Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = southern annular mode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 15168 KiB  
Article
Variability in Summer Rainfall and Rain Days over the Southern Kalahari: Influences of ENSO and the Botswana High
by Bohlale Kekana, Ross Blamey and Chris Reason
Atmosphere 2025, 16(6), 747; https://doi.org/10.3390/atmos16060747 - 18 Jun 2025
Viewed by 497
Abstract
Rainfall variability in the sensitive Kalahari semi-desert in Southern Africa, a region of strong climatic gradients, has not been much studied and is poorly understood. Here, anomalies in rainfall totals and moderate and heavy rain day frequencies are examined for both the summer [...] Read more.
Rainfall variability in the sensitive Kalahari semi-desert in Southern Africa, a region of strong climatic gradients, has not been much studied and is poorly understood. Here, anomalies in rainfall totals and moderate and heavy rain day frequencies are examined for both the summer half of the year and three bi-monthly seasons using CHIRPS rainfall data and ERA5 reanalysis. Peak rainfall occurs in January–February, with anomalously wet summers marked by a significant increase in the number of rainy days rather than rainfall intensity. Wet summers are linked to La Niña events, cyclonic anomalies over Angola, and a weakened Botswana High, which enhances low-level moisture transport and convergence over the region as well as mid-level uplift. Roughly the reverse patterns are found during anomalously dry summers. On sub-seasonal scales, ENSO and the Botswana High (the Southern Annular Mode) are negatively (positively) significantly correlated with early summer rainfall, while in mid-summer, and for the entire November–April season, only ENSO and the Botswana High are correlated with rainfall amounts. In the late summer, weak negative correlations remain with the Botswana High, but they do not achieve 95% significance. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

17 pages, 5098 KiB  
Article
Dynamic Impact of the Southern Annular Mode on the Antarctic Ozone Hole Area
by Jae N. Lee and Dong L. Wu
Remote Sens. 2025, 17(5), 835; https://doi.org/10.3390/rs17050835 - 27 Feb 2025
Viewed by 761
Abstract
This study investigates the impact of dynamic variability of the Southern Hemisphere (SH) polar middle atmosphere on the ozone hole area. We analyze the influence of the southern annular mode (SAM) and planetary waves (PWs) on ozone depletion from 19 years (2005–2023) of [...] Read more.
This study investigates the impact of dynamic variability of the Southern Hemisphere (SH) polar middle atmosphere on the ozone hole area. We analyze the influence of the southern annular mode (SAM) and planetary waves (PWs) on ozone depletion from 19 years (2005–2023) of aura microwave limb sounder (MLS) geopotential height (GPH) measurements. We employ empirical orthogonal function (EOF) analysis to decompose the GPH variability into distinct spatial patterns. EOF analysis reveals a strong relationship between the first EOF (representing the SAM) and the Antarctic ozone hole area (γ = 0.91). A significant negative lag correlation between the August principal component of the second EOF (PC2) and the September SAM index (γ = −0.76) suggests that lower stratospheric wave activity in August can precondition the polar vortex strength in September. The minor sudden stratospheric warming (SSW) event in 2019 is an example of how strong wave activity can disrupt the polar vortex, leading to significant temperature anomalies and reduced ozone depletion. The coupling of PWs is evident in the lag correlation analysis between different altitudes. A “bottom-up” propagation of PWs from the lower stratosphere to the mesosphere and a potential “top-down” influence from the mesosphere to the lower stratosphere are observed with time lags of 21–30 days. These findings highlight the complex dynamics of PW propagation and their potential impact on the SAM and ozone layer. Further analysis of these correlations could improve one-month lead predictions of the SAM and the ozone hole area. Full article
Show Figures

