Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = sound speed profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1009 KiB  
Article
A Statistical Optimization Method for Sound Speed Profiles Inversion in the South China Sea Based on Acoustic Stability Pre-Clustering
by Zixuan Zhang, Ke Qu and Zhanglong Li
Appl. Sci. 2025, 15(15), 8451; https://doi.org/10.3390/app15158451 - 30 Jul 2025
Viewed by 183
Abstract
Aiming at the problem of accuracy degradation caused by the mixing of spatiotemporal disturbance patterns in sound speed profile (SSP) inversion using the traditional geographic grid division method, this study proposes an acoustic stability pre-clustering framework that integrates principal component analysis and machine [...] Read more.
Aiming at the problem of accuracy degradation caused by the mixing of spatiotemporal disturbance patterns in sound speed profile (SSP) inversion using the traditional geographic grid division method, this study proposes an acoustic stability pre-clustering framework that integrates principal component analysis and machine learning clustering. Disturbance mode principal component analysis is first used to extract characteristic parameters, and then a machine learning clustering algorithm is adopted to pre-classify SSP samples according to acoustic stability. The SSP inversion experimental results show that: (1) the SSP samples of the South China Sea can be divided into three clusters of disturbance modes with statistically significant differences. (2) The regression inversion method based on cluster attribution reduces the average error of SSP inversion for data from 2018 to 1.24 m/s, which is more than 50% lower than what can be achieved with the traditional method without pre-clustering. (3) Transmission loss prediction verification shows that the proposed method can produce highly accurate sound field calculations in environmental assessment tasks. The acoustic stability pre-clustering technology proposed in this study provides an innovative solution for the statistical modeling of marine environment parameters by effectively decoupling the mixed effect of SSP spatiotemporal disturbance patterns. Its error control level (<1.5 m/s) is 37% higher than that of the single empirical orthogonal function regression method, showing important potential in underwater acoustic applications in complex marine dynamic environments. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

24 pages, 13347 KiB  
Article
Efficient Modeling of Underwater Target Radiation and Propagation Sound Field in Ocean Acoustic Environments Based on Modal Equivalent Sources
by Yan Lv, Wei Gao, Xiaolei Li, Haozhong Wang and Shoudong Wang
J. Mar. Sci. Eng. 2025, 13(8), 1456; https://doi.org/10.3390/jmse13081456 - 30 Jul 2025
Viewed by 220
Abstract
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This [...] Read more.
The equivalent source method (ESM) is a core algorithm in integrated radiation-propagation acoustic field modeling. However, in challenging marine environments, including deep-sea and polar regions, where sound speed profiles exhibit strong vertical gradients, the ESM must increase waveguide stratification to maintain accuracy. This causes computational costs to scale exponentially with the number of layers, compromising efficiency and limiting applicability. To address this, this paper proposes a modal equivalent source (MES) model employing normal modes as basis functions instead of free-field Green’s functions. This model constructs a set of normal mode bases using full-depth hydroacoustic parameters, incorporating water column characteristics into the basis functions to eliminate waveguide stratification. This significantly reduces the computational matrix size of the ESM and computes acoustic fields in range-dependent waveguides using a single set of normal modes, resolving the dual limitations of inadequate precision and low efficiency in such environments. Concurrently, for the construction of basis functions, this paper also proposes a fast computation method for eigenvalues and eigenmodes in waveguide contexts based on phase functions and difference equations. Furthermore, coupling the MES method with the Finite Element Method (FEM) enables integrated computation of underwater target radiation and propagation fields. Multiple simulations demonstrate close agreement between the proposed model and reference results (errors < 4 dB). Under equivalent accuracy requirements, the proposed model reduces computation time to less than 1/25 of traditional ESM, achieving significant efficiency gains. Additionally, sea trial verification confirms model effectiveness, with mean correlation coefficients exceeding 0.9 and mean errors below 5 dB against experimental data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 18196 KiB  
Article
A Virtual-Beacon-Based Calibration Method for Precise Acoustic Positioning of Deep-Sea Sensing Networks
by Yuqi Zhu, Binjian Shen, Biyuan Yao and Wei Wu
J. Mar. Sci. Eng. 2025, 13(8), 1422; https://doi.org/10.3390/jmse13081422 - 25 Jul 2025
Viewed by 218
Abstract
The rapid expansion of deep-sea sensing networks underscores the critical need for accurate underwater positioning of observation base stations. However, achieving precise acoustic localization, particularly at depths exceeding 4 km, remains a significant challenge due to systematic ranging errors, clock drift, and inaccuracies [...] Read more.
The rapid expansion of deep-sea sensing networks underscores the critical need for accurate underwater positioning of observation base stations. However, achieving precise acoustic localization, particularly at depths exceeding 4 km, remains a significant challenge due to systematic ranging errors, clock drift, and inaccuracies in sound speed modeling. This study proposes and validates a three-tier calibration framework consisting of a Dynamic Single-Difference (DSD) solver, a geometrically optimized reference buoy selection algorithm, and a Virtual Beacon (VB) depth inversion method based on sound speed profiles. Through simulations under varying noise conditions, the DSD method effectively mitigates common ranging and clock errors. The geometric reference optimization algorithm enhances the selection of optimal buoy layouts and reference points. At a depth of 4 km, the VB method improves vertical positioning accuracy by 15% compared to the DSD method alone, and nearly doubles vertical accuracy compared to traditional non-differential approaches. This research demonstrates that deep-sea underwater target calibration can be achieved without high-precision time synchronization and in the presence of fixed ranging errors. The proposed framework has the potential to lower technological barriers for large-scale deep-sea network deployments and provides a robust foundation for autonomous deep-sea exploration. Full article
Show Figures

