24 pages, 477 KB  
Systematic Review
Ontologies for the Reconfiguration of Domestic Living Environments: A Systematic Literature Review
by Daniele Spoladore
Information 2025, 16(9), 752; https://doi.org/10.3390/info16090752 - 29 Aug 2025
Viewed by 492
Abstract
The aging population in Europe and other developed regions is accelerating the demand for adaptable domestic environments that support independent living and care at home. In this context, ontologies offer a promising approach to represent and manage knowledge about built environments, smart technologies, [...] Read more.
The aging population in Europe and other developed regions is accelerating the demand for adaptable domestic environments that support independent living and care at home. In this context, ontologies offer a promising approach to represent and manage knowledge about built environments, smart technologies, and user needs—especially within Ambient Assisted Living (AAL) systems. This paper presents a systematic literature review examining the role of ontologies in the reconfiguration of domestic living spaces, with a focus on their application in design processes and decision support systems. Following the PRISMA methodology, 14 relevant works published between 2000 and 2025 were identified and analyzed. The review explores key aspects such as ontology conceptualization, reuse, engineering methodologies, integration with CAD systems, and validation practices. The results show that research on this topic is fragmented yet growing, with the first contribution dated 2005 and peaks in 2016, 2018, and 2024. Most works (11) were conference papers, with Europe leading the contributions, particularly Italy. Half of the reviewed ontologies were developed “from scratch”, while the rest relied on conceptualizations such as BIM. Ontology reuse was inconsistent: only 50% of works reused existing models (e.g., SAREF, SOSA, BOT, ifcOWL), and few adopted Ontology Design Patterns. While 11 works followed ontology engineering methodologies—mostly custom or established methods such as Methontology or NeOn—stakeholder collaboration was reported in less than 36% of cases. Validation practices were weak: only six studies presented use cases or demonstrators. Integration with CAD systems remains at a prototypical stage, primarily through semantic enrichment and SWRL-based reasoning layers. Remaining gaps include poor ontology accessibility (few provide URLs or W3IDs), limited FAIR compliance, and scarce modeling of end-user needs, despite their relevance for AAL solutions. The review highlights opportunities for collaborative, human-centered ontology development aligned with architectural and medical standards to enable scalable, interoperable, and user-driven reconfiguration of domestic environments. Full article
(This article belongs to the Special Issue Knowledge Representation and Ontology-Based Data Management)
Show Figures

Graphical abstract

32 pages, 15679 KB  
Article
New Optical Voltage Sensor Based on Closed-Loop Pockels Cell and Sliding Mode Observer: Theory and Experiments
by Luis Miguel Quispe-Valencia, Ricardo Tokio Higuti, Marcelo Carvalho M. Teixeira and Claudio Kitano
Sensors 2025, 25(17), 5319; https://doi.org/10.3390/s25175319 - 27 Aug 2025
Viewed by 965
Abstract
The increasing power demand in substations and the advancement of smart-grid technology point to optical voltage sensors (OVSs) based on the Pockels effect as an attractive solution to replace traditional coil instrument transformers, due to their advantageous characteristics of lower cost and installation [...] Read more.
The increasing power demand in substations and the advancement of smart-grid technology point to optical voltage sensors (OVSs) based on the Pockels effect as an attractive solution to replace traditional coil instrument transformers, due to their advantageous characteristics of lower cost and installation space, absence of explosion risks, as well as nonlinear effects such as magnetic hysteresis. Regarding the measurement, our OVS presents excellent linearity, 3 kHz bandwidth, and high input impedance. The primary contribution of this paper is to demonstrate, for the first time, the efficiency of a versatile nonlinear digital controller, based on sliding mode theory, for the optical phase demodulation of an OVS. A simple proportional-integral feedback control is employed to prevent signal fading and generate the two quadrature signals required by the observer, which includes the nonlinear digital controller. Experimental results, for 60 Hz sinusoidal voltages with amplitudes exceeding the half-wave voltage of the OVS, prove that peak-to-peak relative errors remain below 0.8%, while total harmonic distortion (THD) relative errors are under 1.5% when compared to a commercial high-voltage probe used as a reference. These results confirm compliance with Class 1.0 of the UNE-EN 60044-7 standard and show strong potential for applications in power quality measurements. Full article
(This article belongs to the Special Issue Advanced Sensing and Measurement Control Applications)
Show Figures

