Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = softening law

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2704 KiB  
Article
Shear Capacity of Masonry Walls Externally Strengthened via Reinforced Khorasan Jacketing
by Cagri Mollamahmutoglu, Mehdi Ozturk and Mehmet Ozan Yilmaz
Buildings 2025, 15(13), 2177; https://doi.org/10.3390/buildings15132177 - 22 Jun 2025
Viewed by 361
Abstract
This study investigates the in-plane shear behavior of solid brick masonry walls, both unreinforced and retrofitted using Reinforced Khorasan Jacketing (RHJ), a traditional pozzolanic mortar technique rooted in Iranian and Ottoman architecture. Six one-block-thick English bond masonry walls were tested in three configurations: [...] Read more.
This study investigates the in-plane shear behavior of solid brick masonry walls, both unreinforced and retrofitted using Reinforced Khorasan Jacketing (RHJ), a traditional pozzolanic mortar technique rooted in Iranian and Ottoman architecture. Six one-block-thick English bond masonry walls were tested in three configurations: unreinforced with Horasan plaster (Group I), reinforced with steel mesh aligned to wall edges (Group II), and reinforced with mesh aligned diagonally (Group III). All the walls were plastered with 3.5 cm of Horasan mortar and tested after 18 months using diagonal compression, with load-displacement data recorded. A detailed 3D micro-modeling approach was employed in finite element simulations, with bricks and mortar modeled separately. The Horasan mortar was represented using an elastoplastic Mohr-Coulomb model with a custom softening law (parabolic-to-exponential), calibrated via inverse parameter fitting using the Nelder-Mead algorithm. The numerical predictions closely matched the experimental data. Reinforcement improved the shear strength significantly: Group II showed a 1.8 times increase, and Group III up to 2.7 times. Ductility, measured as post-peak deformation capacity, increased by factors of two (parallel) and three (diagonal). These enhancements transformed the brittle failure mode into a more ductile, energy-absorbing behavior. RHJ is shown to be a compatible, effective retrofit solution for historic masonry structures. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 6844 KiB  
Article
Influence of Water Immersion on Coal Rocks and Failure Patterns of Underground Coal Pillars Considering Strength Reduction
by Haihua Zhu, Peitao Wang, Kewei Zhang, Yijun Gao, Zhenwu Qi and Meifeng Cai
Appl. Sci. 2025, 15(12), 6700; https://doi.org/10.3390/app15126700 - 14 Jun 2025
Viewed by 357
Abstract
The long-term immersion of coal rock may affect its mechanical properties and failure modes, potentially impacting the stability of coal pillars. This work aims to investigate the influence of the immersion duration on the mechanical properties and fracture evolution processes of coal, employing [...] Read more.
The long-term immersion of coal rock may affect its mechanical properties and failure modes, potentially impacting the stability of coal pillars. This work aims to investigate the influence of the immersion duration on the mechanical properties and fracture evolution processes of coal, employing acoustic emission detection and the digital image correlation (DIC) method. The work focuses on the weakening law of the coal pillar dam in contact with water and obtains a model of the strength deterioration after different periods of water immersion. The stress–strain curves of coal specimens with varying immersion durations are obtained. The results show that the peak absorption rate of coal samples immersed in water transpires within 24 h, with fundamental saturation being achieved at between 25 and 30 days at saturation moisture content of 1.97%. The specimen’s compressive stress after being immersed in water for 7 days is 3.34 MPa, with strain of 0.18%. The cracking stress is 15.60 MPa, with strain of 0.54%. The peak stress is recorded at 27.65 MPa, with strain of 0.92%. The complete rupture stress measures 23.37 MPa, with the maximum strain at 0.95%. During the yielding stage, the specimen has the highest strain increment of 0.38%. Short-term immersion brings about an increase in the coal sample’s plasticity, exhibiting a relatively minor softening impact of water, resulting in comparatively intact fragmentation and modest breakage. A negative exponential function relationship is observed between the compressive strength of coal and the immersion duration. The mechanical reduction relationship is utilized to analyze the failure patterns of coal pillars in underground reservoirs. With prolonged water immersion, the damage area expands to include the coal pillars and the surrounding rock of the excavation area. Full article
Show Figures

