Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = sonochemical reactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 166 KiB  
Perspective
Reshaping Chemical Manufacturing Towards Green Process Intensification: Recent Findings and Perspectives
by Giancarlo Cravotto
Processes 2025, 13(2), 459; https://doi.org/10.3390/pr13020459 - 8 Feb 2025
Cited by 1 | Viewed by 1963
Abstract
The chemical industry faces major challenges despite recent progress in the transition to more environmentally friendly processes. Sustainable industrial chemistry relies on the optimization of protocols and downstream processes such as extraction, purification, and drying. Process intensification, which includes non-conventional techniques and continuous [...] Read more.
The chemical industry faces major challenges despite recent progress in the transition to more environmentally friendly processes. Sustainable industrial chemistry relies on the optimization of protocols and downstream processes such as extraction, purification, and drying. Process intensification, which includes non-conventional techniques and continuous manufacturing, has emerged as a key strategy to improve efficiency and environmental impact. Technologies such as ultrasound, microwaves, mechanochemistry, and reactive extrusion offer improved performance but face scalability and proprietary barriers. Flow chemistry offers additional benefits, including smaller reactors, lower energy consumption (from 40 to 90%), and increased safety through continuous, automated reactions. However, implementing these methods requires overcoming engineering, economic, and regulatory hurdles. Biphasic catalysis and sonochemical activation in liquid–liquid systems are promising approaches for scalable reactions under mild conditions. The pharmaceutical industry, a major source of waste, has shown resistance due to high validation costs and complex regulations. Fortunately, international regulatory institutions have introduced programs to facilitate the introduction of advanced technologies. Future perspectives emphasize the integration of modular, intensified processes with digitalization and smart manufacturing. Collaborative, transdisciplinary research will be crucial for accelerating commercialization and addressing sustainability challenges in chemical production. Full article
Show Figures

Graphical abstract

21 pages, 5666 KiB  
Article
Synthesis, Characterization, and In Vitro Cytotoxicity Evaluation of Doxorubicin-Loaded Magnetite Nanoparticles on Triple-Negative Breast Cancer Cell Lines
by Jano Markhulia, Shalva Kekutia, Vladimer Mikelashvili, Liana Saneblidze, Tamar Tsertsvadze, Nino Maisuradze, Nino Leladze, Zsolt Czigány and László Almásy
Pharmaceutics 2023, 15(6), 1758; https://doi.org/10.3390/pharmaceutics15061758 - 17 Jun 2023
Cited by 11 | Viewed by 3356
Abstract
In this study, we investigated the cytotoxicity of doxorubicin (DOX)-loaded magnetic nanofluids on 4T1 mouse tumor epithelial cells and MDA-MB-468 human triple-negative breast cancer (TNBC) cells. Superparamagnetic iron oxide nanoparticles were synthesized using sonochemical coprecipitation by applying electrohydraulic discharge treatment (EHD) in an [...] Read more.
In this study, we investigated the cytotoxicity of doxorubicin (DOX)-loaded magnetic nanofluids on 4T1 mouse tumor epithelial cells and MDA-MB-468 human triple-negative breast cancer (TNBC) cells. Superparamagnetic iron oxide nanoparticles were synthesized using sonochemical coprecipitation by applying electrohydraulic discharge treatment (EHD) in an automated chemical reactor, modified with citric acid and loaded with DOX. The resulting magnetic nanofluids exhibited strong magnetic properties and maintained sedimentation stability in physiological pH conditions. The obtained samples were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy, UV-spectrophotometry, dynamic light scattering (DLS), electrophoretic light scattering (ELS), vibrating sample magnetometry (VSM), and transmission electron microscopy (TEM). In vitro studies using the MTT method revealed a synergistic effect of the DOX-loaded citric-acid-modified magnetic nanoparticles on the inhibition of cancer cell growth and proliferation compared to treatment with pure DOX. The combination of the drug and magnetic nanosystem showed promising potential for targeted drug delivery, with the possibility of optimizing the dosage to reduce side-effects and enhance the cytotoxic effect on cancer cells. The nanoparticles’ cytotoxic effects were attributed to the generation of reactive oxygen species and the enhancement of DOX-induced apoptosis. The findings suggest a novel approach for enhancing the therapeutic efficacy of anticancer drugs and reducing their associated side-effects. Overall, the results demonstrate the potential of DOX-loaded citric-acid-modified magnetic nanoparticles as a promising strategy in tumor therapy, and provide insights into their synergistic effects. Full article
Show Figures