Figure 1

18 pages, 9419 KiB  
Article
STNet: Prediction of Underwater Sound Speed Profiles with an Advanced Semi-Transformer Neural Network
by Wei Huang, Junpeng Lu, Jiajun Lu, Yanan Wu, Hao Zhang and Tianhe Xu
J. Mar. Sci. Eng. 2025, 13(7), 1370; https://doi.org/10.3390/jmse13071370 - 18 Jul 2025
Viewed by 251
Abstract
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound [...] Read more.
The real-time acquisition of an accurate underwater sound velocity profile (SSP) is crucial for tracking the propagation trajectory of underwater acoustic signals, making it play a key role in ocean communication positioning. SSPs can be directly measured by instruments or inverted leveraging sound field data. Although measurement techniques provide a good accuracy, they are constrained by limited spatial coverage and require a substantial time investment. The inversion method based on the real-time measurement of acoustic field data improves operational efficiency but loses the accuracy of SSP estimation and suffers from limited spatial applicability due to its stringent requirements for ocean observation infrastructures. To achieve accurate long-term ocean SSP estimation independent of real-time underwater data measurements, we propose a semi-transformer neural network (STNet) specifically designed for simulating sound velocity distribution patterns from the perspective of time series prediction. The proposed network architecture incorporates an optimized self-attention mechanism to effectively capture long-range temporal dependencies within historical sound velocity time-series data, facilitating an accurate estimation of current SSPs or prediction of future SSPs. Through the architectural optimization of the transformer framework and integration of a time encoding mechanism, STNet could effectively improve computational efficiency. For long-term forecasting (using the Pacific Ocean as a case study), STNet achieved an annual average RMSE of 0.5811 m/s, outperforming the best baseline model, H-LSTM, by 26%. In short-term forecasting for the South China Sea, STNet further reduced the RMSE to 0.1385 m/s, demonstrating a 51% improvement over H-LSTM. Comparative experimental results revealed that STNet outperformed state-of-the-art models in predictive accuracy and maintained good computational efficiency, demonstrating its potential for enabling accurate long-term full-depth ocean SSP forecasting. Full article
Show Figures

