A Review of 3D Printing Batteries
Abstract
:1. Introduction
2. Background
2.1. Basic Geometries
2.1.1. Thin Film
2.1.2. 3D Porous Structure
2.2. Impact of 3D Printing on Battery Performance
- High resolution and mechanical stability: The advent of 3D printing technology has revolutionized the precision and resolution of battery designs, which directly affects the energy and power density and the overall battery performance [38,67,68,69,70,71,72,73]. Furthermore, the ability to fabricate high-resolution geometries through 3D printing results in enhanced mechanical stability [71]. Engineering designs at the microscopic scale make it possible to control the battery structure precisely, ensuring enhanced mechanical performance. Battery properties, particularly during electrochemical reactions when components undergo changes that can impact structural integrity, benefit from mechanical stability [74]. With 3D printing advantages of high resolution, the risk of electrode breakage and battery failure due to structural instability is eliminated, increasing the overall reliability of the battery [75].
- Energy density and power density: 3D printing with the ability to control the design makes it possible to increase active material loading inside the structure with less volume, which results in higher energy density [76,77,78,79]. On the other hand, 3D printing’s ability to finely control the geometry of battery components plays a critical role in elevating the energy transfer rate within the structure, ultimately resulting in higher power density [80,81,82].
- Customizability and size: One of the advantages of 3D printing is the design control, which leads to the customizability of the structure. Furthermore, depending on the method and the device resolution, the size can be controlled and the part can be fabricated in a wide range of scales for the production of miniaturized batteries [34,35].
- Efficient production process: In contrast to the conventional method, which consists of multiple steps including slurry preparation, tape casting, material drying, calendaring, material cutting, assembly, electrolyte filling, and final packaging, 3D printing offers notable efficiency. In the 3D printing process, the steps include material preparation, part geometry design, 3D printing, assembly, and optional electrolyte filling, depending on the chosen 3D printing method [83,84,85,86]. One of the advantages of 3D printing in battery production is the potential reduction in fabrication time, which is attributed to the straightforward process with fewer steps. Nevertheless, it is crucial to note that the overall fabrication time depends on the specific method employed and any post-treatment requirements [31].
- Ability to fabricate all-solid-state batteries: Solid-state batteries, utilizing solid electrolytes instead of liquid counterparts, offer high dimensional integrity, excellent mechanical properties, and enhanced safety [89]. 3D printing, with its precision and design control, facilitates the engineering and fabrication of solid-state electrolytes compatible with electrode configurations, which results in all-solid-state batteries through which all the components can be printed on top of each other. This approach eliminates the need for glove boxes, making production more cost-efficient and environmentally friendly [90,91,92,93].
- Ability to fabricate batteries with novel materials: One of the key advantages of 3D printing is its ability to fabricate battery components using novel materials [94]. For instance, the performance of the metal–organic frameworks (MOFs) with carboxyl functionalized channels, which have been proven as extraordinary bi-functional materials usable in both lithium and zinc batteries [95], can be improved further using 3D printing by controlling the design and structure (e.g., 3D printing provides geometric design freedom) [96]. This unique ability enables researchers to explore cutting-edge materials in battery architectures with high precision which not only facilitates rapid prototyping but also opens up possibilities for developing next-generation energy storage solutions that take advantage of the innovative materials [60].
2.3. Goals of Geometric Design for Batteries
- Energy density and power density: The design helps the user to fabricate the battery component based on the mechanical configuration of the device which makes it possible to customize the shape and size of the battery. With design freedom, batteries can be fabricated with complicated integration and controlled distance between the components to receive the best properties of the battery. The 3D-printed electrodes facilitate ion transfer, which results in high energy density and high power density [30,97,98].
- Cycle life and safety: The arrangement of electrodes and the distribution of active materials impact uniform charge and discharge cycles, thus affecting cycle life [99]. Additionally, the geometry can improve thermal management, preventing overheating and enhancing safety [100]. Moreover, proper separator and electrolyte design, as well as internal pressure management mechanisms, contribute to safety and longevity [78,101].
3. Review
3.1. Direct Ink Writing
3.2. Fused Filament Fabrication
3.3. InkJet Printing
3.4. Stereolithography
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Battery Basics
Appendix A.1.1. Energy
Appendix A.1.2. Power
Appendix A.1.3. Voltage
Appendix A.1.4. State of the Charge (SOC)
Appendix A.1.5. Capacity
Appendix A.1.6. Voltage Drops
- There are several potential mechanisms that result in voltage drops. First, activation loss happens due to the slow nature of the reactions that occur on the electrode surface. Fuel crossover and internal currents result from electrons passing through the electrolyte, which leads to charge loss in this way. Ohmic loss, or internal resistance, is the energy loss resulting from resistance to the flow of electrons through electrode materials and interconnections, as well as resistance to the flow of ions through the electrolyte. Mass transport (concentration) loss occurs when the electrode surface is depleted from charges over time, and reactants require time to diffuse from the inner bulk to the surface for the reaction to keep on.
Appendix A.1.7. Self-Discharge
Appendix A.1.8. Electrical Double Layer
Appendix A.1.9. Lithiation/De-lithiation
Appendix A.1.10. Particle Pulverization
Appendix A.1.11. Lithium Plating
Appendix A.1.12. Solid Electrolyte Interface (SEI)
Appendix A.1.13. Charge–Discharge Test
Appendix A.1.14. Cyclic Voltammetry Test
Appendix A.1.15. Electrochemical Impedance Spectroscopy (EIS)
- Ohmic resistance (Rs) is related to the ionic and electronic conductivity of various components in the battery, including the electrolyte, electrodes, and current collector. This is measured at low frequencies, and on the Nyquist plot, it is represented by the real part of the impedance (Figure A1a).
- Charge transfer resistance (Rct) is the resistance related to the electrochemical reactions occurring at the interface layer of the electrode–electrolyte. Information about the kinetics of the charge transfer process, such as lithium intercalation at the electrode surface, is provided by this resistance. On the Nyquist plot, this resistance is observed as a semicircle, with the radius of the semicircle representing the charge transfer resistance. This region corresponds to the high-frequency range. An improvement in battery performance is indicated by a reduction in the radius/diameter of this semicircle, suggesting that the charge transfer processes at the electrode–electrolyte interface are more efficient and faster. This layer also serves as a capacitance that stores charges transferring slowly to the electrode. In the equivalent circuit, it is represented as a capacitance in parallel to the charge transfer resistance (Figure A1b).
- Warburg impedance (W) is related to the diffusion (mass transport) of lithium ions into the solid electrode and electrolyte. On the Nyquist plot, it is represented by a sloped line. This region corresponds to the medium frequency range on the plot. The slope of the line reflects the diffusion coefficient of the species. A steeper slope indicates more difficult ion diffusion, while a shallower slope suggests easier mass transport and diffusion. The tail of this impedance is also significant. Tail extensions or deviations from the line indicate additional electrochemical processes occurring in the battery (Figure A1c).
Appendix A.2. Basic Types of Batteries
Appendix A.2.1. Lead–Acid
Appendix A.2.2. NiCd
Appendix A.2.3. Ni–MH
Appendix A.2.4. Li-Ion
References
- Electricity in the U.S.—U.S. Energy Information Administration (EIA). Available online: https://www.eia.gov/energyexplained/electricity/electricity-in-the-us.php (accessed on 19 January 2024).
- Pearce, J.M.; Parncutt, R. Quantifying Global Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy. Energies 2023, 16, 6074. [Google Scholar] [CrossRef]
- D’Amato, G.; Cecchi, L. Effects of Climate Change on Environmental Factors in Respiratory Allergic Diseases. Clin. Exp. Allergy 2008, 38, 1264–1274. [Google Scholar] [CrossRef] [PubMed]
- Haines, A.; Kovats, R.; Campbell-Lendrum, D.; Corvalan, C. Climate Change and Human Health: Impacts, Vulnerability, and Mitigation. Lancet 2006, 367, 2101–2109. [Google Scholar] [CrossRef] [PubMed]
- Denkenberger, D.C.; Pearce, J.M. Feeding Everyone: Solving the Food Crisis in Event of Global Catastrophes That Kill Crops or Obscure the Sun. Futures 2015, 72, 57–68. [Google Scholar] [CrossRef]
- Barnes, D.F.; Floor, W.M. Rural Energy in Developing Countries: A Challenge for Economic Development. Annu. Rev. Energy Environ. 1996, 21, 497–530. [Google Scholar] [CrossRef]
- Stern, N.H.; Treasury, G.B. The Economics of Climate Change: The Stern Review; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-70080-1. [Google Scholar]
- Peters, G.P.; Hertwich, E.G. CO2 Embodied in International Trade with Implications for Global Climate Policy. Environ. Sci. Technol. 2008, 42, 1401–1407. [Google Scholar] [CrossRef] [PubMed]
- Heidari, N.; Pearce, J.M. A Review of Greenhouse Gas Emission Liabilities as the Value of Renewable Energy for Mitigating Lawsuits for Climate Change Related Damages. Renew. Sustain. Energy Rev. 2016, 55, 899–908. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J. Climate Change Impacts on Wind Energy: A Review. Renew. Sustain. Energy Rev. 2010, 14, 430–437. [Google Scholar] [CrossRef]
- Global Wind and Solar Energy Share in Electricity Mix 2022. Available online: https://www.statista.com/statistics/1302047/global-wind-and-solar-energy-share-electricity-mix/ (accessed on 26 September 2023).
- SDG Knowledge Hub. Wind and Solar Will Provide 50% of Electricity in 2050, BNEF Report Finds. Available online: https://sdg.iisd.org/news/wind-and-solar-will-provide-50-of-electricity-in-2050-bnef-report-finds/ (accessed on 19 January 2024).
- Yu, H.; Helland, H.; Yu, X.; Gundersen, T.; Sin, G. Optimal Design and Operation of an Organic Rankine Cycle (ORC) System Driven by Solar Energy with Sensible Thermal Energy Storage. Energy Convers. Manag. 2021, 244, 114494. [Google Scholar] [CrossRef]
- Ali, U. Bloomberg New Energy Outlook 2019: The Future of the Energy Sector. Available online: https://www.power-technology.com/news/bloomberg-new-energy-outlook-2019-2/ (accessed on 26 September 2023).
- Adeh, E.H.; Good, S.P.; Calaf, M.; Higgins, C.W. Solar PV Power Potential Is Greatest Over Croplands. Sci. Rep. 2019, 9, 11442. [Google Scholar] [CrossRef]
- Garg, P.; Orosz, M.S.; Kumar, P. Thermo-Economic Evaluation of ORCs for Various Working Fluids. Appl. Therm. Eng. 2016, 109, 841–853. [Google Scholar] [CrossRef]
- Zhu, Z.; Jiang, T.; Ali, M.; Meng, Y.; Jin, Y.; Cui, Y.; Chen, W. Rechargeable Batteries for Grid Scale Energy Storage. Chem. Rev. 2022, 122, 16610–16751. [Google Scholar] [CrossRef]
- Kebede, A.A.; Kalogiannis, T.; Van Mierlo, J.; Berecibar, M. A Comprehensive Review of Stationary Energy Storage Devices for Large Scale Renewable Energy Sources Grid Integration. Renew. Sustain. Energy Rev. 2022, 159, 112213. [Google Scholar] [CrossRef]
- Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.; Lambert, S.; et al. Recycling Lithium-Ion Batteries from Electric Vehicles. Nature 2019, 575, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Nair, N.-K.C.; Garimella, N. Battery Energy Storage Systems: Assessment for Small-Scale Renewable Energy Integration. Energy Build. 2010, 42, 2124–2130. [Google Scholar] [CrossRef]
- Joseph, P.K.; Devaraj, E. Design of Hybrid Forward Boost Converter for Renewable Energy Powered Electric Vehicle Charging Applications. IET Power Electron. 2019, 12, 2015–2021. [Google Scholar] [CrossRef]
- Ransome, T. Lithium Ion Battery. Available online: https://www.renewables4u.com.au/lithium-ion-battery/ (accessed on 19 January 2024).
