Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = solar rechargeable battery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4274 KiB  
Article
Quantifying the Benefits of Hybrid Energy Harvesting from Natural Sources
by Antonietta Simone, Pasquale Marino, Roberto Greco and Alessandro Lo Schiavo
Electronics 2025, 14(7), 1400; https://doi.org/10.3390/electronics14071400 - 30 Mar 2025
Viewed by 552
Abstract
The increasing demand for self-powered sensors and wireless sensor networks, particularly for environmental and structural health monitoring applications, is driving the need for energy harvesting from natural sources. To fill a gap in the scientific literature, this study quantitatively investigates the advantages of [...] Read more.
The increasing demand for self-powered sensors and wireless sensor networks, particularly for environmental and structural health monitoring applications, is driving the need for energy harvesting from natural sources. To fill a gap in the scientific literature, this study quantitatively investigates the advantages of hybrid energy harvesters, which utilize multiple energy sources, compared to single-source harvesters. The analysis leverages a real-world dataset collected from a meteorological station in Cervinara, Southern Italy. The measured data are processed to estimate the energy that can be recovered from solar, wind, and rain sources using energy harvesters designed to supply low-power electronic devices. The available energy serves as the basis for optimizing the sizing of a hybrid energy harvester that effectively integrates the aforementioned energy sources. The system sizing, carried out under the constraint of ensuring a continuous and uninterrupted power supply to the load, quantifies the benefits of using a hybrid harvester over a single-source harvester. The results show that one of the main advantages of the hybrid solution is the reduction in the size of the storage device, enabling the replacement of rechargeable batteries with supercapacitors, which offer both environmental and reliability benefits. Full article
Show Figures

Figure 1

16 pages, 825 KiB  
Article
What Is the Optimal Sampling Time of Environmental Parameters? Fourier Analysis and Energy Harvesting to Reduce Sensors Consumption in Smart Greenhouses
by Cristian Bua, Davide Adami and Stefano Giordano
AgriEngineering 2025, 7(3), 82; https://doi.org/10.3390/agriengineering7030082 - 17 Mar 2025
Viewed by 661
Abstract
Smart greenhouses offer crucial solutions for reducing our atmospheric impact and resource waste. However, two fundamental challenges persist in their implementation, massive energy consumption and a high level of human intervention, particularly for sensor battery replacement or recharging. Unfortunately, sensors are indispensable in [...] Read more.
Smart greenhouses offer crucial solutions for reducing our atmospheric impact and resource waste. However, two fundamental challenges persist in their implementation, massive energy consumption and a high level of human intervention, particularly for sensor battery replacement or recharging. Unfortunately, sensors are indispensable in greenhouses and agriculture, such as for monitoring environmental parameters for air quality assessment. Therefore, while sensors cannot be eliminated, it is essential to optimize their energy consumption. This work introduces an energy-efficient monitoring system for smart greenhouses, aiming to reduce the energy consumption of individual sensors and enhance system sustainability. This study focuses on optimizing the sampling intervals of commonly monitored environmental parameters to minimize sensor energy usage while maintaining data acquisition accuracy adequate for the intended purpose. Additionally, to further reduce battery energy draw, an energy harvesting system using solar panels was implemented. In conclusion, adopting an optimal sampling strategy for each parameter significantly reduces energy consumption compared to fixed, inefficient sampling intervals commonly used in commercial weather stations. Furthermore, by employing an energy harvesting system for each sensor, leveraging the light emitted by greenhouse lamps and external sources ensures the autonomy of sensors within the greenhouse, thereby minimizing the need for human intervention for battery replacement and recharging. Full article
Show Figures