Figure 1

18 pages, 2199 KiB  
Article
An Enhanced Approach for Sound Speed Profiles Inversion Using Remote Sensing Data: Sample Clustering and Physical Regression
by Zixuan Zhang, Ke Qu and Zhanglong Li
Electronics 2025, 14(14), 2822; https://doi.org/10.3390/electronics14142822 - 14 Jul 2025
Viewed by 249
Abstract
Sound speed profile (SSP) inversion based on remote sensing parameters allows for the acquisition of global quasi-real-time SSPs without the need for on-site measurements, thereby fulfilling the requirements of many acoustic applications. This study makes two enhancements to the single empirical orthogonal function [...] Read more.
Sound speed profile (SSP) inversion based on remote sensing parameters allows for the acquisition of global quasi-real-time SSPs without the need for on-site measurements, thereby fulfilling the requirements of many acoustic applications. This study makes two enhancements to the single empirical orthogonal function regression (SEOF-R) method. First, the k-means clustering algorithm is utilized to cluster SSP samples, ensuring the consistency of perturbation modes in the physical regression. Second, baroclinic modes are employed to derive a novel SSP basis function, named the ocean mode basis, which accurately characterizes the inversion relationship. Validation experiments using data from the South China Sea yield promising results. Compared with the SEOF-R method, the reconstruction error of the improved approach is reduced by 27%, with an average reconstruction error of 1.73 m/s. The average prediction transmission loss error decreases by 70%, reaching 1.29 dB within 50 km. The grid-free processing and low sample dependence of the proposed method further enhance the applicability and accuracy of remote sensing-based SSP inversion. Full article
(This article belongs to the Special Issue Low-Frequency Underwater Acoustic Signal Processing and Applications)
Show Figures

Figure 1

23 pages, 8011 KiB  
Article
Efficient Prediction of Shallow-Water Acoustic Transmission Loss Using a Hybrid Variational Autoencoder–Flow Framework
by Bolin Su, Haozhong Wang, Xingyu Zhu, Penghua Song and Xiaolei Li
J. Mar. Sci. Eng. 2025, 13(7), 1325; https://doi.org/10.3390/jmse13071325 - 10 Jul 2025
Viewed by 241
Abstract
Efficient prediction of shallow-water acoustic transmission loss (TL) is crucial for underwater detection, recognition, and communication systems. Traditional physical modeling methods require repeated calculations for each new scenario in practical waveguide environments, leading to low computational efficiency. Deep learning approaches, based on data-driven [...] Read more.
Efficient prediction of shallow-water acoustic transmission loss (TL) is crucial for underwater detection, recognition, and communication systems. Traditional physical modeling methods require repeated calculations for each new scenario in practical waveguide environments, leading to low computational efficiency. Deep learning approaches, based on data-driven principles, enable accurate input–output approximation and batch processing of large-scale datasets, significantly reducing computation time and cost. To establish a rapid prediction model mapping sound speed profiles (SSPs) to acoustic TL through controllable generation, this study proposes a hybrid framework that integrates a variational autoencoder (VAE) and a normalizing flow (Flow) through a two-stage training strategy. The VAE network is employed to learn latent representations of TL data on a low-dimensional manifold, while the Flow network is additionally used to establish a bijective mapping between the latent variables and underwater physical parameters, thereby enhancing the controllability of the generation process. Combining the trained normalizing flow with the VAE decoder could establish an end-to-end mapping from SSPs to TL. The results demonstrated that the VAE–Flow network achieved higher computational efficiency, with a computation time of 4 s for generating 1000 acoustic TL samples, versus the over 500 s required by the KRAKEN model, while preserving accuracy, with median structural similarity index measure (SSIM) values over 0.90. Full article
(This article belongs to the Special Issue Data-Driven Methods for Marine Structures)
Show Figures