- Mottaghi, M.; Rahman, M.; Kulkarni, A.; Pearce, J.M. AC/off-Grid Photovoltaic Powered Open-Source Ball Mill. HardwareX 2023, 14, e00423. [Google Scholar] [CrossRef] [PubMed]
- Mottaghi, M.; Bai, Y.; Kulkarni, A.; Pearce, J.M. Open Source Scientific Bottle Roller. HardwareX 2023, 15, e00445. [Google Scholar] [CrossRef]
- Dhankani, K.C.; Pearce, J.M. Open Source Laboratory Sample Rotator Mixer and Shaker. HardwareX 2017, 1, 1–12. [Google Scholar] [CrossRef]
- Vadivel, D.; Branciforti, D.S.; Kerroumi, O.; Dondi, M.; Dondi, D. Mostly 3D Printed Chemical Synthesis Robot. HardwareX 2022, 11, e00310. [Google Scholar] [CrossRef]
- Wittbrodt, B.T.; Glover, A.G.; Laureto, J.; Anzalone, G.C.; Oppliger, D.; Irwin, J.L.; Pearce, J.M. Life-Cycle Economic Analysis of Distributed Manufacturing with Open-Source 3-D Printers. Mechatronics 2013, 23, 713–726. [Google Scholar] [CrossRef]
- Pearce, J.M. Open-Source Lab: How to Build Your Own Hardware and Reduce Research Costs; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-0-12-410486-0. [Google Scholar]
- Laplume, A.O.; Petersen, B.; Pearce, J.M. Global Value Chains from a 3D Printing Perspective. J. Int. Bus. Stud. 2016, 47, 595–609. [Google Scholar] [CrossRef]
- Lyu, Z.; Lim, G.J.H.; Koh, J.J.; Li, Y.; Ma, Y.; Ding, J.; Wang, J.; Hu, Z.; Wang, J.; Chen, W.; et al. Design and Manufacture of 3D-Printed Batteries. Joule 2021, 5, 89–114. [Google Scholar] [CrossRef]
- Pang, Y.; Cao, Y.; Chu, Y.; Liu, M.; Snyder, K.; MacKenzie, D.; Cao, C. Additive Manufacturing of Batteries. Adv. Funct. Mater. 2020, 30, 1906244. [Google Scholar] [CrossRef]
- Tagawa, K.; Brodd, R.J. Production Processes for Fabrication of Lithium-Ion Batteries. In Lithium-Ion Batteries: Science and Technologies; Yoshio, M., Brodd, R.J., Kozawa, A., Eds.; Springer: New York, NY, USA, 2009; pp. 181–194. ISBN 978-0-387-34445-4. [Google Scholar]
- Bommineedi, L.K.; Upadhyay, N.; Minnes, R. Screen Printing: An Ease Thin Film Technique. In Simple Chemical Methods for Thin Film Deposition: Synthesis and Applications; Sankapal, B.R., Ennaoui, A., Gupta, R.B., Lokhande, C.D., Eds.; Springer Nature: Singapore, 2023; pp. 449–507. ISBN 978-981-9909-61-2. [Google Scholar]
- Wei, T.-S.; Ahn, B.Y.; Grotto, J.; Lewis, J.A. 3D Printing of Customized Li-Ion Batteries with Thick Electrodes. Adv. Mater. 2018, 30, 1703027. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Cao, J.; Sun, Z.; Ghazi, Z.A.; Zhu, X.; Han, S.; Ren, D.; Lu, G.; Lan, H.; Li, F. 3D Printing Enables Customizable Batteries. Batter. Supercaps 2023, 6, e202300161. [Google Scholar] [CrossRef]
- Idrees, M.; Batool, S.; Din, M.A.U.; Javed, M.S.; Ahmed, S.; Chen, Z. Material-Structure-Property Integrated Additive Manufacturing of Batteries. Nano Energy 2023, 109, 108247. [Google Scholar] [CrossRef]
- Gonçalves, R.; Lanceros-Méndez, S.; Costa, C.M. Electrode Fabrication Process and Its Influence in Lithium-Ion Battery Performance: State of the Art and Future Trends. Electrochem. Commun. 2022, 135, 107210. [Google Scholar] [CrossRef]
- Fonseca, N.; Thummalapalli, S.V.; Jambhulkar, S.; Ravichandran, D.; Zhu, Y.; Patil, D.; Thippanna, V.; Ramanathan, A.; Xu, W.; Guo, S.; et al. 3D Printing-Enabled Design and Manufacturing Strategies for Batteries: A Review. Small 2023, 19, 2302718. [Google Scholar] [CrossRef]
- Ben-Barak, I.; Schneier, D.; Kamir, Y.; Goor, M.; Golodnitsky, D.; Peled, E. Drop-on-Demand 3D-Printed Silicon-Based Anodes for Lithium-Ion Batteries. J. Solid State Electrochem. 2022, 26, 183–193. [Google Scholar] [CrossRef]
- Ben-Barak, I.; Kamir, Y.; Menkin, S.; Goor, M.; Shekhtman, I.; Ripenbein, T.; Galun, E.; Golodnitsky, D.; Peled, E. Drop-on-Demand 3D Printing of Lithium Iron Phosphate Cathodes. J. Electrochem. Soc. 2018, 166, A5059. [Google Scholar] [CrossRef]
- Gao, X.; Liu, K.; Su, C.; Zhang, W.; Dai, Y.; Parkin, I.P.; Carmalt, C.J.; He, G. From Bibliometric Analysis: 3D Printing Design Strategies and Battery Applications with a Focus on Zinc-Ion Batteries. SmartMat 2024, 5, e1197. [Google Scholar] [CrossRef]
- Torabi, F.; Ahmadi, P. Battery Technologies. In Simulation of Battery Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–54. ISBN 978-0-12-816212-5. [Google Scholar]
- Delannoy, P.-E.; Riou, B.; Brousse, T.; Le Bideau, J.; Guyomard, D.; Lestriez, B. Ink-Jet Printed Porous Composite LiFePO4 Electrode from Aqueous Suspension for Microbatteries. J. Power Sources 2015, 287, 261–268. [Google Scholar] [CrossRef]
- Zhou, L.; Ning, W.; Wu, C.; Zhang, D.; Wei, W.; Ma, J.; Li, C.; Chen, L. 3D-Printed Microelectrodes with a Developed Conductive Network and Hierarchical Pores toward High Areal Capacity for Microbatteries. Adv. Mater. Technol. 2019, 4, 1800402. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Xie, H.; Gao, T.; Yao, Y.; Pastel, G.; Han, X.; Li, Y.; Zhao, J.; Fu, K.; et al. 3D-Printed All-Fiber Li-Ion Battery toward Wearable Energy Storage. Adv. Funct. Mater. 2017, 27, 1703140. [Google Scholar] [CrossRef]
- Huang, J.; Yang, J.; Li, W.; Cai, W.; Jiang, Z. Electrochemical Properties of LiCoO2 Thin Film Electrode Prepared by Ink-Jet Printing Technique. Thin Solid Films 2008, 516, 3314–3319. [Google Scholar] [CrossRef]
- Dudney, N.J.; Neudecker, B.J. Solid State Thin-Film Lithium Battery Systems. Curr. Opin. Solid State Mater. Sci. 1999, 4, 479–482. [Google Scholar] [CrossRef]
- Schwenzel, J.; Thangadurai, V.; Weppner, W. Developments of High-Voltage All-Solid-State Thin-Film Lithium Ion Batteries. J. Power Sources 2006, 154, 232–238. [Google Scholar] [CrossRef]
- Clement, B.; Lyu, M.; Sandeep Kulkarni, E.; Lin, T.; Hu, Y.; Lockett, V.; Greig, C.; Wang, L. Recent Advances in Printed Thin-Film Batteries. Engineering 2022, 13, 238–261. [Google Scholar] [CrossRef]
- Ding, J.; Shen, K.; Du, Z.; Li, B.; Yang, S. 3D-Printed Hierarchical Porous Frameworks for Sodium Storage. ACS Appl. Mater. Interfaces 2017, 9, 41871–41877. [Google Scholar] [CrossRef]
- Gupta, V.; Alam, F.; Verma, P.; Kannan, A.M.; Kumar, S. Additive Manufacturing Enabled, Microarchitected, Hierarchically Porous Polylactic-Acid/Lithium Iron Phosphate/Carbon Nanotube Nanocomposite Electrodes for High Performance Li-Ion Batteries. J. Power Sources 2021, 494, 229625. [Google Scholar] [CrossRef]
- Saleh, M.S.; Li, J.; Park, J.; Panat, R. 3D Printed Hierarchically-Porous Microlattice Electrode Materials for Exceptionally High Specific Capacity and Areal Capacity Lithium Ion Batteries. Addit. Manuf. 2018, 23, 70–78. [Google Scholar] [CrossRef]
- Liu, C.; Qiu, Y.; Liu, Y.; Xu, K.; Zhao, N.; Lao, C.; Shen, J.; Chen, Z. Novel 3D Grid Porous Li4Ti5O12 Thick Electrodes Fabricated by 3D Printing for High Performance Lithium-Ion Batteries. J. Adv. Ceram. 2022, 11, 295–307. [Google Scholar] [CrossRef]
- Liu, C.; Cheng, X.; Li, B.; Chen, Z.; Mi, S.; Lao, C. Fabrication and Characterization of 3D-Printed Highly-Porous 3D LiFePO4 Electrodes by Low Temperature Direct Writing Process. Materials 2017, 10, 934. [Google Scholar] [CrossRef] [PubMed]
- Martinez, A.C.; Maurel, A.; Aranzola, A.P.; Grugeon, S.; Panier, S.; Dupont, L.; Hernandez-Viezcas, J.A.; Mummareddy, B.; Armstrong, B.L.; Cortes, P.; et al. Additive Manufacturing of LiNi1/3Mn1/3Co1/3O2 Battery Electrode Material via Vat Photopolymerization Precursor Approach. Sci. Rep. 2022, 12, 19010. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, Q.; Ling, W.; Dai, H.; Chen, H.; Liu, J.; Qiu, Y.; Zhong, L. Porous Electrode Materials for Zn-Ion Batteries: From Fabrication and Electrochemical Application. Batteries 2022, 8, 223. [Google Scholar] [CrossRef]
- Yang, Y.; Ai, L.; Yu, S.; He, J.; Xu, T.; Chen, D.; Shen, L. 3D-Printed Porous GO Framework Enabling Dendrite-Free Lithium-Metal Anodes. ACS Appl. Energy Mater. 2022, 5, 15666–15672. [Google Scholar] [CrossRef]
- Chen, C.; Li, S.; Notten, P.H.L.; Zhang, Y.; Hao, Q.; Zhang, X.; Lei, W. 3D Printed Lithium-Metal Full Batteries Based on a High-Performance Three-Dimensional Anode Current Collector. ACS Appl. Mater. Interfaces 2021, 13, 24785–24794. [Google Scholar] [CrossRef]
- Zhang, M.; Li, L.; Lin, Q.; Tang, M.; Wu, Y.; Ke, C. Hierarchical-Coassembly-Enabled 3D-Printing of Homogeneous and Heterogeneous Covalent Organic Frameworks. J. Am. Chem. Soc. 2019, 141, 5154–5158. [Google Scholar] [CrossRef]