Figure 1

20 pages, 8703 KiB  
Article
Atmospheric Variability and Sea-Ice Changes in the Southern Hemisphere
by Carlos Diego Gurjão, Luciano Ponzi Pezzi, Claudia Klose Parise, Flávio Barbosa Justino, Camila Bertoletti Carpenedo, Vanúcia Schumacher and Alcimoni Comin
Atmosphere 2025, 16(3), 284; https://doi.org/10.3390/atmos16030284 - 27 Feb 2025
Viewed by 955
Abstract
The Antarctic sea ice concentration (SIC) plays a crucial role in global climate dynamics by influencing atmospheric and oceanic circulation. This study examines SIC variability and its relationship with major climate modes, including the El Niño-Southern Oscillation (ENSO), Pacific-South American (PSA) pattern, Southern [...] Read more.
The Antarctic sea ice concentration (SIC) plays a crucial role in global climate dynamics by influencing atmospheric and oceanic circulation. This study examines SIC variability and its relationship with major climate modes, including the El Niño-Southern Oscillation (ENSO), Pacific-South American (PSA) pattern, Southern Annular Mode (SAM), and Antarctic Dipole (ADP). Using NSIDC satellite-derived sea ice data and ERA5 reanalysis from 1980 to 2022, we analyzed SIC anomalies in the Weddell, Ross, and Bellingshausen and Amundsen (B&A) Seas, assessing their response to climatic forcings across different timescales. Our findings reveal strong linkages between SIC variability and large-scale atmospheric circulation. ENSO-related teleconnections drive a dipolar SIC response, with warming in the Pacific sector and cooling in the Atlantic during El Niño, and the opposite pattern during La Niña. PSA and ADP further modulate this response by altering Rossby wave propagation and heat fluxes, leading to significant SIC fluctuations. The ADP emerges as a dominant driver of interannual SIC anomalies, showing an out-of-phase relationship between the Atlantic and Pacific sectors of the Southern Ocean. Regional SIC trends exhibit contrasting patterns: the Ross Sea shows a significant positive SIC trend, while the B&A and Weddell Seas experience persistent negative anomalies due to enhanced meridional heat transport and stronger westerly winds. SAM strongly influences SIC, particularly in the Atlantic sector, with delayed responses of up to six months, likely due to ice-albedo feedbacks and ocean memory effects. These results enhance our understanding of Antarctic sea ice variability and its sensitivity to large-scale climate oscillations. Given the observed trends and ongoing climate change, further research is needed to assess how these processes will evolve under future warming scenarios. This study highlights the importance of continuous satellite observations and high-resolution climate modeling for improving projections of Antarctic sea ice behavior and its implications for the global climate system. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

19 pages, 5045 KiB  
Article
Climate Driver Influences on Prediction of the Australian Fire Behaviour Index
by Rachel Taylor, Andrew G. Marshall, Steven Crimp, Geoffrey J. Cary and Sarah Harris
Atmosphere 2024, 15(2), 203; https://doi.org/10.3390/atmos15020203 - 5 Feb 2024
Cited by 3 | Viewed by 1806
Abstract
Fire danger poses a pressing threat to ecosystems and societies worldwide. Adequate preparation and forewarning can help reduce these threats, but these rely on accurate prediction of extreme fire danger. With the knowledge that climatic conditions contribute heavily to overall fire danger, this [...] Read more.
Fire danger poses a pressing threat to ecosystems and societies worldwide. Adequate preparation and forewarning can help reduce these threats, but these rely on accurate prediction of extreme fire danger. With the knowledge that climatic conditions contribute heavily to overall fire danger, this study evaluates the skill with which episodes of extreme fire danger in Australia can be predicted from the activity of large-scale climate driver patterns. An extremal dependence index for extreme events is used to depict the historical predictive skill of the Australian Bureau of Meteorology’s subseasonal climate prediction system in replicating known relationships between the probability of top-decile fire danger and climate driver states at a lead time of 2–3 weeks. Results demonstrate that the El Niño Southern Oscillation, Southern Annular Mode, persistent modes of atmospheric blocking, Indian Ocean Dipole and Madden-Julian Oscillation are all key for contributing to predictability of fire danger forecasts in different regions during critical fire danger periods. Northwest Australia is found to be particularly predictable, with the highest mean index differences (>0.50) when certain climate drivers are active, compared with the climatological index mean. This integrated approach offers a valuable resource for decision-making in fire-prone regions, providing greater confidence to users relying on fire danger outlooks for key management decisions, such as those involved in the sectors of national park and forest estate management, agriculture, emergency services, health and energy. Furthermore, the results highlight strengths and weaknesses in both the Australian Fire Danger Rating System and the operational climate model, contributing additional information for improving and refining future iterations of these systems. Full article
(This article belongs to the Special Issue Weather and Climate Extremes: Observations, Modeling, and Impacts)
Show Figures

