Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = sonophotocatalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 14323 KB  
Article
Synergistic Effect of Sono-Photocatalysis on the Degradation of Rhodamine B Dye Using BiFeO3 Nanoparticles Synthesized via a Modified Combustion Method
by Anel I. Robles-Cortes, Daniel Flores-Ramírez, Lissette Medina-de la Rosa, Denisse F. González-Ramírez, José Ortiz-Landeros and Issis C. Romero-Ibarra
Ceramics 2024, 7(4), 1880-1894; https://doi.org/10.3390/ceramics7040118 - 4 Dec 2024
Cited by 2 | Viewed by 2083
Abstract
Water contamination has become a global concern, and the prevalence of complex substances known as emerging contaminants constitute a risk to human health and the environment. This work focused on an innovative approach of integrating sonolysis and photocatalysis to remove a standard textile [...] Read more.
Water contamination has become a global concern, and the prevalence of complex substances known as emerging contaminants constitute a risk to human health and the environment. This work focused on an innovative approach of integrating sonolysis and photocatalysis to remove a standard textile dye efficiently. A highly photo-active, bismuth ferrite (BiFeO3) nanocatalyst with single particle sizes between 86 and 265 nm was obtained by a novel one-pot combustion method using a deep eutectic solvent as a precursor. The said catalyst was thoroughly characterized and evaluated for photocatalytic and sono-photocatalytic degradation of rhodamine B (RhB). Photocatalytic experiments were conducted under visible light irradiation (450–600 nm). Sono-photocatalytic (SPC) experiments were conducted, focusing on the influence of operational parameters (frequency, power, and pH) on the degradation performance. High-frequency values of 578, 866, and 1138 kHz were explored to promote cavitation dynamics and reactive species generation, improving removal efficiency. Results demonstrated that when sonolysis and photocatalysis were performed separately, the degradation efficiency ranged between 85 and 87%. Remarkably, when the combined SPC degradation was carried out, the RhB removal reached about 99.9% after 70 min. It is discussed that this behavior is due to the increased generation of OH radicals as a product of the cavitation phenomena related to the ultrasound-assisted process. Moreover, it is argued that SPC significantly improves reaction kinetics and mass transfer rates, facilitating catalyst dispersion and contact with the RhB molecules. Finally, the stability of the catalyst was evaluated in five repeated RhB removal cycles, where the activity remained consistently strong. Full article
Show Figures

Graphical abstract

28 pages, 1948 KB  
Review
Nanomaterial-Enhanced Hybrid Disinfection: A Solution to Combat Multidrug-Resistant Bacteria and Antibiotic Resistance Genes in Wastewater
by Tapas Kumar Mandal
Nanomaterials 2024, 14(22), 1847; https://doi.org/10.3390/nano14221847 - 19 Nov 2024
Cited by 14 | Viewed by 2171
Abstract
This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, [...] Read more.
This review explores the potential of nanomaterial-enhanced hybrid disinfection methods as effective strategies for addressing the growing challenge of multidrug-resistant (MDR) bacteria and antibiotic resistance genes (ARGs) in wastewater treatment. By integrating hybrid nanocomposites and nanomaterials, natural biocides such as terpenes, and ultrasonication, this approach significantly enhances disinfection efficiency compared to conventional methods. The review highlights the mechanisms through which hybrid nanocomposites and nanomaterials generate reactive oxygen species (ROS) under blue LED irradiation, effectively disrupting MDR bacteria while improving the efficacy of natural biocides through synergistic interactions. Additionally, the review examines critical operational parameters—such as light intensity, catalyst dosage, and ultrasonication power—that optimize treatment outcomes and ensure the reusability of hybrid nanocomposites and other nanomaterials without significant loss of photocatalytic activity. Furthermore, this hybrid method shows promise in degrading ARGs, thereby addressing both microbial and genetic pollution. Overall, this review underscores the need for innovative wastewater treatment solutions that are efficient, sustainable, and scalable, contributing to the global fight against antimicrobial resistance. Full article
Show Figures