Figure 1

42 pages, 7208 KiB  
Review
On-Demand Energy Provisioning Scheme in Large-Scale WRSNs: Survey, Opportunities, and Challenges
by Gerald K. Ijemaru, Kenneth Li-Minn Ang, Jasmine Kah Phooi Seng, Augustine O. Nwajana, Phee Lep Yeoh and Emmanuel U. Oleka
Energies 2025, 18(2), 358; https://doi.org/10.3390/en18020358 - 15 Jan 2025
Viewed by 2035
Abstract
Wireless rechargeable sensor networks (WRSNs) have emerged as a critical infrastructure for monitoring and collecting data in large-scale and dynamic environments. The energy autonomy of sensor nodes is crucial for the sustained operation of WRSNs. This paper presents a comprehensive survey on the [...] Read more.
Wireless rechargeable sensor networks (WRSNs) have emerged as a critical infrastructure for monitoring and collecting data in large-scale and dynamic environments. The energy autonomy of sensor nodes is crucial for the sustained operation of WRSNs. This paper presents a comprehensive survey on the state-of-the-art approaches and technologies in on-demand energy provisioning in large-scale WRSNs. We explore various energy harvesting techniques, storage solutions, and energy management strategies tailored to the unique challenges posed by the dynamic and resource-constrained nature of WRSNs. This survey categorizes existing literature based on energy harvesting sources, including solar, kinetic, and ambient energy, and discusses advancements in energy storage technologies such as supercapacitors and rechargeable batteries. Furthermore, we investigate energy management techniques that adaptively balance energy consumption and harvesting, optimizing the overall network performance. In addition to providing a thorough overview of existing solutions, this paper identifies opportunities and challenges in the field of on-demand energy provisioning for large-scale WRSNs. By synthesizing current research efforts, this survey aims to provide insight to researchers and policymakers in understanding the landscape of on-demand energy provisioning in large-scale WRSNs. The insights gained from this study pave the way for future innovations and contribute to the development of sustainable and self-sufficient wireless sensor networks, critical for the advancement of applications such as environmental monitoring, precision agriculture, and smart cities. Full article
Show Figures

Figure 1

12 pages, 3982 KiB  
Article
Development of a Solar-Powered Edge Processing Perimeter Alert System with AI and LoRa/LoRaWAN Integration for Drone Detection and Enhanced Security
by Mateo Mejia-Herrera, Juan Botero-Valencia, José Ortega and Ruber Hernández-García
Drones 2025, 9(1), 43; https://doi.org/10.3390/drones9010043 - 10 Jan 2025
Cited by 1 | Viewed by 2163
Abstract
Edge processing is a trend in developing new technologies that leverage Artificial Intelligence (AI) without transmitting large volumes of data to centralized processing services. This technique is particularly relevant for security applications where there is a need to reduce the probability of intrusion [...] Read more.
Edge processing is a trend in developing new technologies that leverage Artificial Intelligence (AI) without transmitting large volumes of data to centralized processing services. This technique is particularly relevant for security applications where there is a need to reduce the probability of intrusion or data breaches and to decentralize alert systems. Although drone detection has received great research attention, the ability to identify helicopters expands the spectrum of aerial threats that can be detected. In this work, we present the development of a perimeter alert system that integrates AI and multiple sensors processed at the edge. The proposed system can be integrated into a LoRa or LoRaWAN network powered by solar energy. The system incorporates a PDM microphone based on an Arduino Nano 33 BLE with a trained model to identify a drone or a UH-60 from an audio spectrogram to demonstrate its functionality. It is complemented by two PIR motion sensors and a microwave sensor with a range of up to 11 m. Additionally, the DC magnetic field is measured to identify possible sensor movements or changes caused by large bodies, and a configurable RGB light signal visually indicates motion or sound detection. The monitoring system communicates with a second MCU integrated with a LoRa or LoRaWAN communication module, enabling information transmission over distances of up to several kilometers. The system is powered by a LiPo battery, which is recharged using solar energy. The perimeter alert system offers numerous advantages, including edge processing for enhanced data privacy and reduced latency, integrating multiple sensors for increased accuracy, and a decentralized approach to improving security. Its compatibility with LoRa or LoRaWAN networks enables long-range communication, while solar-powered operation reduces environmental impact. These features position the perimeter alert system as a versatile and powerful solution for various applications, including border control, private property protection, and critical infrastructure monitoring. The evaluation results show notable progress in the acoustic detection of helicopters and drones under controlled conditions. Finally, all the original data presented in the study are openly available in an OSF repository. Full article
Show Figures