Figure 1

13 pages, 8895 KiB  
Article
Mechanism of the Record-Breaking Heatwave Event Dynamics in South America in January 2022
by Bo Zhang and Zhiang Xie
Atmosphere 2023, 14(9), 1326; https://doi.org/10.3390/atmos14091326 - 23 Aug 2023
Cited by 6 | Viewed by 2071
Abstract
Heatwaves in the Southern Hemisphere (SH) occur frequently but have received little attention over the years. This study presents a comprehensive analysis of a long-duration, wide-ranging, and high-intensity heatwave event in South America spanning from 9 to 16 January 2022. Before the heatwave [...] Read more.
Heatwaves in the Southern Hemisphere (SH) occur frequently but have received little attention over the years. This study presents a comprehensive analysis of a long-duration, wide-ranging, and high-intensity heatwave event in South America spanning from 9 to 16 January 2022. Before the heatwave occurred, the meridional sea surface temperature (SST) in the SH intensified due to the warming of the South Pacific, while the Southern Annular Mode (SAM) exhibited a positive phase. As a result, the intensified wave activities in the westerlies led to high-pressure anomalies in South America, which played a dominant role in the generation of the heatwave. The diagnostic analysis of thermodynamic equations in South America indicates that the temperature increase during the heatwave was primarily caused by the vertical advection term. In contrast, horizontal advection had a negative impact on surface warming. Additionally, the diabatic heating term associated with surface land types serves as a significant factor that cannot be disregarded. This study aims to deepen our understanding of the mechanisms underlying heatwave generation in South America, enabling the improved prediction of heatwaves and enhanced assessment of potential risks in the future. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

19 pages, 17464 KiB  
Article
The Antarctic Amplification Based on MODIS Land Surface Temperature and ERA5
by Aihong Xie, Jiangping Zhu, Xiang Qin and Shimeng Wang
Remote Sens. 2023, 15(14), 3540; https://doi.org/10.3390/rs15143540 - 14 Jul 2023
Cited by 6 | Viewed by 2461
Abstract
With global warming accelerating, polar amplification is one of the hot issues in climate research. However, most studies focus on Arctic amplification, and little attention has been paid to Antarctic amplification (AnA), and there is no relevant research based on MODIS (Moderate Resolution [...] Read more.
With global warming accelerating, polar amplification is one of the hot issues in climate research. However, most studies focus on Arctic amplification, and little attention has been paid to Antarctic amplification (AnA), and there is no relevant research based on MODIS (Moderate Resolution Imaging Spectroradiometer) land surface temperature observations. Compared with 128 stations’ observations, MODIS can capture the variations in temperature over Antarctica. In addition, the temperature changes in Antarctica, East Antarctica, West Antarctica and the Antarctic Peninsula during the period 2001–2018 reflected by the MODIS and ERA5 are basically consistent, and the temperature changes in Antarctica are negatively correlated with the Southern Annular Mode. AnA occurs under all annual and seasonal scales, with an AnA index greater than 1.27 (1.31) from the MODIS (ERA5), and is strongest in the austral winter and weakest in summer. AnA displays regional differences, and the signal from the MODIS is similar to that from ERA5. The strongest amplification occurs in East Antarctica, with an AnA index greater than 1.45 (1.48) from the MODIS (ERA5), followed by West Antarctica, whereas the amplified signal is absent at the Antarctic Peninsula. In addition, seasonal differences can be observed in the sub regions of Antarctica. For West Antarctica, the greatest amplification appears in austral winter, and in austral spring for East Antarctica. The AnA signal also can be captured in daytime and nighttime observations, and the AnA in nighttime observations is stronger than that in daytime. Generally, the MODIS illustrates the appearance of AnA for the period 2001–2018, and the Antarctic climate undergoes drastic changes, and the potential impact should arouse attention. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