Figure 1

27 pages, 4239 KB  
Review
Advancing Wastewater Treatment: A Comparative Study of Photocatalysis, Sonophotolysis, and Sonophotocatalysis for Organics Removal
by Szabolcs Bognár, Dušica Jovanović, Vesna Despotović, Nina Finčur, Predrag Putnik and Daniela Šojić Merkulov
Processes 2024, 12(6), 1256; https://doi.org/10.3390/pr12061256 - 18 Jun 2024
Cited by 8 | Viewed by 4816
Abstract
Clear and sanitarily adequate water scarcity is one of the greatest problems of modern society. Continuous population growth, rising organics concentrations, and common non-efficient wastewater treatment technologies add to the seriousness of this issue. The employment of various advanced oxidation processes (AOPs) in [...] Read more.
Clear and sanitarily adequate water scarcity is one of the greatest problems of modern society. Continuous population growth, rising organics concentrations, and common non-efficient wastewater treatment technologies add to the seriousness of this issue. The employment of various advanced oxidation processes (AOPs) in water treatment is becoming more widespread. In this review, the state-of-the-art application of three AOPs is discussed in detail: photocatalysis, sonophotolysis, and sonophotocatalysis. Photocatalysis utilizes semiconductor photocatalysts to degrade organic pollutants under light irradiation. Sonophotolysis combines ultrasound and photolysis to generate reactive radicals, enhancing the degradation of organic pollutants. Sonophotocatalysis synergistically combines ultrasound with photocatalysis, resulting in improved degradation efficiency compared to individual processes. By studying this paper, readers will get an insight into the latest published data regarding the above-mentioned processes from the last 10 years. Different factors are compared and discussed, such as degradation efficiency, reaction kinetics, catalyst type, ultrasound frequency, or water matrix effects on process performance. In addition, the economic aspects of sonophotolysis, photocatalysis, and sonophotocatalysis will be also analyzed and compared to other processes. Also, the future research directions and potential applications of these AOPs in wastewater treatment will be highlighted. This review offers invaluable insights into the selection and optimization of AOPs. Full article
(This article belongs to the Special Issue 2nd Edition of Innovation in Chemical Plant Design)
Show Figures

Graphical abstract

17 pages, 4309 KB  
Article
Effects of Lanthanum Substitution and Annealing on Structural, Morphologic, and Photocatalytic Properties of Nickel Ferrite
by Thomas Dippong, Dana Toloman, Mihaela Diana Lazar and Ioan Petean
Nanomaterials 2023, 13(24), 3096; https://doi.org/10.3390/nano13243096 - 7 Dec 2023
Cited by 29 | Viewed by 1870
Abstract
Nanoparticles of NiLaxFe2−xO4 ferrite spinel incorporated in a SiO2 matrix were synthesized via a sol-gel method, followed by annealing at 200, 500, and 800 °C. The resulting materials were characterized via XRD, AFM, and BET techniques and [...] Read more.
Nanoparticles of NiLaxFe2−xO4 ferrite spinel incorporated in a SiO2 matrix were synthesized via a sol-gel method, followed by annealing at 200, 500, and 800 °C. The resulting materials were characterized via XRD, AFM, and BET techniques and evaluated for photocatalytic activity. The XRD diffractograms validate the formation of a single-phase cubic spinel structure at all temperatures, without any evidence of secondary peaks. The size of crystallites exhibited a decrease from 37 to 26 nm with the substitution of Fe3+ with La3+ ions. The lattice parameters and crystallite sizes were found to increase with the rise in La3+ content and annealing temperature. Isotherms were employed to calculate the rate constants for the decomposition of malonate precursors to ferrites and the activation energy for each ferrite. All nanocomposites have pores within the mesoporous range, with a narrow dispersion of pore sizes. The impact of La content on sonophotocatalytic activity was evaluated by studying Rhodamine B degradation under visible light irradiation. The results indicate that the introduction of La enhances nanocomposite performance. The prepared Ni-La ferrites may have potential application for water decontamination. Full article
Show Figures

