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Abstract: Droughts and long dry spells, interspersed with intense rainfall events, have been charac-
teristic of the northern Murray-Darling Basin (NMDB), a major Australian agricultural region. The
NMDB precipitation results from weather systems ranging from thunderstorms to larger scale events.
The larger scale events exhibit high seasonal and annual rainfall variability. To detect attributes
shaping the NMDB precipitation patterns, and hence net water inflows to the vast Darling River
catchment area, numerous (45) possible attributes were assessed for their influence on rainfall trends.
Four periods were assessed: annual, April–May (early cool-season), June–September (remaining cool-
season), and October–March (warm-season). Linear and non-linear regression machine learning (ML)
methods were used to identify the dominant attributes. We show the impact of climate drivers on the
increasingly dry April–May months on annual precipitation and warmer temperatures since the early
1990s. The NMDB water supply was further reduced during 1992–2018 by the lack of compensating
rainfall trends for the April–May decline. The identified attributes include ENSO, the Southern
Annular Mode, the Indian Ocean Dipole, and both local and global sea surface temperatures. A key
finding is the prominence of global warming as an attribute, both individually and in combination
with other climate drivers.

Keywords: northern Murray-Darling Basin; southeast Australia; river water management; climate
change and drivers; precipitation and temperature trends; machine learning techniques

1. Introduction

The northern Murray-Darling Basin (Figure 1), hereafter NMDB, has a variable and
intermittent rainfall pattern, with long dry periods interspersed with intense rainfall events.
The NMDB occupies a large geographical area situated in the northern subtropical latitudes
(between 25◦ S and 34◦ S) of Australia. It is influenced by tropical climate drivers such as
the El Niño-Southern Oscillation phenomenon (ENSO) [1] more than the southern MDB
(hereafter, SMDB) (Figure 1; located between 34◦ and 38◦ S), which is more influenced by
mid-latitude weather systems in the cool-season months of April–September [2,3], so the
two areas have different climate regimes.

Historically, both NMDB and SMDB floods have occurred as a result of winter/spring
rains. However, floods also can occur in summer, particularly in La Niña years, for
example, in 2010–2012 [4] and, more recently, in 2020–2022. The NMDB summer flood
rainfall typically results from tropical low-pressure systems, including landfalling tropical
cyclones [5].

Globally, each decade since 1980 has been warmer than the previous decade, with
2010–2019 being around 0.2 ◦C warmer than 2000–2009 [6], indicating an acceleration in
global warming in recent decades. In addition, the mean annual near-surface air tempera-
ture since 1910 in Australia has increased by nearly 1.5 ◦C, relative to the 1910–1950 mean;
this is about 30% greater than the global average [6].
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Figure 1. Map of northern and southern Murray-Darling Basin in southeast Australia. The MDB 
lies within subtropical latitudes (25° S–38° S) of the Australian continent. Observation stations used 
for precipitation, TMax and TMin averaging that represent the NMDB are marked and indicated in 
a legend. (Source: Murray-Darling Basin Authority, G.P.O. Box 1801, Canberra City, ACT 2601 Aus-
tralia. https://www.mdba.gov.au/sites/default/files/pubs/Murray-Darling_Basin_Boundary.pdf  
(accessed 19 August 2022). Reproduced with some place name deletions and insertions via license: 

Figure 1. Map of northern and southern Murray-Darling Basin in southeast Australia. The MDB
lies within subtropical latitudes (25◦ S–38◦ S) of the Australian continent. Observation stations used
for precipitation, TMax and TMin averaging that represent the NMDB are marked and indicated in a
legend. (Source: Murray-Darling Basin Authority, G.P.O. Box 1801, Canberra City, ACT 2601 Aus-
tralia. https://www.mdba.gov.au/sites/default/files/pubs/Murray-Darling_Basin_Boundary.pdf
(accessed 19 August 2022)). Reproduced with some place name deletions and insertions via license:
Creative Commons Attribution-Non Commercial-NoDeratives4.0 International Public License (CC
BY-NC-ND 4.0).

https://www.mdba.gov.au/sites/default/files/pubs/Murray-Darling_Basin_Boundary.pdf


Water 2022, 14, 3073 3 of 15

Since the early 1990s, climate change research has revealed a reduction of approxi-
mately 12% in April–October precipitation over southeast Australia [6]. Notably, no trend
is apparent annually because there has been an increase in summer precipitation [7] and a
decrease in autumn (MAM) precipitation [8]. For the SMDB, ref. [9] found a reduction in
late autumn (April–May) precipitation since the 1990s.