12 pages, 6027 KiB  
Article
Teleconnection between the Surface Wind of Western Patagonia and the SAM, ENSO, and PDO Modes of Variability
by Carolina Gómez-Fontealba, Valentina Flores-Aqueveque and Stephane Christophe Alfaro
Atmosphere 2023, 14(4), 608; https://doi.org/10.3390/atmos14040608 - 23 Mar 2023
Cited by 3 | Viewed by 2277
Abstract
The Southern Westerly Wind (SWW) belt is one of the most important atmospheric features of the Southern Hemisphere (SH). In Patagonia, these winds control the precipitation rates at the windward side of the southern Andes, and rainfall is very sensitive to any change [...] Read more.
The Southern Westerly Wind (SWW) belt is one of the most important atmospheric features of the Southern Hemisphere (SH). In Patagonia, these winds control the precipitation rates at the windward side of the southern Andes, and rainfall is very sensitive to any change (strength and/or latitudinal position) in the wind belt. The present-day behavior of the SWW, also known as westerlies, is characterized by remarkable seasonality. This wind belt also varies at interannual-to-decadal time scales, associated with the influence of atmospheric phenomena such as the El Niño–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO), respectively. Moreover, during the past few decades, the westerlies have shown an increase in their core strength influenced by changes in the Southern Annular Mode (SAM). However, what controls the long-term variability of the SWW at the high latitudes of the SH is still a matter of debate. This work statistically analyzes the influence of large-scale modes of variability, such as ENSO and PDO on the SAM and the frequency of the strong SWW from ERA5 reanalysis data of southwestern Patagonia (~51°S), where the current core of this belt is located. Our results confirm the relation between strong wind anomalies and the SAM. In addition, the temporal variations of strong winds are also significantly affected by the PDO, but there is no detectable influence of the ENSO on their frequency. This shows that future studies focused on reconstructing wind history from aeolian particles of lake sediments from southwestern Patagonia could also provide information about the modes of variability that influence strong wind frequency. Full article
(This article belongs to the Special Issue Paleoclimate Reconstruction)
Show Figures

Figure 1

18 pages, 14282 KiB  
Article
Effects of Wave-Mean Flow Interaction on the Multi-Time-Scale Variability of the AO Indices: A Case Study of Winters 2007/08 and 2009/10
by Sujie Liang, Yanju Liu and Yihui Ding
Atmosphere 2023, 14(3), 524; https://doi.org/10.3390/atmos14030524 - 9 Mar 2023
Cited by 2 | Viewed by 2476
Abstract
Wave-mean flow interaction is usually regarded as accounting for the origin of the Arctic Oscillation/Northern Hemisphere Annular Mode (AO/NAM). It is inferred that the combination of the local wave-mean flow interactions at the AO/NAM’s three regional centers of action on three important time [...] Read more.
Wave-mean flow interaction is usually regarded as accounting for the origin of the Arctic Oscillation/Northern Hemisphere Annular Mode (AO/NAM). It is inferred that the combination of the local wave-mean flow interactions at the AO/NAM’s three regional centers of action on three important time scales contributes to the main behavior of the AO/NAM index. To discuss the variations of the AO/NAM indices on the three prominent time scales, we take the 2007/08 and 2009/10 winters as two comparative examples to analyze the local wave-mean flow interactions at the AO/NAM’s three centers. The following three facets are identified: (1) Synoptic-scale wave breakings in the North Atlantic can explain the variances of the AO/NAM index on a time scale of 10–20 days. In the 2007/08 winter, there were both cyclonic and anticyclonic synoptic wave breakings, while in the 2009/10 winter, cyclonic synoptic wave breaking was dominant, and the flow characteristics were strikingly similar to the blocking. (2) In the 2007/08 and 2009/10 winters, the signals of the AO/NAM indices on the time scale of 30–60 days are mainly from the interactions between the upward propagating quasi-stationary waves and the polar vortex in the stratosphere. (3) This work also demonstrates that the AO/NAM is linked to the El Niño–Southern Oscillation (ENSO) by the Pacific–North American pattern (PNA) on the winter mean time scale. In the 2007/08 (2009/10) winter, La Niña (El Niño) forced the Pacific jet to shift poleward (equatorward), in favor of weakening (enhancing) the polar waveguide; thus, the polar vortex became stronger (weaker), corresponding to the positive (negative) winter mean AO/NAM index. Full article
Show Figures