Figure 1

18 pages, 3583 KB  
Review
Application of Photocatalysis and Sonocatalysis for Treatment of Organic Dye Wastewater and the Synergistic Effect of Ultrasound and Light
by Guowei Wang and Hefa Cheng
Molecules 2023, 28(9), 3706; https://doi.org/10.3390/molecules28093706 - 25 Apr 2023
Cited by 60 | Viewed by 6064
Abstract
Organic dyes play vital roles in the textile industry, while the discharge of organic dye wastewater in the production and utilization of dyes has caused significant damage to the aquatic ecosystem. This review aims to summarize the mechanisms of photocatalysis, sonocatalysis, and sonophotocatalysis [...] Read more.
Organic dyes play vital roles in the textile industry, while the discharge of organic dye wastewater in the production and utilization of dyes has caused significant damage to the aquatic ecosystem. This review aims to summarize the mechanisms of photocatalysis, sonocatalysis, and sonophotocatalysis in the treatment of organic dye wastewater and the recent advances in catalyst development, with a focus on the synergistic effect of ultrasound and light in the catalytic degradation of organic dyes. The performance of TiO2-based catalysts for organic dye degradation in photocatalytic, sonocatalytic, and sonophotocatalytic systems is compared. With significant synergistic effect of ultrasound and light, sonophotocatalysis generally performs much better than sonocatalysis or photocatalysis alone in pollutant degradation, yet it has a much higher energy requirement. Future research directions are proposed to expand the fundamental knowledge on the sonophotocatalysis process and to enhance its practical application in degrading organic dyes in wastewater. Full article
(This article belongs to the Special Issue Catalytic Nanomaterials: Energy and Environment)
Show Figures

Graphical abstract

19 pages, 4229 KB  
Article
Enhanced Sonophotocatalytic Degradation of Acid Red 14 Using Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) Based on Metal-Organic Framework
by Sulieman Ibraheem Shelash Al-Hawary, Razzagh Rahimpoor, Abdolrasoul Rahmani, Rosario Mireya Romero-Parra, Andrés Alexis Ramírez-Coronel, Firas Rahi Alhachami, Nezamaddin Mengelizadeh and Davoud Balarak
Catalysts 2023, 13(2), 411; https://doi.org/10.3390/catal13020411 - 15 Feb 2023
Cited by 44 | Viewed by 3411
Abstract
Here, the magnetic Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) with a new core-shell structure was synthesized, and its sonophotocatalytic properties were evaluated for acid red 14 (AR14) degradation. Particle characterizations were determined by scanning electron microscope (SEM), transmission electron microscopy (TEM), [...] Read more.
Here, the magnetic Fe3O4@SiO2/PAEDTC@MIL-101 (Fe) with a new core-shell structure was synthesized, and its sonophotocatalytic properties were evaluated for acid red 14 (AR14) degradation. Particle characterizations were determined by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and vibrating-sample magnetometer (VSM), and the analysis results offered an excellent synthesis of mesoporous particles. Fe3O4@SiO2/PAEDTC@MIL-101 (Fe)/UV/US showed high degradation kinetics rate (0.0327 min−1) compared to sonocatalytic processes (0.0181 min−1), photocatalytic (0218 min−1), sonolysis (0.008 min−1), and photolysis (0.005 min−1). Maximum removal efficiencies of AR14 (100%) and total organic carbon (69.96%) were obtained at pH of 5, catalyst mass of 0.5 g/L, initial AR14 concentration of 50 mg/L, and ultrasound power of 36 W. Evaluation of BOD5/COD ratio during dye treatment confirmed that the sonophotocatalysis process can be useful for converting major contaminant molecules into biodegradable compounds. After recycling eight times, the prepared composite still has sonophotocatalytic degradation stability above 90% for AR14. Scavenging tests confirmed that holes (h+) and hydroxyl (OH) were the pivotal agents in the decomposition system. Based on the results, the synthesized sample can be suggested as an excellent and promising sonophotocatalyst for the degradation of AR14 dye and its conversion into biodegradable compounds. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Application of Porous Carbon Materials)
Show Figures