Figure 1

22 pages, 5375 KiB  
Article
Feed Effects on Water–Gas Shift Activity of M/Co3O4-ZrO2 (M = Pt, Pd, and Ru) and Potassium Role in Methane Suppression
by Satyapaul A. Singh, Yaddanapudi Varun, Priyanka Goyal, I. Sreedhar and Giridhar Madras
Catalysts 2023, 13(5), 838; https://doi.org/10.3390/catal13050838 - 4 May 2023
Cited by 5 | Viewed by 2459
Abstract
Water–gas shift (WGS) is an industrial process to tackle CO abatement and H2 upgradation. The syngas (CO and H2 mixture) obtained from steam or dry reformers often has unreacted (from dry reforming) or undesired (from steam reforming) CO2, which [...] Read more.
Water–gas shift (WGS) is an industrial process to tackle CO abatement and H2 upgradation. The syngas (CO and H2 mixture) obtained from steam or dry reformers often has unreacted (from dry reforming) or undesired (from steam reforming) CO2, which is subsequently sent to downstream WGS reactor for H2 upgradation. Thus, industrial processes must deal with CO2 and H2 in the reformate feed. Achieving high CO2 or H2 selectivities become challenging due to possible CO and CO2 methanation reactions, which further increases the separation costs to produce pure H2. In this study, M/Co3O4-ZrO2 (M = Ru, Pd and Pt) catalysts were prepared using sonochemical synthesis. The synthesized catalysts were tested for WGS activity under three feed conditions, namely, Feed A (CO and steam), Feed B (CO, H2 and steam) and Feed C (CO, H2, CO2 and steam). All the catalysts gave zero methane selectivity under Feed A conditions, whereas the methane selectivity was significant under Feed B and C conditions. Among all catalysts, PtCZ was found to be the best performing catalyst in terms of CO conversion and CO2 selectivity. However, it still suffered with low but significant methane selectivity. This best performing catalyst was further modified with an alkali component, potassium to suppress undesirable methane selectivity. All the catalysts were well characterized with BET, SEM, TEM to confirm the structural properties and effective doping of the noble metals. Additionally, the apparent activation energies were obtained to showcase the best catalyst. Full article
Show Figures

Graphical abstract

13 pages, 5688 KiB  
Article
Effect of Calcium Doping Using Aqueous Phase Reforming of Glycerol over Sonochemically Synthesized Nickel-Based Supported ZrO2 Catalyst
by Ain Syuhada, Mariam Ameen, Farooq Sher, Mohammad Tazli Azizan, Aqsha Aqsha, Mohd Hizami Mohd Yusoff and Muhamad Syafiq Hazwan Ruslan
Catalysts 2021, 11(8), 977; https://doi.org/10.3390/catal11080977 - 16 Aug 2021
Cited by 17 | Viewed by 3255
Abstract
The aqueous phase reforming (APR) of glycerol was studied using sonochemically synthesized 10%Ni-x%Ca/ZrO2 catalysts (where x = 0, 0.5, 3, and 5) for the production of value-added liquid products. The APR reaction was performed in a batch reactor under the following conditions: [...] Read more.
The aqueous phase reforming (APR) of glycerol was studied using sonochemically synthesized 10%Ni-x%Ca/ZrO2 catalysts (where x = 0, 0.5, 3, and 5) for the production of value-added liquid products. The APR reaction was performed in a batch reactor under the following conditions: 20 bar, 230 °C 450 rpm, and 1 h of reaction time. The synthesized catalysts were characterized using XRD, FESEM, BET, and H2-TPR to observe the effect of Ca doping on the physio-chemical properties of the catalysts. The results revealed that, at higher Ca loading, the catalysts experienced serious particles’ agglomeration, which resulted in a larger particles’ size, smaller surface area, and smaller pore volume owing to uneven distribution of the particles. The characterization results of the catalysts confirmed that the Us catalysts have a slightly higher surface area, pore volume, and pore size, as well as highly reducible and fine crystalline structure, compared with WI catalysts. The catalytic performance of the catalysts shows that 1,3-propanediol (1,3-PDO) and 1,2-propanediol (1,2-PDO) were the two main liquid products produced from this reaction. The highest selectivity of 1,3-PDO (23.84%) was obtained over the 10%Ni/ZrO2 catalyst, while the highest selectivity of 1,2-PDO (25.87%) was obtained over the 10%Ni-5%Ca/ZrO2 catalyst. Full article
(This article belongs to the Special Issue Novel Electrocatalysts for CO2 Reduction)
Show Figures