Figure 1

18 pages, 6966 KiB  
Article
Characteristic Features of the Antarctic Surface Air Temperature with Different Reanalyses and In Situ Observations and Their Uncertainties
by Meijiao Xin, Xichen Li, Jiang Zhu, Chentao Song, Yi Zhou, Wenzhu Wang and Yurong Hou
Atmosphere 2023, 14(3), 464; https://doi.org/10.3390/atmos14030464 - 26 Feb 2023
Cited by 7 | Viewed by 2146
Abstract
Antarctic surface air temperature (SAT) variability is characterized by strong seasonality and regionality, which are associated with the tropical–polar teleconnections and the radiative forcing caused by the concentration changes in ozone and other greenhouse gases. Nevertheless, the sparse in situ observations and the [...] Read more.
Antarctic surface air temperature (SAT) variability is characterized by strong seasonality and regionality, which are associated with the tropical–polar teleconnections and the radiative forcing caused by the concentration changes in ozone and other greenhouse gases. Nevertheless, the sparse in situ observations and the strong disagreement between different reanalysis datasets hinder coherent conclusions about Antarctic SAT variability. In this study, we use a newly developed statistical method, combined maximum covariance analysis (CMCA), to retrieve coherent SAT modes from six reanalysis datasets and 26 station observations. The results show that the Antarctic SAT variability may be dominated by a continental-wide warming/cooling mode, an East–West Antarctic seesaw mode, and a dipole SAT mode around West Antarctica. These SAT modes are strongly associated with three principal modes of Antarctic atmospheric circulation. Furthermore, all six reanalyses can represent these SAT modes well, compared with the observations, despite a clear deviation over the Antarctic Peninsula associated with the biases in the Foehn wind, which may not be clearly reproduced in a low-resolution reanalysis. This study provides an effective means by which to extract coherent signals from all reanalyses and observations to represent the Antarctic SAT variability, and to improve its predictability and projection. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

13 pages, 15884 KiB  
Article
Assessment of Antarctic Amplification Based on a Reconstruction of Near-Surface Air Temperature
by Jiangping Zhu, Aihong Xie, Xiang Qin, Bing Xu and Yicheng Wang
Atmosphere 2023, 14(2), 218; https://doi.org/10.3390/atmos14020218 - 20 Jan 2023
Cited by 4 | Viewed by 2866
Abstract
Polar amplification has been a research focus in climate research in recent decades. However, little attention has been paid to Antarctic amplification (AnA). We have examined the variations in annual and seasonal temperature over the Antarctic Ice Sheet and its amplification based on [...] Read more.
Polar amplification has been a research focus in climate research in recent decades. However, little attention has been paid to Antarctic amplification (AnA). We have examined the variations in annual and seasonal temperature over the Antarctic Ice Sheet and its amplification based on reconstruction covering the period 2002–2018. The results show the occurrence of annual and seasonal AnA, with an AnA index greater than 1.39 with seasonal differences, and that AnA is strong in the austral winter and spring. Moreover, AnA displays regional differences, with the greatest amplification occurring in East Antarctica, with an AnA index greater than 1.51, followed by West Antarctica. AnA is always absent in the Antarctic Peninsula. In addition, amplification in East Antarctica is most conspicuous in spring, which corresponds to the obvious warming in this season; and the spring amplification signal is weakest for West Antarctica. When considering the influence of the ocean, the AnA becomes obvious, compared to when only the land is considered. Southern Annular Mode (SAM), surface pressure and westerlies work together to affect the temperature change over Antarctica and AnA; and SAM and surface pressure are highly correlated with the temperature change over East Antarctica. The picture reflects the accelerated changes in Antarctic temperature. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

15 pages, 6880 KiB  
Article
Machine Learning Assessment of the Impact of Global Warming on the Climate Drivers of Water Supply to Australia’s Northern Murray-Darling Basin
by Milton Speer, Joshua Hartigan and Lance Leslie
Water 2022, 14(19), 3073; https://doi.org/10.3390/w14193073 - 29 Sep 2022
Cited by 10 | Viewed by 3526
Abstract
Droughts and long dry spells, interspersed with intense rainfall events, have been characteristic of the northern Murray-Darling Basin (NMDB), a major Australian agricultural region. The NMDB precipitation results from weather systems ranging from thunderstorms to larger scale events. The larger scale events exhibit [...] Read more.
Droughts and long dry spells, interspersed with intense rainfall events, have been characteristic of the northern Murray-Darling Basin (NMDB), a major Australian agricultural region. The NMDB precipitation results from weather systems ranging from thunderstorms to larger scale events. The larger scale events exhibit high seasonal and annual rainfall variability. To detect attributes shaping the NMDB precipitation patterns, and hence net water inflows to the vast Darling River catchment area, numerous (45) possible attributes were assessed for their influence on rainfall trends. Four periods were assessed: annual, April–May (early cool-season), June–September (remaining cool-season), and October–March (warm-season). Linear and non-linear regression machine learning (ML) methods were used to identify the dominant attributes. We show the impact of climate drivers on the increasingly dry April–May months on annual precipitation and warmer temperatures since the early 1990s. The NMDB water supply was further reduced during 1992–2018 by the lack of compensating rainfall trends for the April–May decline. The identified attributes include ENSO, the Southern Annular Mode, the Indian Ocean Dipole, and both local and global sea surface temperatures. A key finding is the prominence of global warming as an attribute, both individually and in combination with other climate drivers. Full article
(This article belongs to the Special Issue The Impact of Climate Change and Land Use on Water Resources)
Show Figures