Figure 1

18 pages, 6363 KiB  
Article
Hybrid Alumina–Silica Filler for Thermally Conductive Epoxidized Natural Rubber
by Hassarutai Yangthong, Phattarawadee Nun-Anan, Apinya Krainoi, Boonphop Chaisrikhwun, Seppo Karrila and Suphatchakorn Limhengha
Polymers 2024, 16(23), 3362; https://doi.org/10.3390/polym16233362 - 29 Nov 2024
Viewed by 1695
Abstract
Thermally conductive composites were prepared based on epoxidized natural rubber (ENR) filled with alumina, silica, and hybrid alumina and silica. The thermal conductivity and mechanical properties were assessed. It was observed that the interactions of polar functional groups in the fillers and epoxy [...] Read more.
Thermally conductive composites were prepared based on epoxidized natural rubber (ENR) filled with alumina, silica, and hybrid alumina and silica. The thermal conductivity and mechanical properties were assessed. It was observed that the interactions of polar functional groups in the fillers and epoxy group in ENR supported a fine dispersion of filler in the ENR matrix. The mechanical properties were improved with alumina, silica, and hybrid alumina/silica loadings. The ENR/Silica composite at 50 phr of silica provided the highest 60 shore A hardness, a maximum 100% modulus up to 0.37 MPa, and the highest tensile strength of 27.3 MPa, while ENR/Alumina with 50 phr alumina gave the best thermal conductivity. The hybrid alumina/silica filler at 25/25 phr significantly improved the mechanical properties and thermal conductivity in an ENR composite. That is, the thermal conductivity of the ENR/Hybrid filler was 2.23 W/mK, much higher than that of gum ENR (1.16 W/mK). The experimental results were further analyzed using ANOVA and it was found that the ENR/Hybrid filler showed significant increases in mechanical and thermal properties compared to gum ENR. Moreover, silica in the hybrid composites contributed to higher strength when compared to both gum ENR and ENR/Alumina composites. The hybrid filler system also favors process ability with energy savings. As a result, ENR filled with hybrid alumina/silica is an alternative thermally conductive elastomeric material to expensive silicone rubber, and it could have commercial applications in the fabrication of electronic devices, solar energy conversion, rechargeable batteries, and sensors. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites II)
Show Figures

Graphical abstract

9 pages, 6206 KiB  
Article
Array of Graphene Solar Cells on 100 mm Silicon Wafers for Power Systems
by Syed M. Rahman, Md R. Kabir, Tamzeed B. Amin, James M. Mangum, Ashaduzzaman and Paul M. Thibado
Energies 2024, 17(23), 5895; https://doi.org/10.3390/en17235895 - 24 Nov 2024
Viewed by 1274
Abstract
High electrical conductivity and optical transparency make graphene a suitable candidate for photovoltaic-based power systems. In this study, we present the design and fabrication of an array of graphene-based Schottky junction solar cells. Using mainstream semiconductor manufacturing methods, we produced 96 solar cells [...] Read more.
High electrical conductivity and optical transparency make graphene a suitable candidate for photovoltaic-based power systems. In this study, we present the design and fabrication of an array of graphene-based Schottky junction solar cells. Using mainstream semiconductor manufacturing methods, we produced 96 solar cells from a single 100 mm diameter silicon wafer that was precoated with an oxide layer. The fabrication process involves removing the oxide layer over a select region, depositing metal contacts on both the oxide and bare silicon regions, and transferring large-area graphene onto the exposed silicon to create the photovoltaic interface. A single solar cell can provide up to 160 μA of short-circuit current and up to 0.42 V of open-circuit voltage. A series of solar cells are wired to recharge a 3 V battery intermittently, while the battery continuously powers a device. The solar cells and rechargeable battery together form a power system for any 3-volt low-power application. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 4095 KiB  
Article
Estimation of Photovoltaic Potential of Solar-Powered Electric Vehicle: Case Study of Commuters on Donghae Expressway, Korea
by Jangwon Suh
Appl. Sci. 2024, 14(15), 6574; https://doi.org/10.3390/app14156574 - 27 Jul 2024
Cited by 7 | Viewed by 1399
Abstract
Studies on solar electric vehicles (EVs) have focused on calculating the power generation in a specific environment without discussing its practical utility. To expand the awareness of the utility of solar EVs, their potential should be evaluated by considering the operation methods of [...] Read more.
Studies on solar electric vehicles (EVs) have focused on calculating the power generation in a specific environment without discussing its practical utility. To expand the awareness of the utility of solar EVs, their potential should be evaluated by considering the operation methods of users. This study investigated the photovoltaic (PV) potential of an EV integrated with PV modules while driving on an expressway. Tunnel and shadow areas were identified to determine unpowered areas on the expressway. The PVWatts model was used to evaluate the PV potential by the time of the year. For a single vehicle traveling at 60 km/h on the Donghae expressway section during both the summer and winter solstices, the amount of power generation is within 0.208–0.317 kWh, corresponding to 0.94–1.43% of the electricity consumed for driving. Furthermore, this study assumed that office workers commute on the Donghae expressway. Under the scenario considering the time of operation (traveling to and from work and parking at work) and the shading ratio, the rechargeable amount was more than 10% of the electricity consumption. The results showed that solar roofs are potential charging supplements for EV batteries. This study can provide the efficacy and optimal operation method of solar EVs for commuters. Full article
Show Figures