- Mu, Y.; Chu, Y.; Pan, L.; Wu, B.; Zou, L.; He, J.; Han, M.; Zhao, T.; Zeng, L. 3D Printing Critical Materials for Rechargeable Batteries: From Materials, Design and Optimization Strategies to Applications. Int. J. Extrem. Manuf. 2023, 5, 042008. [Google Scholar] [CrossRef]
- Menon, A.; Khan, A.; Balakrishnan, N.T.M.; Raghavan, P.; Leon Y Leon, C.A.; Khan, H.A.; Fatima, M.J.J.; Owuor, P.S. Advances in 3D Printing for Electrochemical Energy Storage Systems. J. Mater. Sci. Technol. Res. 2021, 8, 50–69. [Google Scholar] [CrossRef]
- Thakur, A.R.; Dong, X. Experimental and Numerical Studies of Slurry-Based Coextrusion Deposition of Continuous Carbon Fiber Micro-Batteries to Additively Manufacture 3D Structural Battery Composites. Compos. Part B Eng. 2023, 255, 110632. [Google Scholar] [CrossRef]
- Cheng, M. Direct Ink Writing of Polymer Batteries. Ph.D. Thesis, University of Illinois at Chicago, Chicago, IL, USA, 2020. [Google Scholar]
- Ragones, H.; Menkin, S.; Kamir, Y.; Gladkikh, A.; Mukra, T.; Kosa, G.; Golodnitsky, D. Towards Smart Free Form-Factor 3D Printable Batteries. Sustain. Energy Fuels 2018, 2, 1542–1549. [Google Scholar] [CrossRef]
- Ponnada, S.; Babu Gorle, D.; Chandra Bose, R.S.; Sadat Kiai, M.; Devi, M.; Venkateswara Raju, C.; Baydogan, N.; Kar Nanda, K.; Marken, F.; Sharma, R.K. Current Insight into 3D Printing in Solid-State Lithium-Ion Batteries: A Perspective. Batter. Supercaps 2022, 5, e202200223. [Google Scholar] [CrossRef]
- Nyika, J.; Mwema, F.M.; Mahamood, R.M.; Akinlabi, E.T.; Jen, T. Advances in 3D Printing Materials Processing-Environmental Impacts and Alleviation Measures. Adv. Mater. Process. Technol. 2022, 8, 1275–1285. [Google Scholar] [CrossRef]
- Mao, M.; He, J.; Li, X.; Zhang, B.; Lei, Q.; Liu, Y.; Li, D. The Emerging Frontiers and Applications of High-Resolution 3D Printing. Micromachines 2017, 8, 113. [Google Scholar] [CrossRef]
- Park, Y.-G.; Yun, I.; Chung, W.G.; Park, W.; Lee, D.H.; Park, J.-U. High-Resolution 3D Printing for Electronics. Adv. Sci. 2022, 9, 2104623. [Google Scholar] [CrossRef] [PubMed]
- Ahn, D.; Stevens, L.M.; Zhou, K.; Page, Z.A. Rapid High-Resolution Visible Light 3D Printing. ACS Cent. Sci. 2020, 6, 1555–1563. [Google Scholar] [CrossRef]
- Serra, T.; Planell, J.A.; Navarro, M. High-Resolution PLA-Based Composite Scaffolds via 3-D Printing Technology. Acta Biomater. 2013, 9, 5521–5530. [Google Scholar] [CrossRef]
- Maurel, A.; Martinez, A.C.; Grugeon, S.; Panier, S.; Dupont, L.; Cortes, P.; Sherrard, C.G.; Small, I.; Sreenivasan, S.T.; Macdonald, E. Toward High Resolution 3D Printing of Shape-Conformable Batteries via Vat Photopolymerization: Review and Perspective. IEEE Access 2021, 9, 140654–140666. Available online: https://ieeexplore.ieee.org/abstract/document/9568946/ (accessed on 27 October 2023). [CrossRef]
- Gao, X.; Zheng, M.; Yang, X.; Sun, R.; Zhang, J.; Sun, X. Emerging Application of 3D-Printing Techniques in Lithium Batteries: From Liquid to Solid. Mater. Today 2022, 59, 161–181. [Google Scholar] [CrossRef]
- Zhou, S.; Usman, I.; Wang, Y.; Pan, A. 3D Printing for Rechargeable Lithium Metal Batteries. Energy Storage Mater. 2021, 38, 141–156. [Google Scholar] [CrossRef]
- Mu, T.; Xiang, L.; Wan, X.; Lou, S.; Du, C.; Zuo, P.; Yin, G. Ultrahigh Areal Capacity Silicon Anodes Realized via Manipulating Electrode Structure. Energy Storage Mater. 2022, 53, 958–968. [Google Scholar] [CrossRef]
- Zhang, M.; Mei, H.; Chang, P.; Cheng, L. 3D Printing of Structured Electrodes for Rechargeable Batteries. J. Mater. Chem. A 2020, 8, 10670–10694. [Google Scholar] [CrossRef]
- Lyu, Z.; Lim, G.J.H.; Guo, R.; Kou, Z.; Wang, T.; Guan, C.; Ding, J.; Chen, W.; Wang, J. 3D-Printed MOF-Derived Hierarchically Porous Frameworks for Practical High-Energy Density Li–O2 Batteries. Adv. Funct. Mater. 2019, 29, 1806658. [Google Scholar] [CrossRef]
- Gao, X.; Yang, X.; Wang, S.; Sun, Q.; Zhao, C.; Li, X.; Liang, J.; Zheng, M.; Zhao, Y.; Wang, J.; et al. A 3D-Printed Ultra-High Se Loading Cathode for High Energy Density Quasi-Solid-State Li–Se Batteries. J. Mater. Chem. A 2020, 8, 278–286. [Google Scholar] [CrossRef]
- Ma, J.; Zheng, S.; Zhou, F.; Zhu, Y.; Das, P.; Huang, R.; Zhang, L.; Wang, X.; Wang, H.; Cui, Y.; et al. All 3D Printing Lithium Metal Batteries with Hierarchically and Conductively Porous Skeleton for Ultrahigh Areal Energy Density. Energy Storage Mater. 2023, 54, 304–312. [Google Scholar] [CrossRef]
- He, H.; Luo, D.; Zeng, L.; He, J.; Li, X.; Yu, H.; Zhang, C. 3D Printing of Fast Kinetics Reconciled Ultra-Thick Cathodes for High Areal Energy Density Aqueous Li–Zn Hybrid Battery. Sci. Bull. 2022, 67, 1253–1263. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Q.; Gao, X.; Wang, C.; Li, W.; Holness, F.B.; Zheng, M.; Li, R.; Price, A.D.; Sun, X.; et al. Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. ACS Appl. Mater. Interfaces 2018, 10, 39794–39801. [Google Scholar] [CrossRef]
- Marschewski, J.; Brenner, L.; Ebejer, N.; Ruch, P.; Michel, B.; Poulikakos, D. 3D-Printed Fluidic Networks for High-Power-Density Heat-Managing Miniaturized Redox Flow Batteries. Energy Environ. Sci. 2017, 10, 780–787. [Google Scholar] [CrossRef]
- Li, J.; Du, Z.; Ruther, R.E.; An, S.J.; David, L.A.; Hays, K.; Wood, M.; Phillip, N.D.; Sheng, Y.; Mao, C.; et al. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries. JOM 2017, 69, 1484–1496. [Google Scholar] [CrossRef]
- Liu, P.; Sherman, E.; Jacobsen, A. Design and Fabrication of Multifunctional Structural Batteries. J. Power Sources 2009, 189, 646–650. [Google Scholar] [CrossRef]
- Park, Y.K.; Park, G.G.; Park, J.G.; Lee, J.W. Robust Free-Standing Electrodes for Flexible Lithium-Ion Batteries Prepared by a Conventional Electrode Fabrication Process. Electrochim. Acta 2017, 247, 371–380. [Google Scholar] [CrossRef]
- Roberts, M.; Johns, P.; Owen, J.; Brandell, D.; Edstrom, K.; Enany, G.E.; Guery, C.; Golodnitsky, D.; Lacey, M.; Lecoeur, C.; et al. 3D Lithium Ion Batteries—From Fundamentals to Fabrication. J. Mater. Chem. 2011, 21, 9876–9890. [Google Scholar] [CrossRef]
- Hao, F.; Han, F.; Liang, Y.; Wang, C.; Yao, Y. Architectural Design and Fabrication Approaches for Solid-State Batteries. MRS Bull. 2018, 43, 775–781. [Google Scholar] [CrossRef]
- Bhosale, V.S.; Gaikwad, P.M.; Maladkar, N.P.; Desai, K.V. A Review on Use of 3D Printing for Battery Manufacturing. JETIR 2022, 9, 21–28. [Google Scholar]
- Divakaran, N.; Das, J.P.; PV, A.K.; Mohanty, S.; Ramadoss, A.; Nayak, S.K. Comprehensive Review on Various Additive Manufacturing Techniques and Its Implementation in Electronic Devices. J. Manuf. Syst. 2022, 62, 477–502. [Google Scholar] [CrossRef]
- Bates, A.M.; Preger, Y.; Torres-Castro, L.; Harrison, K.L.; Harris, S.J.; Hewson, J. Are Solid-State Batteries Safer than Lithium-Ion Batteries? Joule 2022, 6, 742–755. [Google Scholar] [CrossRef]
- He, Y.; Chen, S.; Nie, L.; Sun, Z.; Wu, X.; Liu, W. Stereolithography Three-Dimensional Printing Solid Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Nano Lett. 2020, 20, 7136–7143. [Google Scholar] [CrossRef]
- Zekoll, S.; Marriner-Edwards, C.; Hekselman, A.K.O.; Kasemchainan, J.; Kuss, C.; Armstrong, D.E.J.; Cai, D.; Wallace, R.J.; Richter, F.H.; Thijssen, J.H.J.; et al. Hybrid Electrolytes with 3D Bicontinuous Ordered Ceramic and Polymer Microchannels for All-Solid-State Batteries. Energy Environ. Sci. 2018, 11, 185–201. [Google Scholar] [CrossRef]
- Zaman, W.; Hatzell, K.B. Processing and Manufacturing of next Generation Lithium-Based All Solid-State Batteries. Curr. Opin. Solid State Mater. Sci. 2022, 26, 101003. [Google Scholar] [CrossRef]
- Schnell, J.; Tietz, F.; Singer, C.; Hofer, A.; Billot, N.; Reinhart, G. Prospects of Production Technologies and Manufacturing Costs of Oxide-Based All-Solid-State Lithium Batteries. Energy Environ. Sci. 2019, 12, 1818–1833. [Google Scholar] [CrossRef]
- Rogers, J.A.; DeSimone, J.M. Novel Materials. Proc. Natl. Acad. Sci. USA 2016, 113, 11667–11669. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Jiang, M.; Li, J.; Wen, J.; Zeng, M. Kill Two Birds with One Stone: MOFs with Carboxyl Functionalized Channels Are Used in Lithium Battery Negative Terminals and Zinc-Ion Batteries. J. Energy Storage 2024, 85, 111169. [Google Scholar] [CrossRef]