Rainfall in the NMDB is generated by weather systems on a range of time and space
scales, resulting from climate drivers including the ENSO the southern annular mode
(SAM), the Indian Ocean Dipole (IOD), and the Interdecadal Pacific Oscillation (IPO), or
its Tripole Index [10]. These modes drive the high variability and unreliability in seasonal
and annual rainfall amounts and hence in stream inflows that eventually reach the Darling
River. However, contributions to the significant precipitation reduction in the SMDB in late
autumn (April–May) were found by [9].

Farms and other local communities rely on river water for human consumption
and for irrigation of agricultural crops, underlining the social and economic importance
of river water for the NMDB. There is a wide variety of crops requiring irrigation, the
most important being cotton, with the NMDB producing over 90% of Australia’s total
cotton crop [11]. In addition, key NMDB environmental regions require an adequate
water supply to sustain important NMDB ecosystems and wetlands, and to maintain
the many river water holes in which fish and other species survive long interruptions
of water flow [12]. Mass fish deaths in the Lower Darling River in 2019 were caused by
decreased river flows, due mainly to poor river regulation combined with recent drought
and higher temperatures [13]. Small flushing flows improve water quality along the river
by reducing salinity levels, breaking up stratification in pools, mitigating algal blooms,
and are essential for ensuring the diversity and abundance of aquatic life such as prawns,
mussels and aquatic insects which form a vital food resource for fish and waterbirds [12].
While acknowledging that there are known management issues affecting river levels, 94%
of the gauges in the NMDB show a declining trend in streamflow since records began in
1970. Moreover, the headwaters of the NMDB are reporting declining streamflow trends [7].
Rainfall extremes have continued after the Millennium Drought (1997–2009). Following a
wetter-than-average 2016, most of the SMDB received decile 2–3 or decile 1 rainfall over
the 4-year period from January 2017 to December 2020. During the same period, almost all
the NMDB fared even worse, receiving either decile 1 rainfall or its driest 4 years on record
(Figure 2).

While flood events do not occur regularly in the NMDB, there were two major floods
events during 2010–2012 and, more recently, 2020–2022. However, due to the general drying
trend in the NMDB [14], it is important to analyze potential trends in variables that impact
water availability. These include decreased NMDB catchment precipitation, and increased
evaporation rates due to higher temperatures resulting from global warming. For example,
rainfall was very low across the NMDB during January–February 2019, typically the wetter
months of the year, resulting in 2018–2019 being the driest since 2002–2003. Consequently,
area-averaged actual evapotranspiration deciles have become the lowest on record, as
shown in Figure 3. Notably, a study covering 1975–2016 found that prior to 1994 wind
speed dominated evaporation rates across southern Australia, but after 1994 temperature
became dominant [15]. It is notable that evapotranspiration in the NMDB during 2018–2019
was even greater than in the southern MDB (Figure 3). Moreover, the water storage capacity
in the NMDB dams is about 1/3 that of the SMDB dams. Hence, when the NMDB dams fill
in the warm season (October–March), as they did in 2020/2021 and 2021/2022, irrigation
usage and high evaporation rates can rapidly reduce dam levels. It also indicates that an
excessively high proportion of the NMDB inflow reaching the Darling River, the main river
in the NMDB, is the direct result of rainfall inflows rather than releases from dams. Because
most tributaries in the NMDB are unregulated, historically, this is why most farms have
found it necessary to construct on-farm dams for water storage [16].
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Attribution Licence 3.0 from the Australian Bureau of Meteorology). Available at: 
http://www.bom.gov.au/climate/maps/rainfall/?variable=rainfall&map=decile&pe-
riod=48month&region=md&year=2020&month=12&day=31 (accessed 19 August 2022). 
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we investigate using ML techniques. Hence, valuable guidance could be provided to state 
and local water authorities, thereby assisting future water allocation decisions. 