Figure 1

23 pages, 37536 KiB  
Article
Underwater Sound Speed Profile Inversion Based on Res-SACNN from Different Spatiotemporal Dimensions
by Jiru Wang, Fangze Xu, Yuyao Liu, Yu Chen and Shu Liu
Remote Sens. 2025, 17(13), 2293; https://doi.org/10.3390/rs17132293 - 4 Jul 2025
Viewed by 288
Abstract
The sound speed profile (SSP) is an important feature in the field of ocean acoustics. The accurate estimation of SSP is significant for the development of underwater position, communication, and associated fundamental marine research. The Res-SACNN model is proposed for SSP inversion based [...] Read more.
The sound speed profile (SSP) is an important feature in the field of ocean acoustics. The accurate estimation of SSP is significant for the development of underwater position, communication, and associated fundamental marine research. The Res-SACNN model is proposed for SSP inversion based on the convolutional neural network (CNN) embedded with the residual network and self-attention mechanism. It combines the spatiotemporal characteristics of sea level anomaly (SLA) and sea surface temperature anomaly (SSTA) data and establishes a nonlinear relationship between satellite remote sensing data and sound speed field by deep learning. The single empirical orthogonal function regression (sEOF-r) method is used in a comparative experiment to confirm the model’s performance in both the time domain and the region. Experimental results demonstrate that the proposed model outperforms sEOF-r regarding both spatiotemporal generalization ability and inversion accuracy. The average root mean square error (RMSE) is decreased by 0.92 m/s in the time-domain experiment in the South China Sea, and the inversion results for each month are more consistent. The optimization ratio hits 71.8% and the average RMSE decreases by 7.39 m/s in the six-region experiment. The Res-SACNN model not only shows more superior inversion ability in the comparison with other deep-learning models, but also achieves strong generalization and real-time performance while maintaining low complexity, providing an improved technical tool for SSP estimation and sound field perception. Full article
Show Figures

Figure 1

25 pages, 9451 KiB  
Article
Acoustic-Based Machine Main State Monitoring for High-Speed CNC Drilling
by Pimolkan Piankitrungreang, Kantawatchr Chaiprabha, Worathris Chungsangsatiporn, Chanat Ratanasumawong, Peemdej Chancharoen and Ratchatin Chancharoen
Machines 2025, 13(5), 372; https://doi.org/10.3390/machines13050372 - 29 Apr 2025
Viewed by 634
Abstract
This paper introduces an acoustic-based monitoring system for high-speed CNC drilling, aimed at optimizing processes and enabling real-time machine state detection. High-fidelity acoustic sensors capture sound signals during drilling operations, allowing the identification of critical events such as tool engagement, material breakthrough, and [...] Read more.
This paper introduces an acoustic-based monitoring system for high-speed CNC drilling, aimed at optimizing processes and enabling real-time machine state detection. High-fidelity acoustic sensors capture sound signals during drilling operations, allowing the identification of critical events such as tool engagement, material breakthrough, and tool withdrawal. Advanced signal processing techniques, including spectrogram analysis and Fast Fourier Transform, extract dominant frequencies and acoustic patterns, while machine learning algorithms like DBSCAN clustering classify operational states such as cutting, breakthrough, and returning. Experimental studies on materials including acrylic, PTFE, and hardwood reveal distinct acoustic profiles influenced by material properties and drilling conditions. Smoother sound patterns and lower dominant frequencies characterize PTFE drilling, whereas hardwood produces higher frequencies and rougher patterns due to its density and resistance. These findings demonstrate the correlation between acoustic emissions and machining dynamics, enabling non-invasive real-time monitoring and predictive maintenance. As AI power increases, it is expected to extract in-situ process information and achieve higher resolution, enhancing precision in data interpretation and decision-making. A key contribution of this project is the creation of an open sound library for drilling processes, fostering collaboration and innovation in intelligent manufacturing. By integrating big data concepts and intelligent algorithms, the system supports continuous monitoring, anomaly detection, and process optimization. This AI-ready hardware enhances the accuracy and efficiency of drilling operations, improving quality, reducing tool wear, and minimizing downtime. The research establishes acoustic monitoring as a transformative approach to advancing CNC drilling processes and intelligent manufacturing systems. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