Figure 1

14 pages, 4903 KiB  
Article
Triskeles and Symmetries of Mean Global Sea-Level Pressure
by Fernando Lopes, Vincent Courtillot and Jean-Louis Le Mouël
Atmosphere 2022, 13(9), 1354; https://doi.org/10.3390/atmos13091354 - 25 Aug 2022
Cited by 9 | Viewed by 19282
Abstract
The evolution of mean sea-level atmospheric pressure since 1850 is analyzed using iterative singular spectrum analysis. Maps of the main components (the trends) reveal striking symmetries of order 3 and 4. The Northern Hemisphere (NH) displays a set of three positive features, forming [...] Read more.
The evolution of mean sea-level atmospheric pressure since 1850 is analyzed using iterative singular spectrum analysis. Maps of the main components (the trends) reveal striking symmetries of order 3 and 4. The Northern Hemisphere (NH) displays a set of three positive features, forming an almost perfect equilateral triangle. The Southern Hemisphere (SH) displays a set of three positive features arranged as an isosceles triangle, with a possible fourth (weaker) feature. This geometry can be modeled as the Taylor–Couette flow of mode 3 (NH) or 4 (SH). The remarkable regularity and three-order symmetry of the NH triskeles occurs despite the lack of cylindrical symmetry of the northern continents. The stronger intensity and larger size of features in the SH is linked to the presence of the annular Antarctic Oscillation (AAO), which monitors the periodic reinforcement and weakening of the circumpolar vortex; it is a stationary mode. These components represent 70% of the variance in total pressure since 1850 and are stable in both time and space. In the remaining 30% of the variance, we have extracted quasi-periodical components with periods larger than 1 year (2% of the variance) and a harmonic sequence of the 1-year period (20% of the variance). Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

19 pages, 4493 KiB  
Article
Drivers of Last Millennium Antarctic Climate Evolution in an Ensemble of Community Earth System Model Simulations
by Olivia J. Truax, Bette L. Otto-Bliesner, Esther C. Brady, Craig L. Stevens, Gary S. Wilson and Christina R. Riesselman
Geosciences 2022, 12(8), 299; https://doi.org/10.3390/geosciences12080299 - 31 Jul 2022
Cited by 3 | Viewed by 3234
Abstract
Improved understanding of the drivers of climate variability, particularly over the last millennium, and its influence on Antarctic ice melt have important implications for projecting ice sheet resilience in a changing climate. Here, we investigated the variability in Antarctic climate and sea ice [...] Read more.
Improved understanding of the drivers of climate variability, particularly over the last millennium, and its influence on Antarctic ice melt have important implications for projecting ice sheet resilience in a changing climate. Here, we investigated the variability in Antarctic climate and sea ice extent during the last millennium (850–1850 CE) by comparing paleoenvironmental reconstructions with simulations from the Community Earth System Model Last Millennium Ensemble (CESM-LME). Atmospheric and oceanic response to external forcing in CESM-LME simulations typically take the form of an Antarctic dipole: cooling over most of Antarctica and warming east of the Antarctic Peninsula. This configuration is also observed in ice core records. Unforced variability and a dipole response to large volcanic eruptions contribute to weaker cooling in the Antarctic than the Arctic, consistent with the absence of a strong volcanic signal in Antarctic ice core records. The ensemble does not support a clear link between the dipole pattern and baseline shifts in the Southern Annular Mode and El Niño-Southern Oscillation proposed by some paleoclimate reconstructions. Our analysis provides a point of comparison for paleoclimate reconstructions and highlights the role of internal climate variability in driving modeled last millennium climate evolution in the Antarctic. Full article
Show Figures