Figure 2. Murray-Darling Basin rainfall deciles. Rainfall deciles for the 48 months January 2017
to December 2020 in southeast Australia focusing on the MDB defined by the area within the
solid black line. Note the lowest on record in the north of the basin and the very much be-
low or below average rainfall in the rest of the basin. (Reproduced with permission under Cre-
ative Commons Attribution Licence 3.0 from the Australian Bureau of Meteorology). Available
at: http://www.bom.gov.au/climate/maps/rainfall/?variable=rainfall&map=decile&period=48
month&region=md&year=2020&month=12&day=31 (accessed 19 August 2022).
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(e.g., [18,19]). In addition, a wavelet analysis was applied to investigate the possible con-
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Figure 3. Annual deciles of actual evapotranspiration and soil moisture 2018–2019. Map of
southeast Australia showing deciles for the MDB region during 2018–2019, for annual area-
averaged actual evapotranspiration calculated using The Australian Landscape Water Balance Model
(AWRA-L v6) [17]. Note the decile area of lowest on record in the NMDB. (Reproduced with permis-
sion under Creative Commons Attribution Licence 3.0 from the Australian Bureau of Meteorology.
Available at: http://www.bom.gov.au/water/nwa/2019/mdb/climateandwater/climateandwater.
shtml (accessed 19 August 2022)).
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The future development of more accurate seasonal and annual prediction models on a
range of time scales, would benefit from climate drivers identified in this study, which we
investigate using ML techniques. Hence, valuable guidance could be provided to state and
local water authorities, thereby assisting future water allocation decisions.

The major aims of this study are as follows. First, is to identify trends in precipitation
and temperature from sections of the vast NMDB catchment area that determine water
availability in the Darling River, and from the numerous river systems and tributaries
that feed into it. Next is a detailed attribution analysis of climate drivers affecting annual
and seasonal rainfall using machine learning techniques. Such an approach to rainfall
stations in this region of southeast Australia has not previously been attempted. Here, it
is performed by ranking the numerous possible attributes in importance, and by using a
range of linear and non-linear ML regression techniques, described in Sections 2.4 and 3.4,
fitted to the observed precipitation amounts, for the period 1965–2018. The attributes are
assessed both individually and in combinations, with the five most effective attributes
chosen on their percentage appearance in 10-fold cross-validation (to avoid overfitting)
of annual precipitation, precipitation in late autumn (April–May), in the remaining cool
season (JJAS), and in the warm season (October–March), to highlight warm season and
cool season influences. The regression techniques chosen, have proven to be successful
in previous studies by the authors, in identifying attributes in previous climate change
studies (e.g., [18,19]). In addition, a wavelet analysis was applied to investigate the possible
contributions from a range of climate drivers.

2. Data and Methodology
2.1. Data

Monthly precipitation data were obtained from the Bureau of Meteorology’s homo-
geneous climate record through its climate change site network [20]. These data have
undergone complex quality control to address inconsistencies and errors. There are 8 pre-
cipitation stations comprising Augathella, Cunnamulla, Normandy, Miles, Surat, Bellata,
Bingara and Curlewis. Additionally, monthly mean maximum temperature (TMax) and
mean minimum temperature (TMin) data were obtained for Charleville, Miles, Thargomin-
dah, St. George, Moree, Inverell, Walgett and Gunnedah from the Bureau of Meteorology’s
climate change site network. These sites were selected as they cover a broad area of the
NMDB (Figure 1) and to contain a long, continuous record beginning in 1910, in a similar
manner to an earlier MDB study [21], in order to approximate the precipitation and tem-
perature characteristics across the region. The precipitation data were summed to obtain a
proxy to the total precipitation falling across the entire NMDB catchment area, while the
mean of the temperature time series data was calculated to obtain the mean of TMax and
TMin across the NMDB. The available time series data cover the period from 1910–2019.