17 pages, 4035 KiB  
Article
A Novel Method for Inverting Deep-Sea Sound-Speed Profiles Based on Hybrid Data Fusion Combined with Surface Sound Speed
by Qiang Yuan, Weiming Xu, Shaohua Jin, Xiaohan Yu, Xiaodong Ma and Tong Sun
J. Mar. Sci. Eng. 2025, 13(4), 787; https://doi.org/10.3390/jmse13040787 - 15 Apr 2025
Viewed by 466
Abstract
Sound speed profiles (SSPs) must be detected simultaneously to perform a multibeam depth survey. Accurate real-time sound speed profile (SSP) acquisition remains a critical challenge in deep-sea multibeam bathymetry due to the limitations regarding direct measurements under harsh operational conditions. To address the [...] Read more.
Sound speed profiles (SSPs) must be detected simultaneously to perform a multibeam depth survey. Accurate real-time sound speed profile (SSP) acquisition remains a critical challenge in deep-sea multibeam bathymetry due to the limitations regarding direct measurements under harsh operational conditions. To address the issue, we propose a joint inversion framework integrating World Ocean Atlas 2023 (WOA23) temperature–salinity model data, historical in situ SSPs, and surface sound speed measurements. By constructing a high-resolution regional sound speed field through WOA23 and historical SSP fusion, this method effectively mitigates spatiotemporal heterogeneity and seasonal variability. The artificial lemming algorithm (ALA) is introduced to optimize the inversion of empirical orthogonal function (EOF) coefficients, enhancing global search efficiency while avoiding local optimization. An experimental validation in the northwest Pacific Ocean demonstrated that the proposed method has a better performance than that of conventional substitution, interpolation, and WOA23-only approaches. The results indicate that the mean absolute error (MAE), root mean square error (RMSE), and maximum error (ME) of SSP reconstruction are reduced by 41.5%, 46.0%, and 49.4%, respectively. When the reconstructed SSPs are applied to multibeam bathymetric correction, depth errors are further reduced to 0.193 m (MAE), 0.213 m (RMSE), and 0.394 m (ME), effectively suppressing the “smiley face” distortion caused by sound speed gradient anomalies. The dynamic selection of the first six EOF modes balances computational efficiency and reconstruction fidelity. This study provides a robust solution for real-time SSP estimation in data-scarce deep-sea environments, particularly for underwater autonomous vehicles. This method effectively mitigates the seabed distortion caused by missing real-time SSPs, significantly enhancing the accuracy and efficiency of deep-sea multibeam surveys. Full article
(This article belongs to the Special Issue Advanced Research in Marine Environmental and Fisheries Acoustics)
Show Figures

Figure 1

12 pages, 6351 KiB  
Article
The Effect of Heat Input on the Microstructure and Mechanical Properties of Laser-Backing Welded X80 Steel
by Changjiang Wang, Gang Wei, Xiaosong Shi, Feng Wang, Shimin Zhang, Meimei Yang, Chen Yan and Songyang Li
Crystals 2025, 15(4), 359; https://doi.org/10.3390/cryst15040359 - 14 Apr 2025
Viewed by 507
Abstract
The research and related tests aimed to investigate the effect of different heat inputs on the microstructure and properties of the joint when using laser-backing welding for X80 steel, with the purpose of guiding a reasonable adjustment of heat inputs to obtain a [...] Read more.
The research and related tests aimed to investigate the effect of different heat inputs on the microstructure and properties of the joint when using laser-backing welding for X80 steel, with the purpose of guiding a reasonable adjustment of heat inputs to obtain a sound and high-quality joint, and ultimately laying the foundation for the engineering application of laser-backing welding. The fiber-laser-backing welding is performed on a 22 mm thick X80 steel, before which a groove is prepared and assembled; joints were obtained under different heat inputs (162, 180, 210, 270 J/mm) with orthogonal combinations of laser power and welding speed. The microstructure and properties of the joints were characterized by using an optical microscope, scanning electron microscope, and microhardness tester. According to this investigation, the morphology of the joint is directly affected by the heat input, and insufficient heat input (<180 J/mm) will lead to an unacceptable weld profile. The width of the weld and heat-affected zone gets bigger as the heat input increases. The hardness nephograms of the joints under different heat inputs show that the weld has the highest hardness, followed by the coarse-grain heat-affected zone and the fine-grain heat-affected zone, sequentially. The less heat input, the lower the joint hardness; when the heat input increases to 270 J/mm, the coarse-grain zone near the fusion line shows obvious hardening. In addition, heat input also affects the impact toughness of the weld. The grain size of X80 steel with a lower content of niobium easily becomes coarse under excessive heat input (270 J/mm), resulting in the degradation of the grain-boundary slip ability; hence, the impact toughness of the joint deteriorates. The optimal heat input of 210 J/mm was identified, achieving a grain size of nearly 14 µm and providing a balanced combination of lower strength and higher impact toughness. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