Figure 1

15 pages, 3139 KB  
Article
Impact of Ni Content on the Structure and Sonophotocatalytic Activity of Ni-Zn-Co Ferrite Nanoparticles
by Thomas Dippong, Oana Cadar, Firuta Goga, Dana Toloman and Erika Andrea Levei
Int. J. Mol. Sci. 2022, 23(22), 14167; https://doi.org/10.3390/ijms232214167 - 16 Nov 2022
Cited by 32 | Viewed by 2134
Abstract
The structure, morphology, and sonophotocatalytic activity of Ni-Zn-Co ferrite nanoparticles, embedded in a SiO2 matrix and produced by a modified sol-gel method, followed by thermal treatment, were investigated. The thermal analysis confirmed the formation of metal succinate precursors up to 200 °C, [...] Read more.
The structure, morphology, and sonophotocatalytic activity of Ni-Zn-Co ferrite nanoparticles, embedded in a SiO2 matrix and produced by a modified sol-gel method, followed by thermal treatment, were investigated. The thermal analysis confirmed the formation of metal succinate precursors up to 200 °C, their decomposition to metal oxides and the formation of Ni-Zn-Co ferrites up to 500 °C. The crystalline phases, crystallite size and lattice parameter were determined based on X-ray diffraction patterns. Transmission electron microscopy revealed the shape, size, and distribution pattern of the ferrite nanoparticles. The particle sizes ranged between 34 and 40 nm. All the samples showed optical responses in the visible range. The best sonophotocatalytic activity against the rhodamine B solution under visible irradiation was obtained for Ni0.3Zn0.3Co0.4Fe2O4@SiO2. Full article
Show Figures

Figure 1

10 pages, 2181 KB  
Article
Characteristics and Sonophotocatalytic Activity of Natural Sphalerite under Ultrasonic (1.7 MHz) and UVA LED (365 nm) Irradiation
by Svetlana Popova, Victoria Tazetdinova, Erzhena Pavlova, Galina Matafonova and Valeriy Batoev
Materials 2022, 15(15), 5412; https://doi.org/10.3390/ma15155412 - 5 Aug 2022
Cited by 1 | Viewed by 1921
Abstract
Naturally occurring sono- and photoactive minerals, which are abundant on Earth, represent an attractive alternative to the synthesized sonophotocatalysts as cost-effective materials for water and wastewater treatment. This study focuses on characterizing and evaluating the sonophotocatalytic activity of natural sphalerite (NatS) from Dovatka [...] Read more.
Naturally occurring sono- and photoactive minerals, which are abundant on Earth, represent an attractive alternative to the synthesized sonophotocatalysts as cost-effective materials for water and wastewater treatment. This study focuses on characterizing and evaluating the sonophotocatalytic activity of natural sphalerite (NatS) from Dovatka deposit (Siberia) under high-frequency ultrasonic (US, 1.7 MHz) and ultraviolet light-emitting diodes (UVA LED, 365 nm) irradiation towards degradation of 4-chlorophenol as a model organic pollutant. Since raw natural sphalerite did not exhibit a measurable photocatalytic activity, it was calcined at 500, 900 and 1200 °C. The natural sphalerite after calcination at 900 °C (NatS*) was found to be the most effective for sonophotocatalytic degradation of 4-chlorophenol, attaining the highest efficiency (55%, 1 h exposure) in the following row: UV < US ≈ UV/US ≈ US/NatS* < UV/NatS* < UV/US/NatS*. Addition of 1 mM H2O2 increased the removal to 74% by UV/US/NatS*/H2O2 process. An additive effect between UV/NatS* and US/NatS* processes was observed in the sonophotocatalytic system as well as in the H2O2-assisted system. We assume that the sonophotocatalytic hybrid process, which is based on the simultaneous use of high-frequency ultrasound, UVA light, calcined natural sphalerite and H2O2, could provide a basis of an environmentally safe and cost-effective method of elimination of organic pollutants from aqueous media. Full article
(This article belongs to the Special Issue Emerging Materials for Attaining Carbon Neutrality in Water Treatment)
Show Figures