- Budinoff, H.D.; McMains, S. Will It Print: A Manufacturability Toolbox for 3D Printing. Int. J. Interact. Des. Manuf. 2021, 15, 613–630. [Google Scholar] [CrossRef]
- Li, H.; Liang, J. Recent Development of Printed Micro-Supercapacitors: Printable Materials, Printing Technologies, and Perspectives. Adv. Mater. 2020, 32, 1805864. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Gao, Y.; Fang, F.; Fan, Z. Recent Progress on Printable Power Supply Devices and Systems with Nanomaterials. Nano Res. 2018, 11, 3065–3087. [Google Scholar] [CrossRef]
- Ma, J.; Zheng, S.; Chi, L.; Liu, Y.; Zhang, Y.; Wang, K.; Wu, Z.-S. 3D Printing Flexible Sodium-Ion Microbatteries with Ultrahigh Areal Capacity and Robust Rate Capability. Adv. Mater. 2022, 34, 2205569. [Google Scholar] [CrossRef]
- Nofal, M.; Al-Hallaj, S.; Pan, Y. Thermal Management of Lithium-Ion Battery Cells Using 3D Printed Phase Change Composites. Appl. Therm. Eng. 2020, 171, 115126. [Google Scholar] [CrossRef]
- Liu, Y.; Qiao, Y.; Zhang, Y.; Yang, Z.; Gao, T.; Kirsch, D.; Liu, B.; Song, J.; Yang, B.; Hu, L. 3D Printed Separator for the Thermal Management of High-Performance Li Metal Anodes. Energy Storage Mater. 2018, 12, 197–203. [Google Scholar] [CrossRef]
- Lewis, J.A. Direct Ink Writing of 3D Functional Materials. Adv. Funct. Mater. 2006, 16, 2193–2204. [Google Scholar] [CrossRef]
- Tagliaferri, S.; Panagiotopoulos, A.; Mattevi, C. Direct Ink Writing of Energy Materials. Mater. Adv. 2021, 2, 540–563. [Google Scholar] [CrossRef]
- Saadi, M.A.S.R.; Maguire, A.; Pottackal, N.T.; Thakur, M.S.H.; Ikram, M.M.; Hart, A.J.; Ajayan, P.M.; Rahman, M.M. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. Adv. Mater. 2022, 34, 2108855. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yu, P.; Liu, Y.; Zhao, J. High-Precision Resistance Strain Sensors of Multilayer Composite Structure via Direct Ink Writing: Optimized Layer Flatness and Interfacial Strength. Compos. Sci. Technol. 2021, 201, 108530. [Google Scholar] [CrossRef]
- Chen, B.; Willenbacher, N. High-Precision Direct Ink Writing of Li6.4La3Zr1.4Ta0.6O12. J. Eur. Ceram. Soc. 2022, 42, 7491–7500. [Google Scholar] [CrossRef]
- Loaldi, D.; Piccolo, L.; Brown, E.; Tosello, G.; Shemelya, C.; Masato, D. Hybrid Process Chain for the Integration of Direct Ink Writing and Polymer Injection Molding. Micromachines 2020, 11, 509. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Zhao, X. A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks. Adv. Mater. 2017, 30, 1704028. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.G.; Saiz, E.; Tirichenko, I.S.; García-Tuñón, E. Direct Ink Writing Advances in Multi-Material Structures for a Sustainable Future. J. Mater. Chem. A 2020, 8, 15646–15657. [Google Scholar] [CrossRef]
- Yirmibesoglu, O.D.; Simonsen, L.E.; Manson, R.; Davidson, J.; Healy, K.; Menguc, Y.; Wallin, T. Multi-Material Direct Ink Writing of Photocurable Elastomeric Foams. Commun. Mater. 2021, 2, 82. [Google Scholar] [CrossRef]
- Xu, C.; Quinn, B.; Lebel, L.L.; Therriault, D.; L’Espérance, G. Multi-Material Direct Ink Writing (DIW) for Complex 3D Metallic Structures with Removable Supports. ACS Appl. Mater. Interfaces 2019, 11, 8499–8506. [Google Scholar] [CrossRef]
- Renteria, A.; Balcorta, V.H.; Marquez, C.; Rodriguez, A.A.; Renteria-Marquez, I.; Regis, J.; Wilburn, B.; Patterson, S.; Espalin, D.; Tseng, T.-L.; et al. Direct Ink Write Multi-Material Printing of PDMS-BTO Composites with MWCNT Electrodes for Flexible Force Sensors. Flex. Print. Electron. 2022, 7, 015001. [Google Scholar] [CrossRef]
- Cadiou, T.; Demoly, F.; Gomes, S. A Hybrid Additive Manufacturing Platform Based on Fused Filament Fabrication and Direct Ink Writing Techniques for Multi-Material 3D Printing. Int. J. Adv. Manuf. Technol. 2021, 114, 3551–3562. [Google Scholar] [CrossRef]
- Mantelli, A.; Romani, A.; Suriano, R.; Levi, M.; Turri, S. Direct Ink Writing of Recycled Composites with Complex Shapes: Process Parameters and Ink Optimization. Adv. Eng. Mater. 2021, 23, 2100116. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, F.; Wang, W.; Alexandridis, P.; Zhou, C.; Wu, G. 3D Direct Writing Fabrication of Electrodes for Electrochemical Storage Devices. J. Power Sources 2017, 354, 134–147. [Google Scholar] [CrossRef]
- He, W.; Chen, C.; Jiang, J.; Chen, Z.; Liao, H.; Dou, H.; Zhang, X. 3D Printed Multilayer Graphite@SiO Structural Anode for High-Loading Lithium-Ion Battery. Batter. Supercaps 2022, 5, e202100258. [Google Scholar] [CrossRef]
- Li, Q.; Dong, Q.; Wang, J.; Xue, Z.; Li, J.; Yu, M.; Zhang, T.; Wan, Y.; Sun, H. Direct Ink Writing (DIW) of Graphene Aerogel Composite Electrode for Vanadium Redox Flow Battery. J. Power Sources 2022, 542, 231810. [Google Scholar] [CrossRef]
- Zhu, C.; Schorr, N.B.; Qi, Z.; Wygant, B.R.; Turney, D.E.; Yadav, G.G.; Worsley, M.A.; Duoss, E.B.; Banerjee, S.; Spoerke, E.D.; et al. Direct Ink Writing of 3D Zn Structures as High-Capacity Anodes for Rechargeable Alkaline Batteries. Small Struct. 2023, 4, 2200323. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, X.; Liu, M.; Duan, S.; Ren, Y.; Ma, H.; Tang, K.; Shi, J.; Hou, S.; Jin, H.; et al. Direct Ink Writing of Li1.3Al0.3Ti1.7(PO4)3-Based Solid-State Electrolytes with Customized Shapes and Remarkable Electrochemical Behaviors. Small 2021, 17, 2002866. [Google Scholar] [CrossRef]
- Tao, R.; Gu, Y.; Sharma, J.; Hong, K.; Li, J. A Conformal Heat-Drying Direct Ink Writing 3D Printing for High-Performance Lithium-Ion Batteries. Mater. Today Chem. 2023, 32, 101672. [Google Scholar] [CrossRef]
- Li, L.; Tan, H.; Yuan, X.; Ma, H.; Ma, Z.; Zhao, Y.; Zhao, J.; Wang, X.; Chen, D.; Dong, Y. Direct Ink Writing Preparation of LiFePO4/MWCNTs Electrodes with High-Areal Li-Ion Capacity. Ceram. Int. 2021, 47, 21161–21166. [Google Scholar] [CrossRef]
- Rasul, M.G.; Cheng, M.; Jiang, Y.; Pan, Y.; Shahbazian-Yassar, R. Direct Ink Printing of PVdF Composite Polymer Electrolytes with Aligned BN Nanosheets for Lithium-Metal Batteries. ACS Nanosci. Au 2022, 2, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhao, N.; Xu, K.; Li, Y.; Mwizerwa, J.P.; Shen, J.; Chen, Z. High-Performance LiFePO4 and SiO@C/Graphite Interdigitated Full Lithium-Ion Battery Fabricated via Low Temperature Direct Write 3D Printing. Mater. Today Energy 2022, 29, 101098. [Google Scholar] [CrossRef]
- Rocha, V.G.; García-Tuñón, E.; Botas, C.; Markoulidis, F.; Feilden, E.; D’Elia, E.; Ni, N.; Shaffer, M.; Saiz, E. Multimaterial 3D Printing of Graphene-Based Electrodes for Electrochemical Energy Storage Using Thermoresponsive Inks. ACS Appl. Mater. Interfaces 2017, 9, 37136–37145. [Google Scholar] [CrossRef] [PubMed]
- FDM vs. FFF: Differences and Comparison. Available online: https://www.xometry.com/resources/3d-printing/fdm-vs-fff-3d-printing/ (accessed on 24 January 2024).
- Jones, R.; Haufe, P.; Sells, E.; Iravani, P.; Olliver, V.; Palmer, C.; Bowyer, A. RepRap—The Replicating Rapid Prototyper. Robotica 2011, 29, 177–191. [Google Scholar] [CrossRef]
- Sells, E.; Bailard, S.; Smith, Z.; Bowyer, A.; Olliver, V. RepRap: The Replicating Rapid Prototyper: Maximizing Customizability by Breeding the Means of Production. In Handbook of Research in Mass Customization and Personalization; World Scientific Publishing Company: Singapore, 2009; pp. 568–580. ISBN 978-981-4280-25-9. [Google Scholar]
- Bowyer, A. 3D Printing and Humanity’s First Imperfect Replicator. 3D Print. Addit. Manuf. 2014, 1, 4–5. [Google Scholar] [CrossRef]
- Reyes, C.; Somogyi, R.; Niu, S.; Cruz, M.A.; Yang, F.; Catenacci, M.J.; Rhodes, C.P.; Wiley, B.J. Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication. ACS Appl. Energy Mater. 2018, 1, 5268–5279. [Google Scholar] [CrossRef]
- Reyes, C.; Wiley, B.J. 3D Printing a Complete Lithium Ion Battery with Fused Filament Fabrication. Available online: https://www.researchgate.net/publication/327735139_3D_Printing_a_Complete_Lithium_Ion_Battery_with_Fused_Filament_Fabrication (accessed on 2 November 2023).