25 pages, 9308 KiB  
Article
A Multi-Spatial-Scale Ocean Sound Speed Profile Prediction Model Based on a Spatio-Temporal Attention Mechanism
by Shuwen Wang, Ziyin Wu, Shuaidong Jia, Dineng Zhao, Jihong Shang, Mingwei Wang, Jieqiong Zhou and Xiaoming Qin
J. Mar. Sci. Eng. 2025, 13(4), 722; https://doi.org/10.3390/jmse13040722 - 3 Apr 2025
Viewed by 507
Abstract
Marine researchers rely heavily on ocean sound velocity, a crucial hydroacoustic environmental metric that exhibits large geographical and temporal changes. Nowadays, spatio-temporal series prediction algorithms are emerging, but their prediction accuracy requires improvement. Moreover, in terms of ocean sound speed, most of these [...] Read more.
Marine researchers rely heavily on ocean sound velocity, a crucial hydroacoustic environmental metric that exhibits large geographical and temporal changes. Nowadays, spatio-temporal series prediction algorithms are emerging, but their prediction accuracy requires improvement. Moreover, in terms of ocean sound speed, most of these models predict an ocean sound speed profile (SSP) at a single coordinate position, and only a few predict multi-spatial-scale SSPs. Hence, this paper proposes a new data-driven method called STA-Conv-LSTM that combines convolutional long short-term memory (Conv-LSTM) and spatio-temporal attention (STA) to predict SSPs. We used a 234-month dataset of monthly mean sound speeds in the eastern Pacific Ocean from January 2004 to June 2023 to train the prediction model. We found that using 24 months of SSPs as the inputs to predict the SSPs of the following month yielded the highest accuracy. The results demonstrate that STA-Conv-LSTM can achieve predictions with an accuracy of more than 95% for both single-point and three-dimensional scenarios. We compared it against recurrent neural network, LSTM, and Conv-LSTM models with optimal parameter settings to demonstrate the model’s superiority. With a fitting accuracy of 95.12% and the lowest root-mean-squared error of 0.8978, STA-Conv-LSTM clearly outperformed the competition with respect to prediction accuracy and stability. This model not only predicts SSPs well but also will improve the spatial and temporal forecasts of other marine environmental factors. Full article
(This article belongs to the Special Issue Underwater Acoustic Field Modulation Technology)
Show Figures