Figure 1

18 pages, 10332 KiB  
Article
Two Nothofagus Species in Southernmost South America Are Recording Divergent Climate Signals
by Pamela Soto-Rogel, Juan Carlos Aravena, Ricardo Villalba, Christian Bringas, Wolfgang Jens-Henrik Meier, Álvaro Gonzalez-Reyes and Jussi Grießinger
Forests 2022, 13(5), 794; https://doi.org/10.3390/f13050794 - 19 May 2022
Cited by 2 | Viewed by 3337
Abstract
Recent climatic trends, such as warming temperatures, decrease in rainfall, and extreme weather events (e.g., heatwaves), are negatively affecting the performance of forests. In northern Patagonia, such conditions have caused tree growth reduction, crown dieback, and massive die-back events. However, studies looking at [...] Read more.
Recent climatic trends, such as warming temperatures, decrease in rainfall, and extreme weather events (e.g., heatwaves), are negatively affecting the performance of forests. In northern Patagonia, such conditions have caused tree growth reduction, crown dieback, and massive die-back events. However, studies looking at these consequences in the southernmost temperate forest (Nothofagus betuloides and Nothofagus pumilio) are much scarcer, especially in southernmost South America (SSA). These forests are also under the influence of the positive phase of Antarctic Oscillation (AAO, also known as Southern Annular Mode, SAM) that has been associated with increasing trends in temperature, drought, and extreme events in the last decades. This study evaluated the growth patterns and the climatic response of eight new tree-ring chronologies from Nothofagus species located at the upper treeline along different environmental gradients in three study areas: Punta Arenas, Yendegaia National Park, and Navarino Island in SSA. The main modes of the ring-width index (RWI) variation were studied using principal component analysis (PCA). We found that PC1 has the higher loadings for sites with precipitation values over 600 mm/yr, PC2 with N. betuloides sites, and PC3 with higher loadings for sites with precipitation values below 600 mm/yr. Our best growth-climate relationships are between N. betuloides and AAO and the most northeastern site of N. pumilio with relative humidity (which coincides with heatwaves and extreme drought). The climatic signals imprinted in the southernmost forests are sensitive to climatic variability, the climate forcing AAO, and the effects of climate change in the last decades. Full article
Show Figures

Figure 1

15 pages, 2385 KiB  
Article
Interdecadal Variation of the Antarctic Circumpolar Wave Based on the 20CRV3 Dataset
by Zhichao Lu, Tianbao Zhao, Weican Zhou and Haikun Zhao
Atmosphere 2022, 13(5), 736; https://doi.org/10.3390/atmos13050736 - 4 May 2022
Cited by 1 | Viewed by 2111
Abstract
As a large-scale ocean–atmosphere coupling system in the Southern Hemisphere, the Antarctic Circumpolar Wave (ACW) greatly impacts the global climate. However, the interdecadal variation of the ACW has rarely been studied due to the lack of long-term data. In this research, the latest [...] Read more.
As a large-scale ocean–atmosphere coupling system in the Southern Hemisphere, the Antarctic Circumpolar Wave (ACW) greatly impacts the global climate. However, the interdecadal variation of the ACW has rarely been studied due to the lack of long-term data. In this research, the latest 20th Century Reanalysis Version 3 dataset is used to analyze the interdecadal variations of sea level pressure (SLP) and sea surface temperature (SST) signals in the ACW during 1836–2015. The results indicate that the ACW has not always been present in the recent 180 years, and it has remarkable interdecadal variations. Specifically, the ACW was hard to distinguish before the 1870s. The SLP anomalies propagated eastwards over the South Pacific and South Atlantic during part of the 1880s–1940s. The SST anomalies also have an eastward propagation in the 1880s–1960s. The most active period of the SLP signal is in the 1950s–1990s, while that of the SST signal is in the 1980s–1990s. The ACW has not been significant since the 21st century. The interdecadal variation of the SLP may be related to the variations of the long-term Southern Annular Mode and Pacific-South American pattern, while the interdecadal variation of the SST is more associated with the ENSO. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

Back to TopTop