- Mecheter, A.; Tarlochan, F. Fused Filament Fabrication Three-Dimensional Printing: Assessing the Influence of Geometric Complexity and Process Parameters on Energy and the Environment. Sustainability 2023, 15, 12319. [Google Scholar] [CrossRef]
- Sola, A. Materials Requirements in Fused Filament Fabrication: A Framework for the Design of Next-Generation 3D Printable Thermoplastics and Composites. Macromol. Mater. Eng. 2022, 307, 2200197. [Google Scholar] [CrossRef]
- Maurel, A.; Courty, M.; Fleutot, B.; Tortajada, H.; Prashantha, K.; Armand, M.; Grugeon, S.; Panier, S.; Dupont, L. Highly Loaded Graphite–Polylactic Acid Composite-Based Filaments for Lithium-Ion Battery Three-Dimensional Printing. Chem. Mater. 2018, 30, 7484–7493. [Google Scholar] [CrossRef]
- Baechler, C.; DeVuono, M.; Pearce, J.M. Distributed Recycling of Waste Polymer into RepRap Feedstock. Rapid Prototyp. J. 2013, 19, 118–125. [Google Scholar] [CrossRef]
- Cruz Sanchez, F.A.; Boudaoud, H.; Hoppe, S.; Camargo, M. Polymer Recycling in an Open-Source Additive Manufacturing Context: Mechanical Issues. Addit. Manuf. 2017, 17, 87–105. [Google Scholar] [CrossRef]
- Cruz Sanchez, F.A.; Boudaoud, H.; Camargo, M.; Pearce, J.M. Plastic Recycling in Additive Manufacturing: A Systematic Literature Review and Opportunities for the Circular Economy. J. Clean. Prod. 2020, 264, 121602. [Google Scholar] [CrossRef]
- Dertinger, S.C.; Gallup, N.; Tanikella, N.G.; Grasso, M.; Vahid, S.; Foot, P.J.S.; Pearce, J.M. Technical Pathways for Distributed Recycling of Polymer Composites for Distributed Manufacturing: Windshield Wiper Blades. Resour. Conserv. Recycl. 2020, 157, 104810. [Google Scholar] [CrossRef]
- Redondo, E.; Pumera, M. Fully Metallic Copper 3D-Printed Electrodes via Sintering for Electrocatalytic Biosensing. Appl. Mater. Today 2021, 25, 101253. [Google Scholar] [CrossRef]
- Mo, F.; Guo, B.; Liu, Q.; Ling, W.; Liang, G.; Chen, L.; Yu, S.; Wei, J. Additive Manufacturing for Advanced Rechargeable Lithium Batteries: A Mini Review. Front. Energy Res. 2022, 10, 986985. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Chen, J.; Wang, Z.; Tang, B. Hybrid Energy Storage System Design for Mobile Multi-Material Fused Deposition Modeling. AIP Adv. 2020, 10, 075322. [Google Scholar] [CrossRef]
- Anzalone, G.C.; Wijnen, B.; Pearce, J.M. Multi-Material Additive and Subtractive Prosumer Digital Fabrication with a Free and Open-Source Convertible Delta RepRap 3-D Printer. Rapid Prototyp. J. 2015, 21, 506–519. [Google Scholar] [CrossRef]
- Sujithra, R.; Dhatreyi, B.; Saritha, D. Nanomaterials-Based Additive Manufacturing for Mass Production of Energy Storage Systems: 3D Printed Batteries and Supercapacitors. In Nanotechnology-Based Additive Manufacturing: Product Design, Properties and Applications; Wiley: New York, NY, USA, 2023. [Google Scholar]
- Maurel, A. Thermoplastic Composite Filaments Formulation and 3D-Printing of a Lithium-Ion Battery via Fused Deposition Modeling. Ph.D. Thesis, Université de Picardie Jules Verne, Amiens, France, 2020. [Google Scholar]
- Sanumi, O.J.; Ndungu, P.G.; Oboirien, B.O. Challenges of 3D Printing in LIB Electrodes: Emphasis on Material-Design Properties, and Performance of 3D Printed Si-Based LIB Electrodes. J. Power Sources 2022, 543, 231840. [Google Scholar] [CrossRef]
- Laureto, J.J.; Pearce, J.M. Anisotropic Mechanical Property Variance between ASTM D638-14 Type i and Type Iv Fused Filament Fabricated Specimens. Polym. Test. 2018, 68, 294–301. [Google Scholar] [CrossRef]
- Gao, X.; Qi, S.; Kuang, X.; Su, Y.; Li, J.; Wang, D. Fused Filament Fabrication of Polymer Materials: A Review of Interlayer Bond. Addit. Manuf. 2021, 37, 101658. [Google Scholar] [CrossRef]
- Beydaghi, H.; Abouali, S.; Thorat, S.B.; Del Rio Castillo, A.E.; Bellani, S.; Lauciello, S.; Gentiluomo, S.; Pellegrini, V.; Bonaccorso, F. 3D Printed Silicon-Few Layer Graphene Anode for Advanced Li-Ion Batteries. RSC Adv. 2021, 11, 35051–35060. [Google Scholar] [CrossRef] [PubMed]
- Maurel, A.; Grugeon, S.; Fleutot, B.; Courty, M.; Prashantha, K.; Tortajada, H.; Armand, M.; Panier, S.; Dupont, L. Three-Dimensional Printing of a LiFePO4/Graphite Battery Cell via Fused Deposition Modeling. Sci. Rep. 2019, 9, 18031. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Michalička, J.; Pumera, M. Hierarchical Atomic Layer Deposited V2O5 on 3D Printed Nanocarbon Electrodes for High-Performance Aqueous Zinc-Ion Batteries. Small 2022, 18, 2105572. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.W.; Zou, G.; Jiang, Y.; Down, M.P.; Liauw, C.M.; Garcia-Miranda Ferrari, A.; Ji, X.; Smith, G.C.; Kelly, P.J.; Banks, C.E. Next-Generation Additive Manufacturing: Tailorable Graphene/Polylactic(Acid) Filaments Allow the Fabrication of 3D Printable Porous Anodes for Utilisation within Lithium-Ion Batteries. Batter. Supercaps 2019, 2, 448–453. [Google Scholar] [CrossRef]
- Hu, X.; Chen, Y.; Xu, W.; Zhu, Y.; Kim, D.; Fan, Y.; Yu, B.; Chen, Y. 3D-Printed Thermoplastic Polyurethane Electrodes for Customizable, Flexible Lithium-Ion Batteries with an Ultra-Long Lifetime. Small 2023, 19, 2301604. [Google Scholar] [CrossRef] [PubMed]
- Maurel, A.; Armand, M.; Grugeon, S.; Fleutot, B.; Davoisne, C.; Tortajada, H.; Courty, M.; Panier, S.; Dupont, L. Poly(Ethylene Oxide)−LiTFSI Solid Polymer Electrolyte Filaments for Fused Deposition Modeling Three-Dimensional Printing. J. Electrochem. Soc. 2020, 167, 070536. [Google Scholar] [CrossRef]
- De Wolf, R.; De Rop, M.; Hereijgers, J. Effects of Structured 3D Electrodes on the Performance of Redox Flow Batteries. ChemElectroChem 2022, 9, e202200640. [Google Scholar] [CrossRef]
- Yang, P.; Fan, H.J. Inkjet and Extrusion Printing for Electrochemical Energy Storage: A Minireview. Adv. Mater. Technol. 2020, 5, 2000217. [Google Scholar] [CrossRef]
- Sousa, R.E.; Costa, C.M.; Lanceros-Méndez, S. Advances and Future Challenges in Printed Batteries. ChemSusChem 2015, 8, 3539–3555. [Google Scholar] [CrossRef]
- Sztymela, K.; Bienia, M.; Rossignol, F.; Mailley, S.; Ziesche, S.; Varghese, J.; Cerbelaud, M. Fabrication of Modern Lithium Ion Batteries by 3D Inkjet Printing: Opportunities and Challenges. Heliyon 2022, 8, e12623. [Google Scholar] [CrossRef]
- Sowade, E.; Polomoshnov, M.; Willert, A.; Baumann, R.R. Toward 3D-Printed Electronics: Inkjet-Printed Vertical Metal Wire Interconnects and Screen-Printed Batteries. Adv. Eng. Mater. 2019, 21, 1900568. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, Q.; Liu, L.; Xu, J.; Yan, M.; Jiang, Z. A Novel and Facile Route of Ink-Jet Printing to Thin Film SnO2 Anode for Rechargeable Lithium Ion Batteries. Electrochim. Acta 2006, 51, 2639–2645. [Google Scholar] [CrossRef]
- Lawes, S.; Sun, Q.; Lushington, A.; Xiao, B.; Liu, Y.; Sun, X. Inkjet-Printed Silicon as High Performance Anodes for Li-Ion Batteries. Nano Energy 2017, 36, 313–321. [Google Scholar] [CrossRef]
- Chen, T.; Wang, Y.; Yang, Y.; Huang, F.; Zhu, M.; Ang, B.T.W.; Xue, J.M. Heterometallic Seed-Mediated Zinc Deposition on Inkjet Printed Silver Nanoparticles Toward Foldable and Heat-Resistant Zinc Batteries. Adv. Funct. Mater. 2021, 31, 2101607. [Google Scholar] [CrossRef]
- Kushwaha, A.; Jangid, M.K.; Bhatt, B.B.; Mukhopadhyay, A.; Gupta, D. Inkjet-Printed Environmentally Friendly Graphene Film for Application as a High-Performance Anode in Li-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 7911–7921. [Google Scholar] [CrossRef]
- Kushwaha, A.; Sharma, A.; Bhatt, B.B.; Mukhopadhyay, A.; Gupta, D. Inkjet-Printed Graphene-Modified Aluminum Current Collector for High-Voltage Lithium-Ion Battery. ACS Appl. Energy Mater. 2023, 6, 4168–4178. [Google Scholar] [CrossRef]
- Viviani, P.; Gibertini, E.; Iervolino, F.; Levi, M.; Magagnin, L. Carbon Additive Effect on the Electrochemical Performances of Inkjet Printed Thin-Film Li4Ti5O12 Electrodes. J. Manuf. Process. 2021, 72, 411–418. [Google Scholar] [CrossRef]
- Kolchanov, D.S.; Mitrofanov, I.; Kim, A.; Koshtyal, Y.; Rumyantsev, A.; Sergeeva, E.; Vinogradov, A.; Popovich, A.; Maximov, M.Y. Inkjet Printing of Li-Rich Cathode Material for Thin-Film Lithium-Ion Microbatteries. Energy Technol. 2020, 8, 1901086. [Google Scholar] [CrossRef]
- Pei, M.; Shi, H.; Yao, F.; Liang, S.; Xu, Z.; Pei, X.; Wang, S.; Hu, Y. 3D Printing of Advanced Lithium Batteries: A Designing Strategy of Electrode/Electrolyte Architectures. J. Mater. Chem. A 2021, 9, 25237–25257. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, W.; Zhang, X.; Yuan, Y.; Wang, C.; Ye, Y.; Huang, Y.; Qiu, Z.; Tang, Y. Overview on the Applications of Three-Dimensional Printing for Rechargeable Lithium-Ion Batteries. Appl. Energy 2020, 257, 114002. [Google Scholar] [CrossRef]
- Tian, X.; Zhou, K. 3D Printing of Cellular Materials for Advanced Electrochemical Energy Storage and Conversion. Nanoscale 2020, 12, 7416–7432. [Google Scholar] [CrossRef] [PubMed]
- Narita, K.; Saccone, M.A.; Sun, Y.; Greer, J.R. Additive Manufacturing of 3D Batteries: A Perspective. J. Mater. Res. 2022, 37, 1535–1546. [Google Scholar] [CrossRef]