Figure 1

11 pages, 672 KiB  
Article
Association Between Mandibular Cortical Erosion and Bone Mineral Density Assessed by Phalangeal Ultrasound and Dual Energy X-Ray Absorptiometry in Spanish Women
by Maria L. Canal-Macías, Vicente Vera-Rodríguez, Olga Leal-Hernández, Julián Fernando Calderón-García, Raúl Roncero-Martín, Francisco García-Blázquez, Sergio Rico-Martín, Fidel López-Espuela, José M. Morán, Juan Fabregat-Fernández, Jesús M. Lavado-García and María Pedrera-Canal
Diagnostics 2025, 15(4), 507; https://doi.org/10.3390/diagnostics15040507 - 19 Feb 2025
Viewed by 627
Abstract
Background and Objectives: Analysing the characteristics of the mandibular bone through panoramic radiographs could be useful as a prescreening tool for detecting individuals with osteoporosis. The aims of this study were to evaluate the possible associations between the mandibular cortical index (MCI) [...] Read more.
Background and Objectives: Analysing the characteristics of the mandibular bone through panoramic radiographs could be useful as a prescreening tool for detecting individuals with osteoporosis. The aims of this study were to evaluate the possible associations between the mandibular cortical index (MCI) and bone mineral density (BMD) in various bone regions, to investigate whether BMD better identifies moderate–severe mandibular erosion or severe mandibular erosion, and to establish BMD cut-off points to identify individuals with moderate or severe mandibular cortical erosion. Methods: This study analysed 179 Spanish Caucasian women between September 2021 and June 2024. Bone measurements, including amplitude-dependent speed of sound (Ad-SOS), the ultrasound bone profiler index (UBPI), and the bone transmission time (BTT), were obtained via dual energy X-ray absorptiometry (DXA) for the femoral neck, lumbar spine, and trochanter and quantitative bone ultrasound (QUS) for the phalanx. The MCI was calculated via the Klemetti index from panoramic radiographs. Results: According to the Klemetti index classification, lower QUS measurements in the phalanx and DXA measurements in the femoral neck, trochanter, and lumbar spine were found in women with poorer mandibular cortical bone quality. Our results revealed that, compared with moderate cortical erosion, all the BMD measures had better AUCs when identifying severe cortical erosion. Moreover, femoral neck BMD had the largest area under the curve (AUC = 0.719) for detecting severe mandibular cortical erosion, suggesting a cut-off of <0.703 gr/cm2. Finally, predictor analysis of osteoporosis revealed that moderate and severe mandibular cortical erosion, compared with an uninjured mandibular cortical area, was independently associated with a diagnosis of osteoporosis. Conclusions: In conclusion, MCI was associated with BMD measurements assessed by QUS and DXA in various bone regions. Our results suggest that the Klemetti index could be used as a predictor of osteoporosis and fracture risk. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Bone Diseases in 2025)
Show Figures

Figure 1

17 pages, 8331 KiB  
Article
A Novel Reconstruction Model for the Underwater Sound Speed Field Utilizing Ocean Remote Sensing Observations and Argo Profiles
by Yuhang Liu, Ming Li, Hongchen Li, Penghao Wang and Kefeng Liu
Water 2025, 17(4), 539; https://doi.org/10.3390/w17040539 - 13 Feb 2025
Cited by 2 | Viewed by 813
Abstract
The sound speed in the ocean has a considerable impact on the characteristics of underwater acoustic propagation. The swift gathering of the underwater three-dimensional (3D) sound speed field is essential for target detection, underwater acoustic communication, and navigation. Currently, the reconstruction of the [...] Read more.
The sound speed in the ocean has a considerable impact on the characteristics of underwater acoustic propagation. The swift gathering of the underwater three-dimensional (3D) sound speed field is essential for target detection, underwater acoustic communication, and navigation. Currently, the reconstruction of the underwater sound speed utilizing satellite remote sensing data of the sea surface has emerged as a significant area of research. However, dynamic activities within the ocean result in varying degrees of perturbation in the sound speed structure. Relying solely on sea surface information will restrict the accuracy of sound speed reconstruction. In response to this issue, by utilizing multi-source satellite remote sensing data alongside Argo profiles, we first implemented the random forest (RF) algorithm to establish the statistical mapping relationship from the sea surface temperature (SST), sea level anomaly (SLA), and absolute dynamic topography (ADT) to the density, and thus, reconstructed a 3D density field. Subsequently, based on the sea surface environmental information, we introduced the underwater vertical density as a novel input for sound speed calculations and proposed a new model for 3D sound speed field reconstruction (RF-SDR). The experimental results indicate that utilizing both the sea surface environmental variables and underwater density as inputs yielded an average root-mean-square error (RMSE) of 1.51 m/s for the reconstructed sound speed, along with an average mean absolute error (MAE) of 0.85 m/s. Following the incorporation of density into the reconstruction inputs, the two error metrics exhibited reductions of 31% and 35%, respectively. And the proposed RF-SDR model demonstrated a reduction in the RMSE by 36% and in the MAE by 43% when compared with the commonly utilized single Empirical Orthogonal Function regression (sEOF-r) method. Furthermore, simulations of the sound propagation with both the reconstructed sound speed and Argo sound speed demonstrated a high degree of consistency in the computed acoustic propagation losses. The correlation coefficients consistently exceeded 0.7, thereby reinforcing the validity of the reconstructed sound speed. Full article
Show Figures