Figure 1

12 pages, 1742 KB  
Article
Sonophotocatalysis—Limits and Possibilities for Synergistic Effects
by Dirk Paustian, Marcus Franke, Michael Stelter and Patrick Braeutigam
Catalysts 2022, 12(7), 754; https://doi.org/10.3390/catal12070754 - 8 Jul 2022
Cited by 17 | Viewed by 2949
Abstract
Advanced oxidation processes are promising techniques for water remediation and degradation of micropollutants in aqueous systems. Since single processes such as sonolysis and photocatalysis exhibit limitations, combined AOP systems can enhance degradation efficiency. The present work addresses the synergistic intensification potential of an [...] Read more.
Advanced oxidation processes are promising techniques for water remediation and degradation of micropollutants in aqueous systems. Since single processes such as sonolysis and photocatalysis exhibit limitations, combined AOP systems can enhance degradation efficiency. The present work addresses the synergistic intensification potential of an ultrasound-assisted photocatalysis (sonophotocatalysis) for bisphenol A degradation with a low-frequency sonotrode (f = 20 kHz) in a batch-system. The effects of energy input and suspended photocatalyst dosage (TiO2-nanoparticle, m = 0–0.5 g/L) were investigated. To understand the synergistic effects, the sonication characteristics were investigated by bubble-field analysis, hydrophone measurements, and chemiluminescence of luminol to identify cavitation areas due to the generation of hydroxyl radicals. Comparing the sonophotocatalysis with sonolysis and photocatalysis (incl. mechanical stirring), synergies up to 295% and degradation rates of up to 1.35 min−1 were achieved. Besides the proof of synergistic intensification, the investigation of energy efficiency for a degradation degree of 80% shows that a process optimization can be realized. Thus, it could be demonstrated that there is an effective limit of energy input depending on the TiO2 dosage. Full article
Show Figures

Figure 1

40 pages, 5745 KB  
Review
Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation
by Dimitrios A. Giannakoudakis, Foteini F. Zormpa, Antigoni G. Margellou, Abdul Qayyum, Ramón Fernando Colmenares-Quintero, Christophe Len, Juan Carlos Colmenares and Konstantinos S. Triantafyllidis
Nanomaterials 2022, 12(10), 1679; https://doi.org/10.3390/nano12101679 - 14 May 2022
Cited by 30 | Viewed by 6160
Abstract
The continuous increase of the demand in merchandise and fuels augments the need of modern approaches for the mass-production of renewable chemicals derived from abundant feedstocks, like biomass, as well as for the water and soil remediation pollution resulting from the anthropogenic discharge [...] Read more.
The continuous increase of the demand in merchandise and fuels augments the need of modern approaches for the mass-production of renewable chemicals derived from abundant feedstocks, like biomass, as well as for the water and soil remediation pollution resulting from the anthropogenic discharge of organic compounds. Towards these directions and within the concept of circular (bio)economy, the development of efficient and sustainable catalytic processes is of paramount importance. Within this context, the design of novel catalysts play a key role, with carbon-based nanocatalysts (CnCs) representing one of the most promising class of materials. In this review, a wide range of CnCs utilized for biomass valorization towards valuable chemicals production, and for environmental remediation applications are summarized and discussed. Emphasis is given in particular on the catalytic production of 5-hydroxymethylfurfural (5-HMF) from cellulose or starch-rich food waste, the hydrogenolysis of lignin towards high bio-oil yields enriched predominately in alkyl and oxygenated phenolic monomers, the photocatalytic, sonocatalytic or sonophotocatalytic selective partial oxidation of 5-HMF to 2,5-diformylfuran (DFF) and the decomposition of organic pollutants in aqueous matrixes. The carbonaceous materials were utilized as stand-alone catalysts or as supports of (nano)metals are various types of activated micro/mesoporous carbons, graphene/graphite and the chemically modified counterparts like graphite oxide and reduced graphite oxide, carbon nanotubes, carbon quantum dots, graphitic carbon nitride, and fullerenes. Full article
(This article belongs to the Special Issue Nanoscale Materials for Water Purification and Catalysis)
Show Figures

