Assessment of Antarctic Amplification Based on a Reconstruction of Near-Surface Air Temperature
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
3. Results
3.1. Temperature Change over Antarctica and Its Subregions
3.2. Antarctic Amplification Assessment in the Southern Hemisphere
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holland, M.M.; Bitz, C.M. Polar amplification of climate change in coupled models. Clim. Dynam. 2003, 21, 221–232. [Google Scholar] [CrossRef]
- Pithan, F.; Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 2014, 7, 181–184. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Bitz, C.M.; Armour, K.C.; Proistosescu, C.; Kang, S.M.; Xie, S.P.; Kim, D.; McGregor, S.; Zhang, W.J.; Zhao, S.; et al. Polar amplification dominated by local forcing and feedbacks. Nat. Clim. Chang. 2018, 8, 1076–1081. [Google Scholar] [CrossRef]
- Graversen, R.G.; Mauritsen, T.; Tjernstrom, M.; Kallen, E.; Svensson, G. Vertical structure of recent Arctic warming. Nature 2008, 451, 53–56. [Google Scholar] [CrossRef] [PubMed]
- Screen, J.A.; Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 2010, 464, 1334–1337. [Google Scholar] [CrossRef] [Green Version]
- Goosse, H.; Kay, J.E.; Armour, K.C.; Bodas-Salcedo, A.; Chepfer, H.; Docquier, D.; Jonko, A.; Kushner, P.J.; Lecomte, O.; Massonnet, F.; et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 2018, 9, 1919. [Google Scholar] [CrossRef] [Green Version]
- Salzmann, M. The polar amplification asymmetry: Role of Antarctic surface height. Earth Syst. Dynam. 2017, 8, 323–336. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.M.; Screen, J.A.; Deser, C.; Cohen, J.; Fyfe, J.C.; Garcia-Serrano, J.; Jung, T.; Kattsov, V.; Matei, D.; Msadek, R.; et al. The Polar Amplification Model Intercomparison Project (PAMIP) contribution to CMIP6: Investigating the causes and consequences of polar amplification. Geosci. Model Dev. 2019, 12, 1139–1164. [Google Scholar] [CrossRef] [Green Version]
- Södergren, A.H.; McDonald, A.J. Quantifying the Role of Atmospheric and Surface Albedo on Polar Amplification Using Satellite Observations and CMIP6 Model Output. J. Geophys. Res. Atmos. 2022, 127, e2021JD035058. [Google Scholar] [CrossRef]
- Screen, J.A.; Bracegirdle, T.J.; Simmonds, I. Polar Climate Change as Manifest in Atmospheric Circulation. Curr. Clim. Chang. Rep. 2018, 4, 383–395. [Google Scholar] [CrossRef]
- Rintoul, S.R.; Chown, S.L.; DeConto, R.M.; England, M.H.; Fricker, H.A.; Masson-Delmotte, V.; Naish, T.R.; Siegert, M.J.; Xavier, J.C. Choosing the future of Antarctica. Nature 2018, 558, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Ducklow, H.W.; Baker, K.; Martinson, D.G.; Quetin, L.B.; Ross, R.M.; Smith, R.C.; Stammerjohn, S.E.; Vernet, M.; Fraser, W. Marine pelagic ecosystems: The West Antarctic Peninsula. Phil. Trans. R. Soc. B 2007, 362, 67–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, T.E.; Bakker, A.M.R.; Keller, K. Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense. Clim. Chang. 2017, 144, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Steig, E.J.; Schneider, D.P.; Rutherford, S.D.; Mann, M.E.; Comiso, J.C.; Shindell, D.T. Warming of the Antarctic ice-sheet surface since the 1957 International Geophysical Year. Nature 2009, 457, 459–462. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Lu, H.; White, I.; King, J.C.; Phillips, T.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Mulvaney, R.; Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 2016, 535, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Bromwich, D.H.; Nicolas, J.P.; Monaghan, A.J.; Lazzara, M.A.; Keller, L.M.; Weidner, G.A.; Wilson, A.B. Central West Antarctica among the most rapidly warming regions on Earth. Nat. Geosci. 2013, 6, 139–145. [Google Scholar] [CrossRef] [Green Version]