2.2. Statistical Analysis

To analyze trends in the data, the time series were plotted with their percentiles
displayed in four panels: annually, late autumn (April–May), the four remaining cool
season months (JJAS), and the warm season (October–March). The data were then grouped
into four 27-year periods (1911–1937, 1938–1964, 1965–1991 and 1992–2018), to obtain
a representative climatology that covers almost all of the time series. Additionally, the
decision on the groupings was influenced by the fact that the last three 27-year periods
mentioned above coincide with the main time span from 1950 when global warming (GW)
became prominent [22], then from the 1970s when GW began to accelerate [23,24], and
particularly from the early to mid-1990s [6]. Change point analysis of the data is not
applicable because the acceleration in GW occurred over several years in the early to
mid-1990s. If years other than 1991 had instead been chosen to demarcate the last two
periods, the findings would have remained almost unchanged. Bootstrap resampling with
replacement was applied [25], with 5000 resamples, to the mean and variance of the time
series data to develop box plots that can be used to identify potential trends, including the
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direction of such trends, between the time periods. Two-sided permutation testing then
was applied to test for statistical significance of any potential trends. A value of α < 0.1 is a
marginally significant result, α < 0.05 is significant, and α < 0.01 is highly significant.

2.3. Wavelet Analysis

Wavelet analysis [26,27] was applied to each time series to detect potential climate
drivers such as the El-Niño Southern Oscillation. This approach provides both the local
wavelet power spectrum and the global power spectrum, as shown in Section 3.3. The local
wavelet power spectrum shows how the influence of climate drivers changes over time,
while the global power spectrum provides an overview of which drivers are dominant in
the time series. In this study, we used the Morlet wavelet as the mother wavelet.

2.4. Attribute Selection

Numerous climate drivers were considered as potential attributes for annual, April–
May, JJAS, and October–March precipitation. The drivers assessed were the Atlantic
Multi-decadal Oscillation (AMO), the Indian Ocean Dipole (IOD), global sea surface tem-
perature anomalies (GlobalSSTA), global temperature anomalies (GlobalT), Niño3.4, TPI,
the Southern Annular Mode (SAM), the Southern Oscillation Index (SOI), and the Tasman
Sea surface temperature anomalies (TSSST). Time series of these climate drivers were ob-
tained from the Earth System Research Laboratory (http://www.esrl.noaa.gov/psd/gcos_
wgsp/Timeseries/ -accessed 19 August 2022), except for TSSST which was obtained from
the Australian Bureau of Meteorology (http://www.bom.gov.au/climate/change/?ref=
ftr#tabs=Tracker&tracker=timeseries – accessed 19 August 2022).

Two-way interaction terms between the above predictors, where one variable is mul-
tiplied by another (e.g., AMO*IOD), were also considered potential predictors. These
two-way interaction terms are considered as possible attributes as one attribute might
reinforce another. Additional relationships between possible attributes, such as additive
and quotient relationships, although assessed by Richman and Leslie [28] for a single
station, were not considered in this study, because some of these are highly correlated with
other attributes considered here, and all ocean basins already are represented. Furthermore,
we restricted the combinations to those involving two potential attributes, because the
number of combinations of the 9 possible predictors (AMO, SOI, Niño3.4, SAM, IOD, TPI,
Global temperature anomalies, and Global and Local SST anomalies) would have been
prohibitive to assess, as explained in recently published work (see Table 1 in ref. [29]).

As relationships between climate drivers and precipitation can vary between weak
and strong, linear and non-linear, and in combinations, this study develops both linear and
non-linear statistical models of annual, April–May, JJAS and October–March precipitation,
for a range of climate drivers. The non-linear models considered are support vector
regression (SVR) [30], with either the polynomial (Poly) or radial basis function (RBF)
kernels, and random forests (RF) [31,32]. When the two-way interaction combinations are
included, there are 45 potential attributes considered for the prediction of precipitation. If
all attributes were used, the models would be subject to overfitting, which reduces physical
understanding and is likely to lead to large errors if the models are applied to a test data
set in prediction mode. To select attributes that generalize well from the set of 45 attributes,
ten-fold cross-validation was applied to the data set, using both forward and backward
selection through the space of potential attributes as in Maldonado and Weber [33]. The
comprehensive, detailed set of results from all attributes in all models are provided in
Table 2 in Section 3.4.

http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/
http://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/
http://www.bom.gov.au/climate/change/?ref=ftr#tabs=Tracker&tracker=timeseries
http://www.bom.gov.au/climate/change/?ref=ftr#tabs=Tracker&tracker=timeseries
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Table 1. p-values from permutation testing differences in interval means and variances. p-values
from permutation testing differences in interval means and variances for, April–May, JJAS, October–
March and annual precipitation, TMax and Tmin, based on area averages of observing stations in the
northeast part of the northern Murray-Darling Basin. Significant values (p < 0.10) are italicised in bold.
Note that the p-value for each variance test is calculated after one sample has had bias correction
in the mean. Key points to note are the highly significant p-values (p < 0.05) for April–May mean
and variance precipitation decreases from 1965–1991 to 1992–2018; and highly significant increases
generally in mean TMin and also generally in mean TMax for most of the periods.