Graphical abstract

23 pages, 36723 KB  
Article
Synthesis and Characterization of Carbon and Carbon-Nitrogen Doped Black TiO2 Nanomaterials and Their Application in Sonophotocatalytic Remediation of Treated Agro-Industrial Wastewater
by Saifur Rahman, Rab Nawaz, Javed Akbar Khan, Habib Ullah, Muhammad Irfan, Adam Glowacz, Katarzyna Lyp-Wronska, Lukasz Wzorek, Mohammad Kamal Asif Khan, Mohammed Jalalah, Mabkhoot A. Alsaiari and Abdulkarem H. Almawgani
Materials 2021, 14(20), 6175; https://doi.org/10.3390/ma14206175 - 18 Oct 2021
Cited by 21 | Viewed by 3159
Abstract
The conventional open ponding system employed for palm oil mill agro-effluent (POME) treatment fails to lower the levels of organic pollutants to the mandatory standard discharge limits. In this work, carbon doped black TiO2 (CB-TiO2) and carbon-nitrogen co-doped black TiO [...] Read more.
The conventional open ponding system employed for palm oil mill agro-effluent (POME) treatment fails to lower the levels of organic pollutants to the mandatory standard discharge limits. In this work, carbon doped black TiO2 (CB-TiO2) and carbon-nitrogen co-doped black TiO2 (CNB-TiO2) were synthesized via glycerol assisted sol-gel techniques and employed for the remediation of treated palm oil mill effluent (TPOME). Both the samples were anatase phase, with a crystallite size of 11.09–22.18 nm, lower bandgap of 2.06–2.63 eV, superior visible light absorption ability, and a high surface area of 239.99–347.26 m2/g. The performance of CNB-TiO2 was higher (51.48%) compared to only (45.72%) CB-TiO2. Thus, the CNB-TiO2 is employed in sonophotocatalytic reactions. Sonophotocatalytic process based on CNB-TiO2, assisted by hydrogen peroxide (H2O2), and operated at an ultrasonication (US) frequency of 30 kHz and 40 W power under visible light irradiation proved to be the most efficient for chemical oxygen demand (COD) removal. More than 90% of COD was removed within 60 min of sonophotocatalytic reaction, producing the effluent with the COD concentration well below the stipulated permissible limit of 50 mg/L. The electrical energy required per order of magnitude was estimated to be only 177.59 kWh/m3, indicating extreme viability of the proposed process for the remediation of TPOME. Full article
(This article belongs to the Special Issue Novel Nanoparticles and Nanomaterials: From Design to Applications)
Show Figures

Figure 1

26 pages, 9490 KB  
Article
Solochrome Dark Blue Azo Dye Removal by Sonophotocatalysis Using Mn2+ Doped ZnS Quantum Dots
by Jyoti Patel, Ajaya K. Singh, Bhawana Jain, Sushma Yadav, Sónia A. C. Carabineiro and Md. Abu Bin Hasan Susan
Catalysts 2021, 11(9), 1025; https://doi.org/10.3390/catal11091025 - 24 Aug 2021
Cited by 17 | Viewed by 5030
Abstract
This work investigates the degradation of the azo dye solochrome dark blue (SDB) by measurement of the photocatalytic, sonocatalytic and sonophotocatalytic activities, under low ultrasonic frequency (40 kHz) and UV-C (254 nm) light, using Mn-doped ZnS semiconductor quantum dots (Mn2+:ZnS Qds) [...] Read more.
This work investigates the degradation of the azo dye solochrome dark blue (SDB) by measurement of the photocatalytic, sonocatalytic and sonophotocatalytic activities, under low ultrasonic frequency (40 kHz) and UV-C (254 nm) light, using Mn-doped ZnS semiconductor quantum dots (Mn2+:ZnS Qds) as catalysts, prepared by a simple chemical precipitation procedure. In order to study the different morphological and optical crystal properties, various characterization techniques were used, such as high resolution transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, N2 adsorption-desorption at −196 °C and ultraviolet-visible spectroscopy. The average particle size of the semiconductor Qds was in the range of 3–4 nm. The optimal parameters affecting dye degradation, such as the catalyst loading, solution pH, time of irradiation, initial concentration of dye, dopant concentration, ultrasonic power and frequency effect were evaluated. The synthesized catalytic material exhibited a high activity for sonophotocatalytic degradation of SDB (89%), larger than that observed for sonocatalysis (69.7%) or photocatalysis (55.2%) alone, which was due to the improved electron-holes separation, formation of more reactive radicals and enhancement of the active surface area. Qds showed good stability and reusability after five repeated cycles. Finally, the degradation products were identified by liquid chromatography-mass spectrometry (LC-MS). Full article
Show Figures