- Mubarak, S.; Dhamodharan, D.; Byun, H.S. Recent Advances in 3D Printed Electrode Materials for Electrochemical Energy Storage Devices. J. Energy Chem. 2023, 81, 272–312. [Google Scholar] [CrossRef]
- Cheng, M.; Deivanayagam, R.; Shahbazian-Yassar, R. 3D Printing of Electrochemical Energy Storage Devices: A Review of Printing Techniques and Electrode/Electrolyte Architectures. Batter. Supercaps 2020, 3, 130–146. [Google Scholar] [CrossRef]
- Zakeri, S.; Vippola, M.; Levänen, E. A Comprehensive Review of the Photopolymerization of Ceramic Resins Used in Stereolithography. Addit. Manuf. 2020, 35, 101177. [Google Scholar] [CrossRef]
- Brinckmann, S.A.; Patra, N.; Yao, J.; Ware, T.H.; Frick, C.P.; Fertig, R.S. Stereolithography of SiOC Polymer-Derived Ceramics Filled with SiC Micronwhiskers. Adv. Eng. Mater. 2018, 20, 1800593. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, R.; He, Z.; Zhao, K.; Pan, L. Printing 3D Gel Polymer Electrolyte in Lithium-Ion Microbattery Using Stereolithography. J. Electrochem. Soc. 2017, 164, A1852–A1857. [Google Scholar] [CrossRef]
- Norjeli, M.F.; Tamchek, N.; Osman, Z.; Mohd Noor, I.S.; Kufian, M.Z.; Ghazali, M.I.B.M. Additive Manufacturing Polyurethane Acrylate via Stereolithography for 3D Structure Polymer Electrolyte Application. Gels 2022, 8, 589. [Google Scholar] [CrossRef]
- Lee, K.; Shang, Y.; Bobrin, V.A.; Kuchel, R.; Kundu, D.; Corrigan, N.; Boyer, C. 3D Printing Nanostructured Solid Polymer Electrolytes with High Modulus and Conductivity. Adv. Mater. 2022, 34, 2204816. [Google Scholar] [CrossRef]
- Katsuyama, Y.; Kudo, A.; Kobayashi, H.; Han, J.; Chen, M.; Honma, I.; Kaner, R.B. A 3D-Printed, Freestanding Carbon Lattice for Sodium Ion Batteries. Small 2022, 18, 2202277. [Google Scholar] [CrossRef]
- Ye, X.; Wang, C.; Wang, L.; Lu, B.; Gao, F.; Shao, D. DLP Printing of a Flexible Micropattern Si/PEDOT:PSS/PEG Electrode for Lithium-Ion Batteries. Chem. Commun. 2022, 58, 7642–7645. [Google Scholar] [CrossRef] [PubMed]
- Yoko, A.; Oshima, Y. Recovery of Silicon from Silicon Sludge Using Supercritical Water. J. Supercrit. Fluids 2013, 75, 1–5. [Google Scholar] [CrossRef]
- Sun, L.; Liu, Y.; Wu, J.; Shao, R.; Jiang, R.; Tie, Z.; Jin, Z. A Review on Recent Advances for Boosting Initial Coulombic Efficiency of Silicon Anodic Lithium Ion Batteries. Small 2022, 18, 2102894. [Google Scholar] [CrossRef] [PubMed]
- Pearce, J.M. Economic Savings for Scientific Free and Open Source Technology: A Review. HardwareX 2020, 8, e00139. [Google Scholar] [CrossRef] [PubMed]
- Dobbelaere, T.; Vereecken, P.M.; Detavernier, C. A USB-Controlled Potentiostat/Galvanostat for Thin-Film Battery Characterization. HardwareX 2017, 2, 34–49. [Google Scholar] [CrossRef]
- Sylvestrin, G.R.; Scherer, H.F.; Hideo Ando Junior, O. Hardware and Software Development of an Open Source Battery Management System. IEEE Lat. Am. Trans. 2021, 19, 1153–1163. [Google Scholar] [CrossRef]
- Fleming, J.; Amietszajew, T.; McTurk, E.; Towers, D.P.; Greenwood, D.; Bhagat, R. Development and Evaluation of In-Situ Instrumentation for Cylindrical Li-Ion Cells Using Fibre Optic Sensors. HardwareX 2018, 3, 100–109. [Google Scholar] [CrossRef]
- Carloni, A.; Baronti, F.; Di Rienzo, R.; Roncella, R.; Saletti, R. An Open-Hardware and Low-Cost Maintenance Tool for Light-Electric-Vehicle Batteries. Energies 2021, 14, 4962. [Google Scholar] [CrossRef]
- Yensen, N.; Allen, P.B. Open Source All-Iron Battery for Renewable Energy Storage. HardwareX 2019, 6, e00072. [Google Scholar] [CrossRef]
- Koirala, D.; Yensen, N.; Allen, P.B. Open Source All-Iron Battery 2.0. HardwareX 2021, 9, e00171. [Google Scholar] [CrossRef]
- Liao, C. Batteries: Materials Principles and Characterization Methods; IOP Publishing: Bristol, UK, 2021; ISBN 978-0-7503-2682-7. [Google Scholar]
- Reddy, T.B.; Linden, D. Linden’s Handbook of Batteries, 4th ed.; McGraw-Hill Education: Berkshire, UK, 2011; ISBN 978-0-07-162421-3. [Google Scholar]
- Battery University Homepage. Available online: https://batteryuniversity.com/ (accessed on 6 March 2024).
- Kordesch, K.; Taucher-Mautner, W. HISTORY|Primary Batteries; Elsevier: Amsterdam, The Netherlands, 2009; pp. 555–564. [Google Scholar] [CrossRef]
- Owens, B.B.; Reale, P.; Scrosati, B. PRIMARY BATTERIES|Overview; Elsevier: Amsterdam, The Netherlands, 2009; pp. 22–27. [Google Scholar] [CrossRef]
- When to Use Rechargeable Batteries. Available online: https://www.consumerreports.org/electronics-computers/batteries/when-to-use-rechargeable-batteries-a1076298884/ (accessed on 14 January 2024).
- Lopes, P.P.; Stamenkovic, V.R. Past, Present, and Future of Lead–Acid Batteries. Science 2020, 369, 923–924. [Google Scholar] [CrossRef] [PubMed]
- The Role of Energy Storage in Low-Carbon Energy Systems. In Storing Energy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 3–22.
- Viswanathan, B. (Ed.) Chapter 12—Batteries. In Energy Sources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 263–313. ISBN 978-0-444-56353-8. [Google Scholar]
- Burheim, O.S. Secondary Batteries. In Engineering Energy Storage; Elsevier: Amsterdam, The Netherlands, 2017; pp. 111–145. ISBN 978-0-12-814100-7. [Google Scholar]
- May, G.J.; Davidson, A.; Monahov, B. Lead Batteries for Utility Energy Storage: A Review. J. Energy Storage 2018, 15, 145–157. [Google Scholar] [CrossRef]
- Doughty, D.H.; Roth, E.P. A General Discussion of Li Ion Battery Safety. Electrochem. Soc. Interface 2012, 21, 37. [Google Scholar] [CrossRef]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of Lead: A Review with Recent Updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Posada, J.O.G.; Rennie, A.J.R.; Villar, S.P.; Martins, V.L.; Marinaccio, J.; Barnes, A.; Glover, C.F.; Worsley, D.A.; Hall, P.J. Aqueous Batteries as Grid Scale Energy Storage Solutions. Renew. Sustain. Energy Rev. 2017, 68, 1174–1182. [Google Scholar] [CrossRef]
- Quansah, D.A. Comparative Study of Electricity Storage Batteries for Solar Photovoltaic Home Systems. Ph.D. Dissertation, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2008. [Google Scholar]
- Marin-Garcia, G.; Vazquez-Guzman, G.; Sosa, J.M.; Lopez, A.R.; Martinez-Rodriguez, P.R.; Langarica, D. Battery Types and Electrical Models: A Review. In Proceedings of the 2020 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 4–6 November 2020; pp. 1–6. [Google Scholar]
- Poullikkas, A. A Comparative Overview of Large-Scale Battery Systems for Electricity Storage. Renew. Sustain. Energy Rev. 2013, 27, 778–788. [Google Scholar] [CrossRef]
- Ramachandra Rao, S. Resource Recovery from Process Wastes. In Waste Management Series; Elsevier: Amsterdam, The Netherlands, 2006; Volume 7, pp. 375–457. ISBN 978-0-08-045131-2. [Google Scholar]
- Beaudin, M.; Zareipour, H.; Schellenberg, A.; Rosehart, W. Energy Storage for Mitigating the Variability of Renewable Electricity Sources. In Energy Storage for Smart Grids; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–33. ISBN 978-0-12-410491-4. [Google Scholar]
- Avril, S.; Arnaud, G.; Florentin, A.; Vinard, M. Multi-Objective Optimization of Batteries and Hydrogen Storage Technologies for Remote Photovoltaic Systems. Energy 2010, 35, 5300–5308. [Google Scholar] [CrossRef]
- Divya, K.C.; Østergaard, J. Battery Energy Storage Technology for Power Systems—An Overview. Electr. Power Syst. Res. 2009, 79, 511–520. [Google Scholar] [CrossRef]
- Parker, C.D. APPLICATIONS—STATIONARY|Energy Storage Systems: Batteries. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 53–64. ISBN 978-0-444-52745-5. [Google Scholar]
- Lemaire-Potteau, E.; Perrin, M.; Genies, S. BATTERIES|Charging Methods. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 413–423. ISBN 978-0-444-52745-5. [Google Scholar]
- Zhu, W.H.; Zhu, Y.; Davis, Z.; Tatarchuk, B.J. Energy Efficiency and Capacity Retention of Ni–MH Batteries for Storage Applications. Appl. Energy 2013, 106, 307–313. [Google Scholar] [CrossRef]
- Abdin, Z.; Khalilpour, K.R. Single and Polystorage Technologies for Renewable-Based Hybrid Energy Systems. In Polygeneration with Polystorage for Chemical and Energy Hubs; Elsevier: Amsterdam, The Netherlands, 2019; pp. 77–131. ISBN 978-0-12-813306-4. [Google Scholar]
- Iclodean, C.; Varga, B.; Burnete, N.; Cimerdean, D.; Jurchiş, B. Comparison of Different Battery Types for Electric Vehicles. IOP Conf. Ser. Mater. Sci. Eng. 2017, 252, 012058. [Google Scholar] [CrossRef]
- Bernard, P.; Lippert, M. Nickel–Cadmium and Nickel–Metal Hydride Battery Energy Storage. In Electrochemical Energy Storage for Renewable Sources and Grid Balancing; Elsevier: Amsterdam, The Netherlands, 2015; pp. 223–251. ISBN 978-0-444-62616-5. [Google Scholar]
- German, J.M. Hybrid Electric Vehicles. In Encyclopedia of Energy; Elsevier: Amsterdam, The Netherlands, 2004; pp. 197–213. ISBN 978-0-12-176480-7. [Google Scholar]
- Tsais, P.-J.; Chan, L.I. Nickel-Based Batteries: Materials and Chemistry. In Electricity Transmission, Distribution and Storage Systems; Elsevier: Amsterdam, The Netherlands, 2013; pp. 309–397. ISBN 978-1-84569-784-6. [Google Scholar]