Period

Interval p-Values

Observation Mean &
Variance

1911–1937 vs.
1965–1991

1938–1964 vs.
1965–1991

1911–1937 vs.
1992–2018

1965–1991 vs.
1992–2018

Precip. Mean
Variance

0.1
0.0168

0.289
0.0154

0.48
0.0946

0.0318
<0.01

April–May TMax Mean
Variance

0.194
0.934

0.0542
0.599

<0.01
0.677

<0.01
0.73

TMin Mean
Variance

<0.01
0.726

<0.01
0.897

<0.01
0.318

0.847
0.584

Precip. Mean
Variance

0.593
0.23

0.788
0.815

0.388
0.581

0.679
0.585

JJAS TMax Mean
Variance

0.689
0.602

0.577
0.474

<0.01
0.569

<0.01
0.935

TMin Mean
Variance

0.0230
0.913

0.0142
0.989

<0.01
0.86

<0.01
0.795

Precip. Mean
Variance

0.225
0.664

0.705
0.1

0.0424
0.573

0.404
0.909

Oct–Mar TMax Mean
Variance

0.157
0.251

0.698
0.718

0.373
0.864

0.0194
0.0626

TMin Mean
Variance

<0.01
0.759

<0.01
0.94

<0.01
0.556

<0.01
0.211

Precip. Mean
Variance

0.295
0.22

0.933
0.12

0.498
0.584

0.688
0.644

Annual TMax Mean
Variance

0.628
0.619

0.304
0.614

<0.01
0.42

<0.01
0.207

TMin Mean
Variance

<0.01
0.859

<0.01
0.416

<0.01
0.825

<0.01
0.97

Table 2. Major precipitation attributes identified for each time period. The five major precipitation
attributes identified, for each time period. They had the highest percentages of appearances in
the 10-fold, cross-validation of the machine learning schemes, applied to the 1965–2018 observed
precipitation data set.

Annual April + May JJAS Oct–Mar

GlobalSSTA*TSSST SOI SOI SOI
AMO*SAM GlobalSSTA*TSSST Niño3.4 DMI*SAM

AMO*Niño3.4 TPI SAM SAM
TPI GlobalT TPI GlobalT*GlobalSSTA

DMI*Niño3.4 DMI DMI*TSSST SOI*TPI

3. Results and Discussion

First, precipitation and temperature time series are discussed, followed by the p-values
and box–whisker plots for precipitation, TMax and TMin. Then, wavelet analyses of
precipitation, TMax and TMin are discussed to highlight the periodicity in the climate
drivers. Finally, attribute selection of climate drivers is described for each time period.
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3.1. Precipitation and Temperature Time Series in the Northern Murray-Darling Basin
3.1.1. Precipitation

April–May is the only period of the year exhibiting long-term changes, with an
apparent decrease in both the mean and variance from the 1990s (Figure 4a). The annual
time series shows no long-term trend (Figure 4b), which also is the case for JJAS and
October–March. However, the steep decrease in the annual times series after 2011, to well
below the 5th percentile in 2019, has contributions from all of the periods.
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kernels, and random forests (RF) [31,32]. When the two-way interaction combinations are 
included, there are 45 potential attributes considered for the prediction of precipitation. If 
all attributes were used, the models would be subject to overfitting, which reduces phys-
ical understanding and is likely to lead to large errors if the models are applied to a test 
data set in prediction mode. To select attributes that generalize well from the set of 45 
attributes, ten-fold cross-validation was applied to the data set, using both forward and 
backward selection through the space of potential attributes as in Maldonado and Weber 
[33]. The comprehensive, detailed set of results from all attributes in all models are pro-
vided in Table 2 in Section 3.4. 

3. Results and Discussion 
First, precipitation and temperature time series are discussed, followed by the p-val-

ues and box–whisker plots for precipitation, TMax and TMin. Then, wavelet analyses of 
precipitation, TMax and TMin are discussed to highlight the periodicity in the climate 
drivers. Finally, attribute selection of climate drivers is described for each time period. 