Figure 1

26 pages, 11644 KiB  
Review
Textiles for Very Cold Environments
by Tomasz Blachowicz, Maciej Malczyk, Ilda Kola, Guido Ehrmann, Eva Schwenzfeier-Hellkamp and Andrea Ehrmann
Processes 2024, 12(5), 927; https://doi.org/10.3390/pr12050927 - 1 May 2024
Cited by 2 | Viewed by 2603
Abstract
Textiles are often used to protect people from cold environments. While most garments are designed for temperatures not far below 0 °C, very cold regions on the earth near the poles or on mountains necessitate special clothing. The same is true for homeless [...] Read more.
Textiles are often used to protect people from cold environments. While most garments are designed for temperatures not far below 0 °C, very cold regions on the earth near the poles or on mountains necessitate special clothing. The same is true for homeless people who have few possibilities to warm up or workers in cooling chambers and other cold environments. Passive insulating clothing, however, can only retain body heat. Active heating, on the other hand, necessitates energy, e.g., by batteries, which are usually relatively heavy and have to be recharged regularly. This review gives an overview of energy-self-sufficient textile solutions for cold environments, including energy harvesting by textile-based or textile-integrated solar cells; piezoelectric sensors in shoes and other possibilities; energy storage in supercapacitors or batteries; and heating by electric energy or phase-change materials. Full article
(This article belongs to the Special Issue Smart Wearable Technology: Thermal Management and Energy Applications)
Show Figures

Figure 1

38 pages, 2713 KiB  
Review
A Review of 3D Printing Batteries
by Maryam Mottaghi and Joshua M. Pearce
Batteries 2024, 10(3), 110; https://doi.org/10.3390/batteries10030110 - 18 Mar 2024
Cited by 15 | Viewed by 10593
Abstract
To stabilize the Earth’s climate, large-scale transition is needed to non-carbon-emitting renewable energy technologies like wind and solar energy. Although these renewable energy sources are now lower-cost than fossil fuels, their inherent intermittency makes them unable to supply a constant load without storage. [...] Read more.
To stabilize the Earth’s climate, large-scale transition is needed to non-carbon-emitting renewable energy technologies like wind and solar energy. Although these renewable energy sources are now lower-cost than fossil fuels, their inherent intermittency makes them unable to supply a constant load without storage. To address these challenges, rechargeable electric batteries are currently the most promising option; however, their high capital costs limit current deployment velocities. To both reduce the cost as well as improve performance, 3D printing technology has emerged as a promising solution. This literature review provides state-of-the-art enhancements of battery properties with 3D printing, including efficiency, mechanical stability, energy and power density, customizability and sizing, production process efficiency, material conservation, and environmental sustainability as well as the progress in solid-state batteries. The principles, advantages, limitations, and recent advancements associated with the most common types of 3D printing are reviewed focusing on their contributions to the battery field. 3D printing battery components as well as full batteries offer design flexibility, geometric freedom, and material flexibility, reduce pack weight, minimize material waste, increase the range of applications, and have the potential to reduce costs. As 3D printing technologies become more accessible, the prospect of cost-effective production for customized batteries is extremely promising. Full article
(This article belongs to the Section Battery Processing, Manufacturing and Recycling)
Show Figures