- Aktaş, A.; Kirçiçek, Y. Solar Hybrid Systems and Energy Storage Systems. In Solar Hybrid Systems; Elsevier: Amsterdam, The Netherlands, 2021; pp. 87–125. ISBN 978-0-323-88499-0. [Google Scholar]
- Cao, C.; Steinrück, H.-G. Molecular-Scale Synchrotron X-ray Investigations of Solid-Liquid Interfaces in Lithium-Ion Batteries. In Encyclopedia of Solid-Liquid Interfaces; Elsevier: Amsterdam, The Netherlands, 2023; pp. 391–416. ISBN 978-0-323-85670-6. [Google Scholar]
Printed Component | Electrochemical System | Discharge Capacity | Coulombic Efficiency | Cycle Numbers | Application | Reference |
---|---|---|---|---|---|---|
Anode: rGO/Super-P aerogel | Anolyte: 1.6 mol L−1 V3+ + 4 mol L−1 H2SO4 Catholyte: 1.6 mol L−1 VO2+ + 4 mol L−1 H2SO4 Membrane: Nafion 117 | 848.4 mA h at 80 mA cm−2 | More than 95% | 100 | Vanadium redox flow battery | [117] |
Anode: metallic Zn | Cathode: NiOOH Electrolyte (gel): Alkaline polyacrylate Separator: Celgard 5150 (Charlotte, NC, USA) | 214.85 mAh g−1 at 25 mA cm−2 | 87% | 650 | Rechargeable alkaline batteries | [118] |
Electrolyte: LATP | Li/3D printed LATP CSSE/Li symmetric cell | 150 mAh g−1 at 0.5 C | 100% | 100 | All-solid-state lithium batteries | [119] |
Cathode: NMC | Counter electrode: Lithium foil Electrolyte: LFP in ethylene carbonate:ethylmethyl carbonate (EC:EMC) (3:7 wt%) (Gen II) Separator: Celgard 2325 | 107.5 mAh g−1 at a current density of 1 C | 99.9% | 800 | Lithium-ion batteries | [120] |
Cathode: LFP | Counter electrode: Metal Li Separator: Glass fiber Electrolyte: 1 M LFP dissolved in a mixture of EC and dimethyl carbonate (DMC) | 150 mA h g−1 at 0.5 C | 99.9% | 100–500 | Lithium-ion batteries | [121] |
Electrolyte: BN-PVDF | Cathode: LFP Anode: Li metal | 132 mAh g−1 at 1 C rate | N/A | 130 | Lithium-Metal Batteries | [122] |
Anode: SiO@C/graphite Cathode: LFP | Electrolyte 1 M LFP dissolved in a mixture of EC and DMC plus a 2% solution of fluoroethylene carbonate (FEC) | 75 mAh g−1 at 0.3 C | 100% | 40 | Lithium-ion batteries | [123] |
Anode: rCMG/Pluronic F127 Current collector: Copper/Pluronic F127 | Counter electrode: silver wire Reference electrode: Ag/AgCl (3 M NaCl) Electrolyte: 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | N/A | N/A | 10,000 | Lithium-ion batteries, Supercapacitors | [124] |
Ink Formulation | Printing Parameters | Fabrication Steps | Design | Reference |
---|---|---|---|---|
Active material: GO aerogel, Super-P Crosslinking agent: CaCl2 solution Ink viscosity: 107–104 Pa·s viscosity at 10−1–102 s−1 shear rates | Printing height: 1.4 mm Printing speed: 5 mm/s External diameter: 1.79 mm Inner diameter: 1.24 mm | Ink preparation, 3D printing, freeze-drying at −20 °C for 40 h, drying at 60 °C for 12 h | Layer-by-layer serpentine path | [117] |
Active material: Zn powder Binder: Poly(methyl methacrylate)-poly(acrylate)-poly(methyl methacrylate) (PMMA-PA-PMMA) pellets Solvent: Tetrahydrofuran (THF) (2-butoxyethanol) and EGBE Ink viscosity: 103–100 (30% of Zn), 104–101 (55% of Zn) and 105–102 (70% of Zn) Pa·s viscosity at 10−2–102 s−1 shear rates | N/A | Ink preparation, 3D printing, drying at 80 °C for 2 h, annealing at 600 °C for 20 min | Honeycomb structure | [118] |
Active material: LATP powder Solvent: DI water and IPA Ink viscosity: 5 × 105–5 × 104 Pa·s viscosity at 5–102 s−1 shear rates | Nozzle inner diameter: ~330 μm Printing layers: 3–6 layers | Ink preparation, 3D printing, freeze-drying for 12 h at −50 °C, sintering from 650 to 1050 °C | Random designs | [119] |
Active material: NMC, conductive carbon black Binder: Polyvinylidene fluoride Solvent: NMP Ink viscosity: 5 × 102 Pa·s viscosity at 10−1 s−1 shear rates | Needle size: 210 μm Printer bed material: aluminum foil Layer height: 20 μm Printing layers: 20 layers Printing temperature: 60 °C | Ink preparation, 3D printing, drying at 100 °C | Layer-by-layer serpentine path | [120] |
Active material: LFP, MWCNT Binder: PVDF powder Solvent: NMP | Ink volume: 3 mL Nozzle inner diameter: 330 μm Extrusion pressure: 2.5–5 MPa Printing speed: 400 μm s−1 Layer height: 0.15–0.25 mm | Ink preparation, 3D printing, freeze-drying for 12 h | Layer-by-layer serpentine path | [121] |
Active material: BN nanosheet, lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and N-Propyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr13TFSI) Binder: PVDF powder Solvent: NMP Ink viscosity: 103–10 Pa·s viscosity at 10−1–102 s−1 shear rates | Printer bed material: stainless Steel or cathode substrates Ink storage temperature: 120 °C Nozzle pressure: 7 psi Printing speed: 6 mm s−1 Printing temperature: 120 °C Ink thickness: ~250 μm Printing temperature: 120 °C | Ink preparation, 3D printing | Disc shapes | [122] |
Active material: SiO@C/graphite and MWCNTs Binder: styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC) Solvent: 1,4 dioxane and deionized water Ink viscosity: 107–104 Pa·s viscosity at 10−1–102 s−1 shear rates | Nozzle inner diameter 260~610 μm Printing temperature: below −20 °C | Ink preparation, 3D printing, vacuum freeze-drying for 12 h | Comb-like designs | [123] |
Active material ink 1: Copper Active material ink 2: CMG Solvent: pluronic F127 Ink 1 viscosity: 103 Pa·s at 10 s−1 shear rate Ink 2 viscosity: 102 Pa·s at 10 s−1 shear rate | N/A | Ink preparation, 3D printing, freeze-drying for 48 h, heat treatment at 900 °C for 1 h | Layer-by-layer serpentine path for battery, One-leg and two-leg components for supercapacitor | [124] |
Printed Component | Electrochemical System | Discharge Capacity | Coulombic Efficiency | Cycle Numbers | Application | Reference |
---|---|---|---|---|---|---|
Anode: PLA/Si/graphene | Counter electrode: metallic lithium Electrolyte: 1 M LPF in DC and EC | 327 mA h g−1 at a current density of 20 mA g−1 | 96% | 350 | Lithium-ion battery | [144] |
Anode: PLA/Graphite | Counter electrode: metallic lithium Electrolyte: 1 M LPF in DC and EC | 200 mAh g−1 at a current density of 18.6 mA g−1 (C/20) | N/A | 5 | Lithium-ion battery | [130] |
Cathode: PLA/LFP Separator: PLA/SiO2 | Counter electrode: metallic lithium Electrolyte: 1 M LPF in DC and EC | 165 mAh g−1 at C/20 | N/A | ~30 | Lithium-ion battery | [145] |
Cathode: Carbon/V2O5 | Electrolyte: 2 M ZnSO4 aqueous solution Separator: glass fiber | 183 mAh g−1 at 3 A g−1 current density | 99.99% | 200 | Aqueous zinc-ion batteries | [146] |
Anode: PLA/Graphene | Counter electrode: metallic lithium Electrolyte: 1 M LPF in DC and EC | 100 mAh g−1 at 40 mA g−1 | 99.9% | 200 | Lithium-ion battery | [147] |
Cathode: TPU-LFP | Electrolyte: 1 M LPF in DC and EC Separator: Celgard 3501 | 113.1 mAh g−1 at a rate of 0.3 C | 99.75% | 200 | Lithium-ion battery | [148] |
Anode: TPU-LTO | Electrolyte: 1 M LPF in DC and EC Separator: Celgard 3501 | 120.0 mAh g−1 at a rate of 0.3 C | 100.39% | 200 | Lithium-ion battery | [148] |
Anode: PLA/Graphene/LTO Cathode: PLA/MWCNTs/LMO Electrolyte: PLA/PC:EMC:LiClO4 | Separator: polypropylene disk | 3.91 mAh cm−3 for assembled cell and 1.16 mAh cm−3 for the single-print cell at 20 mA g−1 | 88.5% | 50 | Lithium-ion battery | [126] |
Cathode: Ti-based electrode | Anode: zinc plate Separator: Nafion 117 membrane | N/A | N/A | N/A | Redox flow battery | [149] |
Filament Formulation | Printing Parameters | Fabrication Steps | Design | Reference |
---|---|---|---|---|
Active material: carbon black, silicon, graphite-based powder Filament substrate: PLA | Filament diameter: 1.75 mm Nozzle diameter: 0.4 mm Nozzle temperature: 210 °C Bed temperature: 60 °C Printing speed: 40 mm s−1 Infill density: 100% | Filament preparation using a twin-screw extruder, 3D printing | Circular disc | [144] |
Active material: graphite Plasticizer: PC and poly(ethylene glycol) dimethyl ether Solvent: dichloromethane (DCM) Filament substrate: PLA | Z-Direction resolution: 0.25 mm Filament diameter: 1.75 mm Nozzle diameter: 0.4 mm Nozzle temperature: 150 °C Bed temperature: 60 °C | Filament preparation, 3D printing | Circular disc | [130] |
Active material filament 1 (negative electrode): graphite Active material filament 2 (positive electrode): LFP Active material filament 3 (Separator): SiO2 Solvent: dichloromethane (DCM) Filament substrate: PLA | Z-Direction resolution (first layer): 0.20 mm Z-Direction resolution (following layers): 0.05 mm Filament diameter: 1.75 mm Nozzle diameter: 0.4 mm Nozzle temperature: 195 °C Bed temperature: 60 °C | Filament preparation, 3D printing | Random customized shapes | [145] |
Filament substrate: commercially available conductive carbon filament | Nozzle temperature: 230 °C Bed temperature: 60 °C | 3D printing of carbon filament, oven drying at 50 °C for 6 h, atomic layer deposition of V2O5 | Circular disc | [146] |
Active material: graphene Filament substrate: PLA | Filament diameter: 1.75 mm Nozzle temperature: 190 °C | Filament preparation, 3D printing, chemical pretreatment | Circular disc | [147] |
Active material: LFP, conductive additive Ketjen Black (KB) Solvent: dimethylformamide (DMF) Filament substrate: TPU | Layer height: 100 μm Nozzle temperature: 260–350 °C Bed temperature: 50 °C | Filament preparation, 3D printing | Random customized shapes | [148] |