3.1. Precipitation and Temperature Time Series in the Northern Murray-Darling Basin 
3.1.1. Precipitation 

April–May is the only period of the year exhibiting long-term changes, with an ap-
parent decrease in both the mean and variance from the 1990s (Figure 4a). The annual 
time series shows no long-term trend (Figure 4b), which also is the case for JJAS and Oc-
tober–March. However, the steep decrease in the annual times series after 2011, to well 
below the 5th percentile in 2019, has contributions from all of the periods. 
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Figure 4. Precipitation, TMax and TMin time series in the NMDB. Precipitation time series in the
NMDB for, (a) annual, (b) April–May. Dashed lines indicate percentiles 5th and 95th (red); 10th
and 90th (orange); 15th and 85th (light blue); 20th and 80th (brown); and 25th and 75th (dark blue).
Note the apparent decrease in mean and reduction in values greater than the 75th percentile for
April–May since the 1990s and the decrease from 2011 to well below the 5th percentile in 2019 for the
annual time series; the time series of TMax in the NMDB for, (c) annual, (d) October–March. Note the
steep increase approaching the 100th percentile in both October–March and annual time series which
mirrors the steep decrease in 2019 annual precipitation (b); the time series of TMin in the NMDB for,
(e) annual, (f) April–May. Note the almost linear increase in the annual times series since the 1960s
and the step increase with much less variation since 2014, while there is no clear trend in April–May
apart from one step increase after the 1950s and another from 2014.

3.1.2. TMax

The annual times series of TMax shows an increasing trend from the early 1990s
(Figure 4c). That is due to the strong contributions from JJAS in particular, but also from
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April–May. However, there is a steep increase approaching the 100th percentile in the
period October–March (Figure 4d) which mirrors the steep decrease in 2019 precipitation.

3.1.3. TMin

The annual TMin time series shows an almost linear increase since the 1960s, with a
step increase and much less variation since 2014 (Figure 4e). The increase is due mostly
to similar increases in JJAS and October–March. The step increase and lower variability
are present also in JJAS and October–March. However, after an initial step increase in
April–May from the early 1950s (Figure 4f), there appears to be no clear trend after that,
aside from a step increase and lower variability from 2014.

3.2. p-Values and Box–Whisker Plots for Precipitation, TMax and TMin

The p-values in Table 1 allow comparisons of the four 27-year intervals. Statistically
significant differences (i.e., p-value < 0.1) are shown, in bold italics, for means and variances
of precipitation, TMax and TMin. There are comparisons involving the four intervals
1911–1937, 1938–1964, 1965–1991 and 1992–2018.

3.2.1. Precipitation

The most important precipitation finding is the significant decrease in the April–May
mean and highly significant decrease in variance, between the intervals 1965–1991 and
1992–2018, with p-values of 0.0318 and <0.01, respectively (Table 1). It is noteworthy that
the significant decrease in the mean is an abrupt reversal of the increasing trend in the
mean in the periods prior to 1992–2018. The decrease in variance between 1992 and 2018
and previous intervals, including 1965–1991, is also highly significant, with a p-value < 0.01,
as shown in Table 1 and is very apparent in the box–whisker plots (Figure 5a,b). Possible
climate influences are discussed in the following wavelets section.

3.2.2. TMax

Increasing mean TMax values are highly significant throughout the year between the
intervals 1965–1991 and 1992–2018, with a p-value of <0.01 (Table 1) and confine clearly the
accelerated GW over the last 50 years [23,24]. The annual mean box–whisker plot illustrates
this significance (Figure 5c).

3.2.3. TMin

There also is high significance in mean TMin increases between all periods with all
intervals and 1992–2018, apart from the notable exception of April–May between 1965–1991
and 1992–2018, where the p-value is 0.847 (Table 1). This highlights the lack of change
shown in the box–whisker plots (Figure 5d,e). The most likely explanation is that clearer
nighttime and early morning skies due to the highly significant decrease in precipitation,
and possibly lighter winds, from the 1990s, has increased radiational cooling relative to
1965–1991. The very high significance in the TMin increase from 1938–1964 to 1965–1991
for all periods (Table 1) corresponds approximately to 1950, when the importance of GW is
documented [22].