Figure 1

21 pages, 4654 KB  
Article
Simulated Ageing of Crude Oil and Advanced Oxidation Processes for Water Remediation since Crude Oil Pollution
by Filomena Lelario, Giuliana Bianco, Sabino Aurelio Bufo and Laura Scrano
Catalysts 2021, 11(8), 954; https://doi.org/10.3390/catal11080954 - 10 Aug 2021
Cited by 2 | Viewed by 2634
Abstract
Crude oil can undergo biotic and abiotic transformation processes in the environment. This article deals with the fate of an Italian crude oil under simulated solar irradiation to understand (i) the modification induced on its composition by artificial ageing and (ii) the transformations [...] Read more.
Crude oil can undergo biotic and abiotic transformation processes in the environment. This article deals with the fate of an Italian crude oil under simulated solar irradiation to understand (i) the modification induced on its composition by artificial ageing and (ii) the transformations arising from different advanced oxidation processes (AOPs) applied as oil-polluted water remediation methods. The AOPs adopted were photocatalysis, sonolysis and, simultaneously, photocatalysis and sonolysis (sonophotocatalysis). Crude oil and its water-soluble fractions underwent analysis using GC-MS, liquid-state 1H-NMR, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), and fluorescence. The crude oil after light irradiation showed (i) significant modifications induced by the artificial ageing on its composition and (ii) the formation of potentially toxic substances. The treatment produced oil oxidation with a particular effect of double bonds oxygenation. Non-polar compounds present in the water-soluble oil fraction showed a strong presence of branched alkanes and a good amount of linear and aromatic alkanes. All remediation methods utilised generated an increase of C5 class and a decrease of C6–C9 types of compounds. The analysis of polar molecules elucidated that oxygenated compounds underwent a slight reduction after photocatalysis and a sharp decline after sonophotocatalytic degradation. Significant modifications did not occur by sonolysis. Full article
Show Figures

Figure 1

28 pages, 9440 KB  
Review
Degradation of Antibiotics in Wastewater: New Advances in Cavitational Treatments
by Emanuela Calcio Gaudino, Erica Canova, Pengyun Liu, Zhilin Wu and Giancarlo Cravotto
Molecules 2021, 26(3), 617; https://doi.org/10.3390/molecules26030617 - 25 Jan 2021
Cited by 61 | Viewed by 7413
Abstract
Over the past few decades, antibiotics have been considered emerging pollutants due to their persistence in aquatic ecosystems. Even at low concentrations, these pollutants contribute to the phenomenon of antibiotic resistance, while their degradation is still a longstanding challenge for wastewater treatment. In [...] Read more.
Over the past few decades, antibiotics have been considered emerging pollutants due to their persistence in aquatic ecosystems. Even at low concentrations, these pollutants contribute to the phenomenon of antibiotic resistance, while their degradation is still a longstanding challenge for wastewater treatment. In the present literature survey, we review the recent advances in synergistic techniques for antibiotic degradation in wastewater that combine either ultrasound (US) or hydrodynamic cavitation (HC) and oxidative, photo-catalytic, and enzymatic strategies. The degradation of sulfadiazine by HC/persulfate (PS)/H2O2/α-Fe2O3, US/PS/Fe0, and sono-photocatalysis with MgO@CNT nanocomposites processes; the degradation of tetracycline by US/H2O2/Fe3O4, US/O3/goethite, and HC/photocatalysis with TiO2 (P25) sono-photocatalysis with rGO/CdWO4 protocols; and the degradation of amoxicillin by US/Oxone®/Co2+ are discussed. In general, a higher efficiency of antibiotics removal and a faster structure degradation rate are reported under US or HC conditions as compared with the corresponding silent conditions. However, the removal of ciprofloxacin hydrochloride reached only 51% with US-assisted laccase-catalysis, though it was higher than those using US or enzymatic treatment alone. Moreover, a COD removal higher than 85% in several effluents of the pharmaceutical industry (500–7500 mg/L COD) was achieved by the US/O3/CuO process. Full article
Show Figures