Figure 1

27 pages, 4141 KiB  
Article
Supercapacitors as Key Enablers of Decarbonization and Renewable Energy Expansion in Poland
by Andrzej Nowrot and Anna Manowska
Sustainability 2024, 16(1), 216; https://doi.org/10.3390/su16010216 - 26 Dec 2023
Cited by 5 | Viewed by 2973
Abstract
Decarbonization and the replacement of coal-fired power plants with solar and wind farms require adequately large energy storage facilities. This is especially important in countries such as Poland, which still do not have a nuclear power plant. Supercapacitors represent a new generation of [...] Read more.
Decarbonization and the replacement of coal-fired power plants with solar and wind farms require adequately large energy storage facilities. This is especially important in countries such as Poland, which still do not have a nuclear power plant. Supercapacitors represent a new generation of energy storage. The paper demonstrates that the use of supercapacitors presents an opportunity to increase the share of solar and wind power plants in the energy market. Furthermore, there is no need to replace all coal plants (that are being gradually decommissioned) with nuclear ones. The paper underscores that any further decarbonization and increase in the share of renewable energy sources (RES) in the Polish energy market necessitates the deployment of large energy storage facilities. Rechargeable batteries have a short lifespan, and their production results in significant greenhouse gas emissions. The widespread use of supercapacitors in a new generation of energy storage unveils new possibilities and bolsters decarbonization efforts. Based on an annual analysis of hourly electricity production from wind farms and PVs, a formula is proposed to calculate the capacity of energy storage necessary for the operation of the grid-powered national electricity, mainly from RES. Full article
Show Figures

Figure 1

27 pages, 2317 KiB  
Review
Power Sources for Unmanned Aerial Vehicles: A State-of-the Art
by Yavinaash Naidu Saravanakumar, Mohamed Thariq Hameed Sultan, Farah Syazwani Shahar, Wojciech Giernacki, Andrzej Łukaszewicz, Marek Nowakowski, Andriy Holovatyy and Sławomir Stępień
Appl. Sci. 2023, 13(21), 11932; https://doi.org/10.3390/app132111932 - 31 Oct 2023
Cited by 33 | Viewed by 12393
Abstract
Over the past few years, there has been an increasing fascination with electric unmanned aerial vehicles (UAVs) because of their capacity to undertake demanding and perilous missions while also delivering advantages in terms of flexibility, safety, and expenses. These UAVs are revolutionizing various [...] Read more.
Over the past few years, there has been an increasing fascination with electric unmanned aerial vehicles (UAVs) because of their capacity to undertake demanding and perilous missions while also delivering advantages in terms of flexibility, safety, and expenses. These UAVs are revolutionizing various public services, encompassing real-time surveillance, search and rescue operations, wildlife assessments, delivery services, wireless connectivity, and precise farming. To enhance their efficiency and duration, UAVs typically employ a hybrid power system. This system integrates diverse energy sources, such as fuel cells, batteries, solar cells, and supercapacitors. The selection of an appropriate hybrid power arrangement and the implementation of an effective energy management system are crucial for the successful functioning of advanced UAVs. This article specifically concentrates on UAV platforms powered by batteries, incorporating innovative technologies, like in-flight recharging via laser beams and tethering. It provides an all-encompassing and evaluative examination of the current cutting-edge power supply configurations, with the objective of identifying deficiencies, presenting perspectives, and offering recommendations for future consideration in this domain. Full article
Show Figures