Figure 1

19 pages, 7892 KiB  
Article
Horizontal Refraction Effects of Sound Propagation Within Continental Shelf Slope Environment: Modeling and Theoretical Analysis
by Jinci Wang, Bo Lei, Yixin Yang and Jianbo Zhou
J. Mar. Sci. Eng. 2025, 13(2), 217; https://doi.org/10.3390/jmse13020217 - 23 Jan 2025
Viewed by 887
Abstract
Horizontal refraction notably influences propagation characteristics with the variation of the waveguide environment. In this study, the horizontal refraction phenomenon at low frequencies was investigated in a sloping sea region with an incomplete vertical sound speed profile. Using the mode coupling theory, this [...] Read more.
Horizontal refraction notably influences propagation characteristics with the variation of the waveguide environment. In this study, the horizontal refraction phenomenon at low frequencies was investigated in a sloping sea region with an incomplete vertical sound speed profile. Using the mode coupling theory, this research explores the relationship between horizontal refraction and energy exchange among modes, examining the impact of environmental conditions on the horizontal refraction angle. Theoretical derivations and numerical simulations reveal the mechanisms by which the source depth and modal order influence the horizontal refraction. The analysis indicates that the horizontal refraction angle increases with the modal order when the real part of the horizontal wavenumber km at the source position is less than the wavenumber ks. In this situation, the horizontal refraction angle corresponding to the same modal order does not vary with the source depth. However, if the real part of km is larger than ks, then the horizontal refraction angle decreases as the source depth increases. This condition is due to the extremely small eigenfunction value at source depth of the low-order mode, thereby enhancing the mode coupling effect. The mode coupling is intimately associated with the mode excited by the source. Therefore, the source depth exerts a substantial influence on the horizontal refraction. Under these conditions, the modal order has a negligible effect on the horizontal refraction angle. Full article
(This article belongs to the Special Issue Advances in Underwater Positioning and Navigation Technology)
Show Figures

Figure 1

14 pages, 6956 KiB  
Article
Enhanced Inversion of Sound Speed Profile Based on a Physics-Inspired Self-Organizing Map
by Guojun Xu, Ke Qu, Zhanglong Li, Zixuan Zhang, Pan Xu, Dongbao Gao and Xudong Dai
Remote Sens. 2025, 17(1), 132; https://doi.org/10.3390/rs17010132 - 2 Jan 2025
Cited by 1 | Viewed by 762
Abstract
The remote sensing-based inversion of sound speed profile (SSP) enables the acquisition of high-spatial-resolution SSP without in situ measurements. The spatial division of the inversion grid is crucial for the accuracy of results, determining both the number of samples and the consistency of [...] Read more.
The remote sensing-based inversion of sound speed profile (SSP) enables the acquisition of high-spatial-resolution SSP without in situ measurements. The spatial division of the inversion grid is crucial for the accuracy of results, determining both the number of samples and the consistency of inversion relationships. The result of our research is the introduction of a physics-inspired self-organizing map (PISOM) that facilitates SSP inversion by clustering samples according to the physical perturbation law. The linear physical relationship between sea surface parameters and the SSP drives dimensionality reduction for the SOM, resulting in the clustering of samples exhibiting similar disturbance laws. Subsequently, samples within each cluster are generalized to construct the topology of the solution space for SSP reconstruction. The PISOM method significantly improves accuracy compared with the SOM method without clustering. The PISOM has an SSP reconstruction error of less than 2 m/s in 25% of cases, while the SOM method has none. The transmission loss calculation also shows promising results, with an error of only 0.5 dB at 30 km, 5.5 dB smaller than that of the SOM method. A physical interpretation of the neural network processing confirms that physics-inspired clustering can bring better precision gains than the previous spatial grid. Full article
(This article belongs to the Special Issue Artificial Intelligence for Ocean Remote Sensing)
Show Figures

Figure 1

Back to TopTop