Graphical abstract

19 pages, 4082 KB  
Article
Sonophotocatalytic Degradation of Malachite Green by Nanocrystalline Chitosan-Ascorbic Acid@NiFe2O4 Spinel Ferrite
by Imran Hasan, Akshara Bassi, Khadijah H. Alharbi, Ibtisam I. BinSharfan, Rais Ahmad Khan and Ali Alslame
Coatings 2020, 10(12), 1200; https://doi.org/10.3390/coatings10121200 - 9 Dec 2020
Cited by 34 | Viewed by 3674
Abstract
Statistics show that more than 700 thousand tons of dye are produced annually across the globe. Around 10–20% of this is used in industrial processes such as printing and dyeing, while about 50% of the dye produced is discharged into the environment without [...] Read more.
Statistics show that more than 700 thousand tons of dye are produced annually across the globe. Around 10–20% of this is used in industrial processes such as printing and dyeing, while about 50% of the dye produced is discharged into the environment without proper physicochemical treatment. Even trace amounts of dye in water can reduce oxygen solubility and have carcinogenic, mutagenic, and toxic effects on aquatic organisms. Therefore, before dye-containing wastewater is discharged into the environment, it must be properly treated. The present study investigates the green synthesis of nickel ferrite NiFe2O4 (NIFE) spinel magnetic nanoparticles (MNPs) via chemical coprecipitation of a solution of Ni2+/Fe3+ in the presence of a biopolymer blend of chitosan (CT) and ascorbic acid (AS). The magnetic nanomaterial was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy–energy dispersive X-ray analysis (SEM-EDX), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-Vis), differential scanning calorimetry (DSC), and vibrating-sample magnetometry (VSM). The material was further explored as a catalyst for the photocatalytic degradation of malachite green (MG) under visible light irradiation coupled with ultrasonic waves. The combination of 90 min of visible solar light irradiation with 6.35 W·mL−1 ultrasonic power at pH 8 resulted in 99% of the photocatalytic efficiency of chitosan-ascorbic acid@NIFE (CTAS@NIFE) catalyst for 70 mg·L−1 MG. The quenching of the photocatalytic efficiency from 98% to 64% in the presence of isopropyl alcohol (IPA) suggested the involvement of hydroxy (OH) radicals in the mineralization process of MG. The high regression coefficients (R2) of 0.99 for 35, 55, and 70 mg·L−1 MG indicated the sonophotocatalysis of MG by CTAS@NIFE was best defined by a pseudo first-order kinetic model. The mechanism involves the adsorption of MG on the catalyst surface in the first step and thereby mineralization of the MG by the generated hydroxyl radicals (OH) under the influence of visible radiation coupled with 6.34 W·mL−1 ultrasonic power. In the present study the application of photodegradation process with sonochemistry results in 99% of MG mineralization without effecting the material structure unlike happens in the case adsorption process. So, the secondary pollution (generally happens in case of adsorption) can be avoided by reusing the spent material for another application instead of disposing it. Thus, the ecofriendly synthesis protocol, ease in design of experimentation like use of solar irradiation instead of electric power lamps, reusability and high efficiency of the material suggested the study to be potentially economical for industrial development at pilot scale towards wastewater remediation. Full article
(This article belongs to the Special Issue Environmental Coatings on Nano-surfaces and Interfaces)
Show Figures

Graphical abstract

Back to TopTop