Figure 1

34 pages, 768 KB  
Review
Synergistic Pest Management Strategies for Turfgrass: Sustainable Control of Insect Pests and Fungal Pathogens
by Luka Batistič and Stanislav Trdan
Agronomy 2025, 15(9), 2036; https://doi.org/10.3390/agronomy15092036 - 25 Aug 2025
Viewed by 995
Abstract
Turfgrass systems in European urban green spaces, including sports fields, golf courses, and residential lawns, must balance high performance with compliance with stricter pesticide regulations. This review examines Synergistic Pest Management (SPM), an advanced form of Integrated Pest Management (IPM) that integrates monitoring, [...] Read more.
Turfgrass systems in European urban green spaces, including sports fields, golf courses, and residential lawns, must balance high performance with compliance with stricter pesticide regulations. This review examines Synergistic Pest Management (SPM), an advanced form of Integrated Pest Management (IPM) that integrates monitoring, biological, cultural, and targeted chemical strategies for sustainable control of major turfgrass pests. Focus is placed on key insect pests such as Tipula spp. larvae and chafer beetle grubs (Scarabaeidae) and fungal pathogens, including Microdochium nivale, Clarireedia spp., Laetisaria fuciformis, Gaeumannomyces graminis var. avenae, and Colletotrichum spp., which cause significant losses in Central Europe and similar regions. Effective combinations include entomopathogenic nematodes with fungi, endophyte-infected cultivars with optimized mowing and irrigation, and low-dose insecticides paired with biological agents. The review considers how soil conditions, environmental timing, and maintenance practices influence success. Practical tools such as decision-support matrices and a seasonal calendar are provided for regional use. SPM can reduce chemical inputs, enhance biodiversity, and improve turf resilience, but adoption is limited by biological sensitivity, product availability, costs, and technical demands. SPM aligns with EU Directive 2009/128 and offers a pathway to sustainable turfgrass pest management. Future efforts should focus on regional validation, practitioner training, and precision technologies. Full article
Show Figures

Figure 1

37 pages, 12099 KB  
Article
An Integrated Multi-Objective Optimization Framework for Environmental Performance: Sunlight, View, and Privacy in a High-Density Residential Complex in Seoul
by Ho-Jeong Kim, Min-Jeong Kim and Young-Bin Jin
Sustainability 2025, 17(16), 7490; https://doi.org/10.3390/su17167490 - 19 Aug 2025
Viewed by 769
Abstract
This study presents a multi-objective optimization framework for enhancing environmental performance in high-density residential complexes, addressing the critical balance between sunlight access, visual openness, and ground-level privacy. Applied to Helio City Phase 3 in Seoul—a challenging case with 2026 units surrounded by adjacent [...] Read more.
This study presents a multi-objective optimization framework for enhancing environmental performance in high-density residential complexes, addressing the critical balance between sunlight access, visual openness, and ground-level privacy. Applied to Helio City Phase 3 in Seoul—a challenging case with 2026 units surrounded by adjacent blocks—the research developed a sequential three-stage optimization strategy using computational design tools. The methodology employs Ladybug simulations for solar analysis, Galapagos genetic algorithms for view optimization, and parametric modeling for privacy assessment. Through grid-based layout reconfiguration, tower form modulation, and strategic conversion of vulnerable ground-floor units to public spaces, the optimized design achieved 100% sunlight standard compliance (improving from 64.31%), increased average visual openness to 66.31% (from 39.48%), and eliminated all privacy conflicts while adding 30 residential units. These results demonstrate that computational optimization can significantly surpass conventional planning approaches in addressing complex environmental trade-offs. The framework provides a replicable methodology for performance-driven residential design, offering quantitative tools for achieving regulatory compliance while enhancing residents’ experiential comfort in dense urban environments. Full article
Show Figures