Figure 1

24 pages, 5486 KiB  
Article
Revealing the Influence of Material Properties of Shaped Charge Liner on Penetration Performance via Numerical Simulation and Machine Learning
by Yan Wang, Jinxu Liu, Xingwei Liu, Xinya Feng, Yifan Du and Jie Cao
Materials 2025, 18(12), 2742; https://doi.org/10.3390/ma18122742 - 11 Jun 2025
Viewed by 416
Abstract
The metallic shaped charge liner (SCL) is widely utilized in the defense industry, oil perforation, cutting, and other industrial fields due to the powerful penetration performance. However, quantitative law and underlying mechanisms of material properties affecting SCL penetration performance are unclear. Based on [...] Read more.
The metallic shaped charge liner (SCL) is widely utilized in the defense industry, oil perforation, cutting, and other industrial fields due to the powerful penetration performance. However, quantitative law and underlying mechanisms of material properties affecting SCL penetration performance are unclear. Based on the real and virtual material properties, by combining numerical simulation with machine learning, the influence of material properties on SCL penetration performance was systematically studied. The findings in the present work provided new insights into the penetration mechanism and corresponding influencing factors of the metal jet. It indicated that penetration depth was dominated by the melting point, specific heat, and density of the SCL materials rather than the conventionally perceived plasticity and sound velocity. Average perforation diameter was dominated by the density and plasticity of the SCL materials. Particularly, the temperature rise and thermal softening effect of the SCL controlled by the melting point and specific heat have a significant effect on the “self-consumption” of the metal jet and further on the penetration ability. Additionally, the density of the SCL influences the penetration depth deeply via dynamic pressure of the jet, but the influence of density on penetration depth decreases with the increase in density. The correlation between the key properties and penetration performance was obtained according to a quadratic polynomial regression algorithm, by which the penetration potential of SCL materials can be quantitatively evaluated. Overall, the present study provides a new SCL material evaluation and design method, which can help to expand the traditional penetration regime of the SCL in terms of the penetration depth and perforation and is expected to be used for overcoming the pierced and lateral enhancement trade-off. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

14 pages, 1360 KiB  
Article
Fracture Mechanics-Based Modelling of Post-Installed Adhesive FRP Composite Anchors in Structural Concrete Applications
by Amir Mofidi and Mona Rajabifard
J. Compos. Sci. 2025, 9(6), 282; https://doi.org/10.3390/jcs9060282 - 31 May 2025
Viewed by 450
Abstract
Adhesively bonded fibre-reinforced polymer (FRP) anchors have emerged as a progressive alternative to traditional steel anchors in concrete structures, owing to their superior corrosion resistance, high tensile strength, and light weight. Despite their increasing use, a robust mechanics-based bond model capable of accurately [...] Read more.
Adhesively bonded fibre-reinforced polymer (FRP) anchors have emerged as a progressive alternative to traditional steel anchors in concrete structures, owing to their superior corrosion resistance, high tensile strength, and light weight. Despite their increasing use, a robust mechanics-based bond model capable of accurately predicting the load transfer behaviour has not yet been developed. This study presents a fracture mechanics-based analytical bond model for post-installed adhesive FRP anchors embedded in concrete. The model formulation is derived from fundamental equilibrium and compatibility principles, incorporating a bilinear bond–slip law that captures both elastic and softening behaviours. A new expression for the effective bond length is also proposed. Validation of the model against a comprehensive database of direct pull-out tests reported in the literature shows excellent agreement between predicted and experimental pull-out forces (R2 = 0.980; CoV = 0.058). Future research should aim to extend the proposed model to account for confinement effects, long-term durability, the impact of adhesive type, and cyclic loading conditions. Full article
Show Figures

Figure 1

31 pages, 5534 KiB  
Article
Safety Assessment of Concrete Gravity Dams: Hydromechanical Coupling and Fracture Propagation
by Maria Luísa Braga Farinha, Nuno Monteiro Azevedo and Sérgio Oliveira
Geosciences 2025, 15(4), 149; https://doi.org/10.3390/geosciences15040149 - 15 Apr 2025
Viewed by 435
Abstract
For the safety assessment of concrete dam–foundation systems, this study used an explicit time-stepping small-displacement algorithm, which simulates the hydromechanical interaction and considers the discrete representation of the foundation discontinuities. The proposed innovative methodology allows for the definition of more reliable safety factors [...] Read more.
For the safety assessment of concrete dam–foundation systems, this study used an explicit time-stepping small-displacement algorithm, which simulates the hydromechanical interaction and considers the discrete representation of the foundation discontinuities. The proposed innovative methodology allows for the definition of more reliable safety factors and the identification of more realistic failure modes by integrating (i) softening-based constitutive laws that are closer to the real behavior identified experimentally in concrete–concrete and concrete–rock interfaces; (ii) a water height increase that can be considered in both hydraulic and mechanical models; and (iii) fracture propagation along the dam–foundation interface. Parametric studies were conducted to assess the impact of the mechanical properties on the global safety factors of three gravity dams with different heights. The results obtained using a coupled/fracture propagation model were compared with those from the strength reduction method and the overtopping scenario not considering the hydraulic pressure increase. The results show that the safety assessment should be conducted using the proposed methodology. It is shown that the concrete–rock interface should preferably have a high value of fracture energy or, ideally, higher tensile and cohesion strengths and high associated fracture energy. The results also indicate that with a brittle concrete–rock model, the predicted safety factors are always conservative when compared with those that consider the fracture energy. Full article
(This article belongs to the Special Issue Fracture Geomechanics—Obstacles and New Perspectives)
Show Figures