- Nicolas, J.P.; Bromwich, D.H. New Reconstruction of Antarctic Near-Surface Temperatures: Multidecadal Trends and Reliability of Global Reanalyses. J. Clim. 2014, 27, 8070–8093. [Google Scholar] [CrossRef]
- Turner, J.; Colwell, S.R.; Marshall, G.J.; Lachlan-Cope, T.A.; Carleton, A.M.; Jones, P.D.; Lagun, V.; Reid, P.A.; Iagovkina, S. Antarctic climate change during the last 50 years. Int. J. Climatol. 2005, 25, 279–294. [Google Scholar] [CrossRef]
- Monaghan, A.J.; Bromwich, D.H.; Chapman, W.; Comiso, J.C. Recent variability and trends of Antarctic near-surface temperature. J. Geophys. Res. Atmos. 2008, 113, D04105. [Google Scholar] [CrossRef]
- Clem, K.R.; Renwick, J.A.; McGregor, J. Autumn Cooling of Western East Antarctica Linked to the Tropical Pacific. J. Geophys. Res. Atmos. 2018, 123, 89–107. [Google Scholar] [CrossRef]
- Huai, B.J.; Wang, Y.T.; Ding, M.H.; Zhang, J.L.; Dong, X. An assessment of recent global atmospheric reanalyses for Antarctic near surface air temperature. Atmos. Res. 2019, 226, 181–191. [Google Scholar] [CrossRef]
- Zhu, J.P.; Xie, A.H.; Qin, X.; Wang, Y.T.; Xu, B.; Wang, Y.C. An Assessment of ERA5 Reanalysis for Antarctic Near-Surface Air Temperature. Atmosphere 2021, 12, 217. [Google Scholar] [CrossRef]
- Hahn, L.C.; Armour, K.C.; Zelinka, M.D.; Bitz, C.M.; Donohoe, A. Contributions to Polar Amplification in CMIP5 and CMIP6 Models. Front. Earth Sci. 2021, 9, 710036. [Google Scholar] [CrossRef]
- Wang, S.M.; Xie, A.H.; Zhu, J.P. Does polar amplification exist in Antarctic surface during the recent four decades? J. Mt. Sci. 2021, 18, 2626–2634. [Google Scholar] [CrossRef]
- Xie, A.H.; Zhu, J.P.; Kang, S.C.; Qin, X.; Xu, B.; Wang, Y.C. Polar amplification comparison among Earth’s three poles under different socioeconomic scenarios from CMIP6 surface air temperature. Sci. Reps. 2022, 12, 16548. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Dong, X.; Zeng, J.; Hou, S.G.; Smeets, P.; Reijmer, C.H.; Wang, Y.T. Spatiotemporal Reconstruction of Antarctic Near-Surface Air Temperature from MODIS Observations. J. Clim. 2022, 35, 5537–5553. [Google Scholar] [CrossRef]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Fang, M.; Li, X.; Chen, H.W.; Chen, D. Arctic amplification modulated by Atlantic Multidecadal Oscillation and greenhouse forcing on multidecadal to century scales. Nat. Commun. 2022, 13, 1865. [Google Scholar] [CrossRef]
- Screen, J.A.; Simmonds, I. Half-century air temperature change above Antarctica: Observed trends and spatial reconstructions. J. Geophys. Res. 2012, 117, D16108. [Google Scholar] [CrossRef] [Green Version]
- Marshall, G.J. Half-century seasonal relationships between the Southern Annular mode and Antarctic temperatures. Int. J. Climatol. 2007, 27, 373–383. [Google Scholar] [CrossRef]
- Simmonds, I.; Li, M. Trends and variability in polar sea ice, global atmospheric circulations, and baroclinicity. Ann. N. Y. Acad. Sci. 2021, 1504, 167–186. [Google Scholar] [CrossRef] [PubMed]
- Schneider, D.P.; Deser, C.; Okumura, Y. An assessment and interpretation of the observed warming of West Antarctica in the austral spring. Clim. Dyn. 2012, 38, 323–347. [Google Scholar] [CrossRef]
- Ejaz, T.; Rahaman, W.; Laluraj, C.M.; Mahalinganathan, K.; Thamban, M. Rapid Warming Over East Antarctica Since the 1940s Caused by Increasing Influence of El Nino Southern Oscillation and Southern Annular Mode. Front. Earth Sci. 2022, 10. [Google Scholar] [CrossRef]