Active material: LTO, KB Solvent: dimethylformamide (DMF) Filament substrate: TPU | Nozzle temperature: 260–300 °C Bed temperature: 50 °C | Filament preparation, 3D printing | Random customized shapes | [148] |
Active material filament 1: LTO, graphene Active material filament 2: LMO, MWCNTs Active material filament 3: PLA/PC:EMC:LiClO4 Filament substrate: PLA | Layer height: 100 μm Filament diameter: 1.75 mm Nozzle temperature: 210 °C Bed temperature: 50 °C Printing speed: 20–40 mm s−1 | Filament preparation, 3D printing | customized designed LCD sunglasses and bangles | [126] |
Filament substrate: HIPS | N/A | 3D printing of mold, electrode filling, curing at 40 for 3 h, sintering at 1000 °C for 90 min | Kenics mixer unit cell, RLPD, SMX | [149] |
Printed Component | Electrochemical System | Discharge Capacity | Coulombic Efficiency | Cycle Numbers | Application | Reference |
---|---|---|---|---|---|---|
Anode: Si/PEDOT:PSS | Counter electrode: metallic lithium Electrolyte: 1 M LPF in DEC and EC, and ethyl methyl carbonate (EC:DEC:EMC) | 1700 mA h g−1 at 0.1 C | 98.6% | 100 | Lithium-ion battery | [156] |
Anode: AgNPs@CC | Counter electrode: Zn foil Electrolyte: 1 m Zn(CF3SO3)2 aqueous solution Separator: glass fiber | 184 mAh g−1 at 5 A g−1 | 99.5% | 1200 and 800 | Heat-resistant zinc batteries | [157] |
Anode: graphene onto Cu foil substrate | Counter electrode: Li metal foil Electrolyte: 1 LPF in EC and EMC Separator: glass microfiber filter paper | 520 mAh g−1 at 2 C | 99% | 100 | Lithium-ion battery | [158] |
Current collector: graphene-coated Al | Cathode: LiNi1/3Mn1/3Co1/3O2 (Li-NMC111) | 180 mAh g−1 at C/5 | N/A | 100 | Lithium-ion battery | [159] |
Anode: LTO | Counter electrode: Li metal foil Electrolyte: 50 μL of 1 M LPF in EC:DEC Separator: Celgard 2400 | 128 mAh g−1 at 0.5 C | 100% | 100 | Lithium-ion battery | [160] |
Cathode: LMR | Counter electrode: Li metal foil Electrolyte: 1 M LPF EC/PC/DEC/EMC/PA Separator: Celgard 2325 | 240 mAh g−1 at 0.01 C | N/A | 70 | Lithium-ion micro batteries | [161] |
Ink Formulation | Printer Parameters | Fabrication Steps | Design | Reference |
---|---|---|---|---|
Active material: SiNPs carbon black Binder: PEDOT:PSS, Polyvynilpirrolidone (PVP), CMC Solvent: DI-water Ink viscosity: 10 mPa·s | Printing temperature: Ambient Number of printed layers: 25 | Ink preparation, 3D printing, drying in a vacuum oven at 60 °C overnight | N/A | [156] |
Active material: conductive silver Solvent: Triethylene glycol monethyl ether Ink viscosity: 9~11 cPa·s | Printhead diameter: 60 μm Droplet diameter: 45–55 μm | Ink preparation, 3D printing, annealing at 180 °C for 1 h | Layer-by-layer serpentine path | [157] |
Active material: graphene nanosheets Binder: ethyl-cellulose Solvent and solution: ethanol and terpineol (anhydrous), NaCl | Printhead diameter: 80 μm Droplet diameter: 90–110 μm Printing speed: 50 mm s−1 Printhead temperature: 30 °C Substrate temperature: 60 °C | Ink preparation, 3D printing, annealing at 350 °C for 1 h and 30 min | Thin film | [158] |
Active material: graphene nanosheets Binder: ethyl cellulose Solvent: ethanol/terpineol | Droplet volume: 110 pL Droplet step size: 100 μm Printhead temperature: 30 °C Substrate temperature: 60 °C | Ink preparation, 3D printing, annealing at 350 °C for 1 h and 30 min | Thin film | [159] |
Active material: Li4Ti5O12 powder, carbon-based conductive agent (CB por CNT), 1 mM lithium dodecyl sulfate (LDS), lithium polyacrylate (Li-PAA) Binder: PVP Solvent: ethylene glycol (EG), 2-propanol (IPA) Ink viscosity: 2.5–3 cPa·s viscosity at 10–104 s−1 shear rates | Printhead diameter: ~30 μm Printhead resolution: 600 dpi | Ink preparation, 3D printing, drying at 80 °C for 3 h | Thin film | [160] |
Active material: LMR, carbon black Binder: PVDF Solvent: NMP Ink viscosity: 3–20 cPa·s viscosity at 25–34 mN m−1 surface tension | Droplet volume: 10 pL Substrate temperature: 45 °C | Ink preparation, 3D printing, oven drying at 200 °C for 2 h | Thin film | [161] |
Printed Component | Electrochemical System | Discharge Capacity | Coulombic Efficiency | Cycle Numbers | Other Properties | Application | Reference |
---|---|---|---|---|---|---|---|
Electrolyte: LiTFSI | Anode: Li metal foil Cathode: LFP | 166 mAh g−1 at 0.1 C | 100% | 250 | Ionic conductivity: 3.7 × 10−4 S cm−1 | Lithium-ion battery | [87] |
Electrolyte: PEG-base gel polymer | Anode: LTO Cathode: LFP | 1.4 µAh cm−2 at 5 μA | N/A | 2 | Ionic conductivity: 4.8 × 10−3 S cm−1 | Lithium-ion battery | [170] |
Electrolyte: PUA-base gel polymer | Stainless steel electrodes | N/A | N/A | N/A | Ionic conductivity: 1.24 × 10−3 S cm−1 | Lithium-ion battery | [171] |
Electrolyte: LAGP solid electrolyte | Lithium electrodes | N/A | N/A | N/A | Ionic conductivity: 1.6 × 10−4 S cm−1 | Lithium-ion battery | [88] |
Electrolyte: PEO solid electrolyte | Activated carbon-based electrodes coated on stainless steel | N/A | N/A | N/A | Ionic conductivity: 3 × 10−4 S cm−1 | Lithium battery systems, photovoltaic cells, supercapacitors, fuel cells | [172] |
Anode: hard carbon micro lattices | Counter electrode: sodium metal foil Electrolyte: 1.0 m NaPF6 in PC Separator: glass fiber filter | 225 mAh g−1 at 5 mA g−1 | 99.4% | 2 | N/A | Sodium-ion batteries | [173] |
Anode: Si/PEDOT:PSS/PEG | Counter electrode: Li metal foil Electrolyte: LPF EC/DEC (v/v = 1/1) with 5% FEC Separator: Celgard 2400 | 1105 mAh g−1 at 800 mA g−1 | 86.3% | 125 | N/A | Lithium-ion battery | [174] |
Resin Formulation | Printer Parameters | Fabrication Steps | Design | Reference |
---|---|---|---|---|
Active component: Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) Polymer resin: Poly(ethyleneglycol) diacrylate(PEGDA), SCN Photoinitiator: Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide | Light wavelength: 355 nm Power density: 10 W cm−2 | Resin preparation, 3D printing, drying in a vacuum oven at 25 °C for 2 h, further drying under Ar gas for 48 h | 3D-Archimedean spiral structured | [87] |
Active material: 1 M LiClO4 Polymer resin: PEGDA Photoinitiator: Phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide Photoabsorber: Sudan I | Printer resolution: 10 μm Layer thickness: 30 μm Exposure time: 13 s | Resin preparation, 3D printing | Zigzag shape | [170] |
Active material: 1 M LiClO4 Polymer resin: PUA | Light wavelength: 405 nm | Resin preparation, 3D printing | Circular disk | [171] |
Polymer resin: photoresist IP-S | Light wavelength: 780 nm | 3D printing of the template, LAGP synthesis, template immersion into LAGP, heat treatment to 900 °C for 5 h, impregnation of LAGP with polypropylene/Epoxy polymer | 3D cubic bicontinuous microarchitectures | [88] |
Polymer resin: photopolymer translucent Resin | Printer resolution: 50 μm First layer exposure time: 35 s Other layers exposure time: 2 s Light wavelength: 514 nm | 3D printing, pyrolysis at 400 °C for 4 h and 1000 °C for 4 h | Lattice structure | [173] |
Active material: silicon powder (30 wt%), PEDOT:PSS Polymer resin: PEG hydrogel Solvent: distilled water (DW) Photoinitiator: Bis(2,4,6-trimethylbenzoyl) phenylphosphineoxide (BAPO) | Printer resolution: 75 μm Laser spot diameter: 200 μm Light wavelength: 375 nm | Resin preparation, 3D printing, drying in a vacuum oven at 80 °C for 8 h | Honeycomb micropatterned | [174] |
Method | Advantages | Disadvantages |
---|---|---|
Direct Ink Writing | - High resolution - Affordable - Ease of use - Minimal post-production treatment - Flexibility in material selection - Multi-material printing | - Ink formulation - Material rheological properties optimization - Poor mechanical properties |
Fused Filament Fabrication | - No need for ink preparation - Minimal waste - Economical - High production rates - Multi-material printing | - Filament formulation - Risk of nozzle clogging - Poor mechanical properties in z-direction - Low surface quality |
InkJet Printing | - Affordable - Ease of use - Lower viscosity requirement - Flexibility in material selection - Multi-material printing | - Nonuniform printed structure - Ink formulation |
Stereolithography | - High resolution - Nozzle-free printing process - Smooth and highly detailed surface finishes - Strong layer-to-layer adhesion - High mechanical strength - Structural integrity - Durability | - Resin formulation - Resin flowability - Resin refractive index for resin - Relatively high cost for industrial applications - Post-processing requirements |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mottaghi, M.; Pearce, J.M. A Review of 3D Printing Batteries. Batteries 2024, 10, 110. https://doi.org/10.3390/batteries10030110
Mottaghi M, Pearce JM. A Review of 3D Printing Batteries. Batteries. 2024; 10(3):110. https://doi.org/10.3390/batteries10030110
Chicago/Turabian StyleMottaghi, Maryam, and Joshua M. Pearce. 2024. "A Review of 3D Printing Batteries" Batteries 10, no. 3: 110. https://doi.org/10.3390/batteries10030110
APA StyleMottaghi, M., & Pearce, J. M. (2024). A Review of 3D Printing Batteries. Batteries, 10(3), 110. https://doi.org/10.3390/batteries10030110