3.3. Wavelet Analysis of Temperature and Precipitation 1911–2018

It is noted that oscillations in atmospheric and oceanic phenomena such as ENSO
are expected to appear in wavelets of their time series. However, many climate drivers,
such as the SAM, IPO, IOD, and the Atlantic multi-decadal oscillation (AMO), are modes
that operate on variable time scales. As such, they are not as well-represented in wavelet
analyses as ENSO. Following [28], wavelet analysis was applied to detrended anomalies of
the precipitation and temperature time series. Wavelet analysis produces both a local and a
global spectrum. The local wavelet power spectrum reveals the temporal evolution of those
periodic signals located in the time series, allowing the detection of oscillatory climate
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drivers such as ENSO, and shows their temporal evolution. The global power spectrum
also is generated, displaying the major amplitudes present in the time series.
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of NMDB for, (a) mean April–May precipitation, and (b) variance; (c) mean annual TMax; (d) mean
annual TMin; (e) mean April–May TMin.

The following annual, April–May, JJAS and October–March wavelets for the NMDB
are interpreted for precipitation. The wavelets for TMax and TMin were very similar to
precipitation, emphasizing the 2–8-year ENSO periodicity. Hence, they are not shown here.

3.3.1. Precipitation

The annual precipitation wavelet plot shows ENSO significance at both the 90th and
95th percentiles in the 2–8-year period (Figure 6a), dominated by October–March (Figure 6b)
and JJAS (Figure 6c), and a significant period from 1950 to 2000 in April–May (Figure 6d).
There is a notable non-significant, but possible, IPO periodicity in the 15–30-year time
frame. It is noteworthy that although it is not part of this study, the recent La Niña of
late 2020 and early 2021 provided increased precipitation in the NMDB, highlighting the
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ongoing impact of ENSO, when two of its catchments had two of their three largest one-day
increases in water storage levels since 1993 [34].
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Figure 6. Wavelets for precipitation. Wavelets representing NMDB precipitation for the periods,
(a) annual, (b) April–May, (c) JJAS, and (d) October–March. The local wavelet power spectra are
displayed in the left sub-figure, while the global wavelet power spectra that represent globally
dominant periodicities in the time series are displayed in the right sub-figure. The dashed black and
red lines are the 90th and 95th confidence percentiles, respectively. The black cone shape on the local
wavelet power spectra displays the cone of confidence.
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3.3.2. TMax

The wavelets for TMax (not shown) also indicate that the ENSO periodicity is the
dominant influence in all four periods. Interestingly, its significance in approximately
12-year periodicity starts from the 2000s, outside the 90th and 95th percentile cones of
confidence in October–March and appears annually.

3.3.3. TMin

As for TMax, ENSO is the only periodicity detected in the TMin wavelets (not shown)
and is apparent in all four time periods.

3.4. Attribute Selection

As described in Section 2.4 above, the possible attributes considered in this study are
the Atlantic Meridional Oscillation (AMO), the Indian Ocean Dipole Mode Index (DMI),
global sea surface temperature anomalies (GlobalSSTA), global temperature anomalies
(GlobalT), the Niño3.4, the Interdecadal Pacific Oscillation (IPO), the Southern Annular
Mode (SAM), the Southern Oscillation Index (SOI), and the Tasman Sea surface temper-
ature anomalies (TSSST). Two-way interaction terms between these predictors also were
considered (e.g., AMO*DMI). The total number of potential attributes was 45. The precipi-
tation data covers the period 1965–2018 and 10-fold cross-validation was applied to limit
overfitting with the above techniques. Those attributes which appeared in at least 50%
of the folds across the eight training methods are considered likely attributes of NMDB
precipitation. However, because many attributes appeared in at least 50% of folds, only
the five attributes with the highest percentages above 50% were selected here as the key
attributes of NMDB precipitation. For annual precipitation, these attributes were Glob-
alSSTA*TSSST, AMO*SAM, AMO*Niño3.4, TPI and DMI*Niño3.4 (Table 2). Two-way
interactions were selected more often than either attribute in isolation, highlighting the
importance of considering two-way interactions as potential attributes. For example, Glob-
alSSTA*TSSST occurs in 60% of folds, whereas GlobalSSTA occurs only in 46.25% and TSSST
in 55%. For April–May precipitation, the key attributes were SOI, GlobalSSTA*TSSST, TPI,
GlobalT and DMI. For JJAS precipitation those selected were SOI, Niño3.4, SAM, TPI and
DMI*TSSST. Finally, the key drivers of October–March precipitation were SOI, DMI*SAM,
SAM, GlobalT*GlobalSSTA and SOI*TPI (Table 2).