- Marshall, G.J.; Thompson, D.W.J. The signatures of large-scale patterns of atmospheric variability in Antarctic surface temperatures. J. Geophys. Res. Atmos. 2016, 121, 3276–3289. [Google Scholar] [CrossRef] [Green Version]
- Ciasto, L.M.; Simpkins, G.R.; England, M.H. Teleconnections between Tropical Pacific SST Anomalies and Extratropical Southern Hemisphere Climate. J. Clim. 2015, 28, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Sato, K.; Inoue, J.; Simmonds, I.; Rudeva, I. Antarctic Peninsula warm winters influenced by Tasman Sea temperatures. Nat. Commun. 2021, 12, 1497. [Google Scholar] [CrossRef]
- Marshall, J.; Armour, K.C.; Scott, J.R.; Kostov, Y.; Hausmann, U.; Ferreira, D.; Shepherd, T.G.; Bitz, C.M. The ocean’s role in polar climate change: Asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing. Philos. Trans. R. Soc. A 2014, 372, 20130040. [Google Scholar] [CrossRef] [Green Version]
- Zhuo, W.Q.; Yao, Y.; Luo, D.F.; Simmonds, I.; Huang, F. The key atmospheric drivers linking regional Arctic amplification with East Asian cold extremes. Atmos. Res. 2023, 283, 106557. [Google Scholar] [CrossRef]
- Chemke, R.; Polvani, L.M. Linking midlatitudes eddy heat flux trends and polar amplification. Npj Clim. Atmos. Sci. 2020, 3, 8. [Google Scholar] [CrossRef] [Green Version]
- Tewari, K.; Mishra, S.K.; Dewan, A.; Dogra, G.; Ozawa, H. Influence of the height of Antarctic ice sheet on its climate. Polar Sci. 2021, 28, 100642. [Google Scholar] [CrossRef]
- Taylor, P.C.; Cai, M.; Hu, A.X.; Meehl, J.; Washington, W.; Zhang, G.J. A Decomposition of Feedback Contributions to Polar Warming Amplification. J. Clim. 2013, 26, 7023–7043. [Google Scholar] [CrossRef]
- Holland, P.R.; Jenkins, A.; Holland, D.M. Ice and ocean processes in the Bellingshausen Sea, Antarctica. J. Geophys. 2010, 115, C05020. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, S.; Fortuny, D. How robust are the temperature trends on the Antarctic Peninsula? Antarct. Sci. 2018, 30, 322–328. [Google Scholar] [CrossRef]
Compared to the Change of Land Region in Southern Hemisphere | |||||
Annual | SON | DJF | MAM | JJA | |
AIS | 1.46 | 1.42 | 1.39 | 1.41 | 1.50 |
EAIS | 1.67 | 1.61 | 1.51 | 1.52 | 1.56 |
WAIS | 1.10 | 1.07 | 1.14 | 1.26 | 1.37 |
AP | −0.50 | −0.22 | 0.52 | −0.40 | 0.23 |
Compared to the change of whole region (land and ocean) in Southern Hemisphere | |||||
AIS | 1.82 | 2.55 | 3.76 | 2.63 | 5.07 |
EAIS | 2.15 | 3.64 | 3.98 | 2.74 | 5.22 |
WAIS | 1.26 | 0.47 | 3.36 | 2.57 | 4.87 |
AP | −1.41 | −4.00 | 1.78 | −0.88 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Xie, A.; Qin, X.; Xu, B.; Wang, Y. Assessment of Antarctic Amplification Based on a Reconstruction of Near-Surface Air Temperature. Atmosphere 2023, 14, 218. https://doi.org/10.3390/atmos14020218
Zhu J, Xie A, Qin X, Xu B, Wang Y. Assessment of Antarctic Amplification Based on a Reconstruction of Near-Surface Air Temperature. Atmosphere. 2023; 14(2):218. https://doi.org/10.3390/atmos14020218
Chicago/Turabian StyleZhu, Jiangping, Aihong Xie, Xiang Qin, Bing Xu, and Yicheng Wang. 2023. "Assessment of Antarctic Amplification Based on a Reconstruction of Near-Surface Air Temperature" Atmosphere 14, no. 2: 218. https://doi.org/10.3390/atmos14020218
APA StyleZhu, J., Xie, A., Qin, X., Xu, B., & Wang, Y. (2023). Assessment of Antarctic Amplification Based on a Reconstruction of Near-Surface Air Temperature. Atmosphere, 14(2), 218. https://doi.org/10.3390/atmos14020218