Figure 1

10 pages, 2073 KiB  
Article
On-Line Estimation of the Ultrasonic Power in a Continuous Flow Sonochemical Reactor
by Witold Ilewicz, Piotr Skupin, Dariusz Choiński, Wojciech Błotnicki and Zdzisław Bielecki
Energies 2020, 13(11), 2952; https://doi.org/10.3390/en13112952 - 9 Jun 2020
Viewed by 2946
Abstract
Sonochemical reactors can be very effective in many applications, including: degradation of chemical pollutants, inactivation of microorganisms, or production of biofuels. However, due to various factors, the ultrasonic power that is dissipated into sonicated liquid may vary in time. Hence, it is obvious [...] Read more.
Sonochemical reactors can be very effective in many applications, including: degradation of chemical pollutants, inactivation of microorganisms, or production of biofuels. However, due to various factors, the ultrasonic power that is dissipated into sonicated liquid may vary in time. Hence, it is obvious that the ultrasonic power must be known for an optimal design and operation of the sonoreactor. In this paper, we present a method for on-line estimation of the ultrasonic power in continuous flow sonoreactors. In this method, we design an observer that estimates unknown model parameters by using a mathematical model of the sonoreactor and by measuring input and output temperatures in the sonoreactor system. The effectiveness of the method is shown for a simulated and real continuous flow sonoreactors. We also discuss the possibilities of ultrasonic power stabilization by using control algorithms. Full article
Show Figures

Graphical abstract

14 pages, 1088 KiB  
Article
DeNOx Abatement Modelling over Sonically Prepared Copper USY and ZSM5 Structured Catalysts
by Przemysław J. Jodłowski, Łukasz Kuterasiński, Roman J. Jędrzejczyk, Damian Chlebda, Anna Gancarczyk, Sylwia Basąg and Lucjan Chmielarz
Catalysts 2017, 7(7), 205; https://doi.org/10.3390/catal7070205 - 6 Jul 2017
Cited by 18 | Viewed by 5379
Abstract
Metallic supports play an important role as structured reactor internals. Due to their specific properties including enhanced heat and mass transport, high mechanical resistivity and elimination of local hot-spots, they are commonly used in gas exhaust abatement from stationary and automotive industries. In [...] Read more.
Metallic supports play an important role as structured reactor internals. Due to their specific properties including enhanced heat and mass transport, high mechanical resistivity and elimination of local hot-spots, they are commonly used in gas exhaust abatement from stationary and automotive industries. In this study, the performance of three structured supports with deposited Cu/USY (Ultrastabilised Y—zeolite) for deNOx abatement were modelled. Based on kinetic and flow resistance experimental results, the one-dimensional (1D) model of structured reactor was developed. The performance of the structured reactors was compared by the length of the reactor necessary to achieve an arbitrary 90% NOx conversion. The performed simulations showed that the sonochemically prepared copper USY and ZSM-5 zeolites deposited on metallic supports may be successfully used as catalysts for deNOx process. Full article
(This article belongs to the Special Issue Structured and Micro-Structured Catalysts and Reactors)
Show Figures

Figure 1

Back to TopTop