Notably, for each precipitation period, the selected attributes are related to GW, Glob-
alT, GlobalSSTA, and TSSST, highlighting the profound influence that GW now has on
precipitation in the NMDB. This is particularly relevant for April–May precipitation, where
it was shown in Table 1 that there is a statistically significant decrease between periods 1965
and 1991 and 1992 and 2018, as two of the climate drivers are direct attributes to accelerated
GW during 1992–2018. Additionally, Table 2 reveals that drivers related to the atmospheric
based SOI, the ENSO based tropical Pacific Ocean indices, the TPI and DMI are known to
influence precipitation across all precipitation groupings. Finally, AMO appears to play a
role in annual precipitation in the NMDB by modulating the influence of SAM and Niño3.4.

4. Conclusions

Australia’s northern Murray-Darling Basin (NMDB), which occupies a vast area of
subtropical eastern Australia, is found to be experiencing the impacts of accelerated GW
on its catchment area rainfall seasonality and effectiveness. Observations of precipitation,
maximum temperatures (TMax) and minimum temperatures (TMin) from 1910 to 2018
were divided into four consecutive 27-year periods: 1911–1937, 1938–1964, 1965–1991,
and 1992–2018. They revealed that mean April–May precipitation over the NMDB, for
the period 1992–2018, decreased significantly (p-value = 0.0318) from that for the period
1965–1991. April–May are the late Autumn season months that moisten the NMDB catch-
ment area prior to the cool season rainfall events that flow into the NMDB river systems.
However, there is no compensating increasing trend in the remaining cool-season months
of the year (JJAS) to offset the drying in April–May. In the warm season months (October–
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March), La Niña phases have produced record rainfall in parts of southeast Australia in
the years 2010–2012 and, more recently, in 2020–2022. Nevertheless, significant increases in
mean TMax and TMin through JJAS and October–March further disrupt the hydrological
cycle and reduce the rainfall effectiveness as the plant evapotranspiration increased in
the period 1992–2018 due to rising values of TMax. Hence, this combination of decreased
April–May precipitation and associated higher daytime temperatures decreases run-off into
streams that feed into the Darling River and its tributaries, thereby reducing NMDB water
availability, frequently with drastic consequences which are expected to worsen further in
the future, as global warming continues.

The precipitation wavelets highlight the importance in 2–8-year periodicity of ENSO
for the annual, JJAS (late cool season) and October to March (warm season) periods.
The climate drivers selected as likely attributes for the observed annual and seasonal
precipitation patterns varied between the four different periods. For precipitation, the
main attributes contributing to the trends in rainfall seasonality variability patterns were
identified by using the time series in 10-fold machine learning regression models. It was
found that the key attributes differed between the different periods. However, they had in
common an emphasis on the role of GW both individually and in combination with known
local and large-scale climate drivers, notably ENSO, SAM, IOD, TPI, and Tasman Sea SSTs.
Four climate drivers, namely ENSO, IOD, TPI and Tasman Sea SSTs, being ocean-based
time series, are highly correlated with the recent quasi-linearly increasing trend in the
Global SST time series.

The methods used in this study consist of first investigating the statistical significance
of trends in precipitation and temperature between four 27-year time periods spanning
1911 to 2018. Then, ML techniques are applied to identify climate driver attributes of
precipitation in the NMDB from nine potential climate drivers. This has the advantage
of focusing the importance of many possible combinations of variables down to the most
important ones and provides a link to developing hybrid approaches of combining high
resolution climate model projections with machine learning models.

Further work, beyond attribute identification, is planned, with the aim of developing
sub-seasonal and seasonal outlooks, and annual prediction schemes, likely by combining
high resolution climate model projections with machine leaning models. This hybrid
approach is expected to be necessary, as traditional machine learning approaches, using
training and test data sets, can rapidly lose predictive skill if there is a high level of non-
stationarity in the training (observational) data set, especially if it continues into the test
data set.
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