Figure 1

18 pages, 6813 KiB  
Article
A Hybrid Solar-RF Energy Harvesting System Based on an EM4325-Embedded RFID Tag
by Samrrithaa G. Veloo, Jun Jiat Tiang, Surajo Muhammad and Sew Kin Wong
Electronics 2023, 12(19), 4045; https://doi.org/10.3390/electronics12194045 - 27 Sep 2023
Cited by 11 | Viewed by 4579
Abstract
This paper presents the deployment of a hybrid energy harvesting system that combines a wireless energy harvesting (EH) system and a 6 V, 170 mA monocrystalline solar energy derived from the Sun’s rays. The hybrid energy harvesting (HEH) system comprises the rectifier, the [...] Read more.
This paper presents the deployment of a hybrid energy harvesting system that combines a wireless energy harvesting (EH) system and a 6 V, 170 mA monocrystalline solar energy derived from the Sun’s rays. The hybrid energy harvesting (HEH) system comprises the rectifier, the solar cell panel, the charging circuit, and the EM4325 embedded RFID tag. This study aims to design an efficient EH system capable of increasing the read range of an active RFID tag. The proposed approach integrates a meandered line radio frequency identification (RFID) tag with an EM4325 IC chip as the receiver antenna. A halfwave doubler RF rectifier circuit is connected to the antenna using a 50 Ω SMA connector to convert the captured RF waves into usable electrical power. A solar energy charging module equipped with a Maximum Power Point Tracking (MPPT) system, a rechargeable lithium-ion battery, and a DC-DC converter is configured to manage and store the harvested energy efficiently. The UHF tag antenna operates at 919 MHz, achieving a peak gain of 3.54 dB. The proposed rectenna achieves a maximum measured harvested power conversion efficiency (PCE) of 55.14% for an input power (Pin) of 15 dBm at a distance of 5.10 cm, while the solar cell panel realizes 3.92 W of power. Experimental results demonstrate the hybrid harvester system’s effectiveness, achieving a PCE of 86.49% at an output voltage (VDC) of 5.35 V. The main advantage of this approach is the creation of a compact hybrid RF and solar EH system by combining the solar cell panel with the antenna, thus enabling multi-functionality. Full article
Show Figures

Graphical abstract

19 pages, 6556 KiB  
Article
Integrated Photovoltaics Potential for Passenger Cars: A Focus on the Sensitivity to Electrical Architecture Losses
by Fathia Karoui, Bertrand Chambion, Fabrice Claudon and Benjamin Commault
Appl. Sci. 2023, 13(14), 8373; https://doi.org/10.3390/app13148373 - 19 Jul 2023
Cited by 5 | Viewed by 2907
Abstract
Vehicle integrated photovoltaics (VIPV) are among the identified solutions to reduce the environmental impacts of the transport sector. The model developed here simulates the VIPV system. It considers various usage patterns and vehicle types, several characteristics of the photovoltaic system and all the [...] Read more.
Vehicle integrated photovoltaics (VIPV) are among the identified solutions to reduce the environmental impacts of the transport sector. The model developed here simulates the VIPV system. It considers various usage patterns and vehicle types, several characteristics of the photovoltaic system and all the losses that may decrease energy yield. Focusing on a passenger car, simulations indicate the order of influence of the parameters on the outputs of the model: geographic locality, shading, thresholds due to extra-consumption needed to charge the vehicle’s battery from the photovoltaic (PV) system and occurrence of recharge with the grid. With technology projections for 2030, with 30% shading, VIPV will cover a distance of up to 1444 km per year. This represents up to 12% of the driven mileage. For the best month, it can reach up to 14 km/day. For average Europe and realistic conditions, VIPV cover 648 km per year. Life cycle assessment (LCA) of a solarized passenger car shows a negative balance for a low-carbon electricity mix and average solar irradiance. In favorable conditions, the carbon footprint is up to 489 kg of CO2-equivalent avoided emissions on a 13-year lifespan. Beyond the focus on km and LCA, VIPV may provide useful functions in non-interconnected zones and for resilience in disaster areas. Full article
(This article belongs to the Special Issue Photovoltaic Power System: Modeling and Performance Analysis)
Show Figures