Figure 1

27 pages, 4022 KB  
Article
Performance Analysis of Multivariable Control Structures Applied to a Neutral Point Clamped Converter in PV Systems
by Renato Santana Ribeiro Junior, Eubis Pereira Machado, Damásio Fernandes Júnior, Tárcio André dos Santos Barros and Flavio Bezerra Costa
Energies 2025, 18(16), 4394; https://doi.org/10.3390/en18164394 - 18 Aug 2025
Viewed by 348
Abstract
This paper addresses the challenges encountered by grid-connected photovoltaic (PV) systems, including the stochastic behavior of the system, harmonic distortion, and variations in grid impedance. To this end, an in-depth technical and pedagogical analysis of three linear multivariable current control strategies is performed: [...] Read more.
This paper addresses the challenges encountered by grid-connected photovoltaic (PV) systems, including the stochastic behavior of the system, harmonic distortion, and variations in grid impedance. To this end, an in-depth technical and pedagogical analysis of three linear multivariable current control strategies is performed: proportional-integral (PI), proportional-resonant (PR), and deadbeat (DB). The study contributes to theoretical formulations, detailed system modeling, and controller tuning procedures, promoting a comprehensive understanding of their structures and performance. The strategies are investigated and compared in both the rotating (dq) and stationary (αβ) reference frames, offering a broad perspective on system behavior under various operating conditions. Additionally, an in-depth analysis of the PR controller is presented, highlighting its potential to regulate both positive- and negative-sequence components. This enables the development of more effective and robust tuning methodologies for steady-state and dynamic scenarios. The evaluation is conducted under three main conditions: steady-state operation, transient response to input power variations, and robustness analysis in the presence of grid parameter changes. The study examines the impact of each controller on the total harmonic distortion (THD) of the injected current, as well as on system stability margins and dynamic performance. Practical aspects that are often overlooked are also addressed, such as the modeling of the inverter and photovoltaic generator, the implementation of space vector pulse-width modulation (SVPWM), and the influence of the output LC filter capacitor. The control structures under analysis are validated through numerical simulations performed in MatLab® software (R2021b) using dedicated computational routines, enabling the identification of strategies that enhance performance and ensure compliance of grid-connected photovoltaic systems. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 6946 KB  
Article
Beyond Accessibility: Rethinking Universal and Inclusive Design in Bangkok’s Public Parks
by Pattamon Selanon, Supanut Dejnirattisai and Amika Naknawaphan
Buildings 2025, 15(16), 2839; https://doi.org/10.3390/buildings15162839 - 11 Aug 2025
Cited by 1 | Viewed by 2032
Abstract
This study aims to critically assesses the application and limitations of Universal Design (UD) and Inclusive Design (ID) in Bangkok’s public parks and proposes a context-sensitive framework to enhance urban inclusivity. While UD has contributed significantly to improving physical accessibility—through standardized features such [...] Read more.
This study aims to critically assesses the application and limitations of Universal Design (UD) and Inclusive Design (ID) in Bangkok’s public parks and proposes a context-sensitive framework to enhance urban inclusivity. While UD has contributed significantly to improving physical accessibility—through standardized features such as ramps, tactile paving, and clear circulation paths—it often fails to address emotional comfort, cultural representation, and participatory engagement. In contrast, ID emphasizes co-creation, contextual adaptability, and symbolic inclusion, offering a more holistic and equity-driven approach. Using a five-dimensional comparative framework—philosophy, function, spatial logic, user engagement, and evaluation—this research analyzes three major public parks: Benjakitti Forest Park, Chatuchak (Railway) Park, and Chulalongkorn Centenary Park. Each site was evaluated through narrative critique, dimension scoring, and radar diagram visualizations. The findings reveal that while all three parks exhibit strong UD characteristics, they lack alignment with ID principles, particularly in the areas of community engagement and emotional resonance. These typologies highlight a broader trend in Thai public space planning, wherein accessibility is interpreted narrowly as compliance rather than inclusion. The study concludes by proposing policy and design recommendations for embedding ID into future park development, positioning ID not only as a design approach but as a paradigm for spatial justice, belonging, and cultural sustainability. Full article
Show Figures

Figure 1

Back to TopTop