Figure 1

17 pages, 2731 KiB  
Article
Dynamic Reconfiguration to Optimize Energy Production on Moving Photovoltaic Panels
by Salvador Merino, Javier Martinez, Francisco Guzman, Juan de Dios Lara, Rafael Guzman, Francisco Sanchez, Juan Ramon Heredia and Mariano Sidrach de Cardona
Sustainability 2023, 15(14), 10858; https://doi.org/10.3390/su151410858 - 11 Jul 2023
Cited by 1 | Viewed by 1682
Abstract
Urban transport systems play a major role in the development of today’s societies, but they require technological changes to reduce their environmental impact. The problem lies in their level of autonomy, which is why electrical energy production systems are proposed for self-consumption, efficiently [...] Read more.
Urban transport systems play a major role in the development of today’s societies, but they require technological changes to reduce their environmental impact. The problem lies in their level of autonomy, which is why electrical energy production systems are proposed for self-consumption, efficiently feeding their accumulators. As the energy provided by photovoltaic installations has lower recharge speeds, conventional systems with high transfer amperage and higher voltage are required. For this reason, solar installations are used for additional services and to support their autonomy. The present work tries to find the best solution for both constant voltage and peak current systems. Once found, these solutions will be applied in real time for the dynamic recharging of battery packs, trying to achieve vehicles that are progressively more energetically autonomous. To solve these situations, a new computational method for calculating voltage and amperage has been developed in this work, based on Dijkstra’s minimum path search algorithm on graph theory, adapted to electrical circuits. Once this algorithm has been established, the panel performance analysis sensors, developed at the University of Malaga, are combined with different electronic solutions described in this article (Wi-Fi relay devices using esp8266 chips or feeding these relays through panels and establishing the voltage drop to switch the connection), achieving precise and sufficiently fast solutions at very low cost. Both series and parallel transitions are possible, depending on the type of energy generation required. The theoretical solutions using Minkowski paths, analyzed in the past, have been simulated and subsequently constructed in this paper, indicating the diagrams necessary for their realization. Full article
(This article belongs to the Special Issue Environment, Energy and Sustainable Development)
Show Figures

Figure 1

39 pages, 15083 KiB  
Review
Ferrite Nanoparticles as Catalysts in Organic Reactions: A Mini Review
by Nilima Maji and Harmanjit Singh Dosanjh
Magnetochemistry 2023, 9(6), 156; https://doi.org/10.3390/magnetochemistry9060156 - 14 Jun 2023
Cited by 28 | Viewed by 8309
Abstract
Ferrites have excellent magnetic, electric, and optical properties that make them an indispensable choice of material for a plethora of applications, such as in various biomedical fields, magneto–optical displays, rechargeable lithium batteries, microwave devices, internet technology, transformer cores, humidity sensors, high-frequency media, magnetic [...] Read more.
Ferrites have excellent magnetic, electric, and optical properties that make them an indispensable choice of material for a plethora of applications, such as in various biomedical fields, magneto–optical displays, rechargeable lithium batteries, microwave devices, internet technology, transformer cores, humidity sensors, high-frequency media, magnetic recordings, solar energy devices, and magnetic fluids. Recently, magnetically recoverable nanocatalysts are one of the most prominent fields of research as they can act both as homogeneous and heterogenous catalysts. Nano-ferrites provide a large surface area for organic groups to anchor, increase the product and decrease reaction time, providing a cost-effective method of transformation. Various organic reactions were reported, such as the photocatalytic decomposition of a different dye, alkylation, dehydrogenation, oxidation, C–C coupling, etc., with nano-ferrites as a catalyst. Metal-doped ferrites with Co, Ni, Mn, Cu, and Zn, along with the metal ferrites doped with Mn, Cr, Cd, Ag, Au, Pt, Pd, or lanthanides and surface modified with silica and titania, are used as catalysts in various organic reactions. Metal ferrites (MFe2O4) act as a Lewis acid and increase the electrophilicity of specific groups of the reactants by accepting electrons in order to form covalent bonds. Ferrite nanocatalysts are easily recoverable by applying an external magnetic field for their reuse without significantly losing their catalytic activities. The use of different metal ferrites in different organic transformations reduces the catalyst overloading and, at the same time, reduces the use of harmful solvents and the production of poisonous byproducts, hence, serving as a green method of chemical synthesis. This review provides insight into the application of different ferrites as magnetically recoverable nanocatalysts in different organic reactions and transformations. Full article
Show Figures

Figure 1

Back to TopTop