Figure 1

23 pages, 16312 KiB  
Article
Comparative Study of Friction Models in High-Speed Machining of Titanium Alloys
by Fan Yi, Ruoxi Zhong, Wenjie Zhu, Run Zhou, Li Guo and Ying Wang
Lubricants 2025, 13(3), 113; https://doi.org/10.3390/lubricants13030113 - 6 Mar 2025
Viewed by 798
Abstract
Friction has a significant impact on chip formation, so modeling it accurately is crucial in numerical cutting simulations. However, there is still controversy regarding the application scope and effectiveness of various friction models. A two-dimensional orthogonal cutting thermomechanical coupled finite element model is [...] Read more.
Friction has a significant impact on chip formation, so modeling it accurately is crucial in numerical cutting simulations. However, there is still controversy regarding the application scope and effectiveness of various friction models. A two-dimensional orthogonal cutting thermomechanical coupled finite element model is established. Critical strain values, recrystallization temperature, and recrystallization flow stress are introduced, and a power-law-modified softening coefficient is used to modify the standard Johnson–Cook constitutive model to simulate material mechanical properties. Zorev’s friction model, velocity-dependent friction model, and temperature-dependent friction model are separately employed to describe the friction behavior between the tool and workpiece. The contact and friction characteristics between the workpiece and tool, material damage, and temperature field are evaluated. Predicted cutting forces are compared and analyzed with experimental values. The friction coefficient can adjust the contact length between the tool and chip, the high-temperature range on the tool surface, and the fluctuation of temperature throughout the entire cutting process. The friction coefficient is more sensitive to sliding velocity, and the temperature distribution is more sensitive to the friction model than to different working conditions. Whether by modifying the friction coefficient or maximum friction shear stress, and regardless of whether adding parameters affected by velocity or temperature changes the fluctuation range, period, and local peaks of the cutting force prediction curve, improving the accuracy of predictions within certain working condition ranges to some extent. However, the overall trend of error fluctuations obtained from these friction models is similar, and the accuracy of predictions from these friction models tends to become more inaccurate with increasing cutting thickness. Full article
Show Figures

Figure 1

16 pages, 7097 KiB  
Article
Unraveling the Crystallization, Mechanical, and Heat Resistance Properties of Poly(butylene adipate-co-terephthalate) Through the Introduction of Stereocomplex Crystallites
by Min Qiao, Tao Zhang, Jing Jiang, Caiyi Jia, Yangyang Li, Xiaofeng Wang and Qian Li
Crystals 2025, 15(3), 247; https://doi.org/10.3390/cryst15030247 - 6 Mar 2025
Viewed by 873
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising degradable polymer for replacing non-degradable traditional plastics to mitigate pollution. However, its low softening temperature and poor hardness impede its application. Herein, PBAT and stereocomplex polylactide (sc-PLA) blends were fabricated through a melt-blending process to balance the [...] Read more.
Poly(butylene adipate-co-terephthalate) (PBAT) is a promising degradable polymer for replacing non-degradable traditional plastics to mitigate pollution. However, its low softening temperature and poor hardness impede its application. Herein, PBAT and stereocomplex polylactide (sc-PLA) blends were fabricated through a melt-blending process to balance the heat resistance and mechanical strength of PBAT in this research. The effects of the PLA content and hot embossing temperature on the blend properties were comprehensively investigated. The results demonstrate that the sc-crystal content in the PBAT/sc-PLA blend increased by 493% as the PLA content rose from 10% to 30%. The blend with 15% PLLA and 15% PDLA, hot embossed at 190 °C, exhibited the highest sc-PLA crystallinity of 23.3% and the largest fraction of sc-crystallites at 66%, leading to the optimal comprehensive performance. Its Vicat softening temperature (VST) reached 92.2 °C, and a nonlinear increase trend in accordance with the power-law model between VST and the mass ratio of sc-crystal was obtained. Compared with the mechanical properties of neat PBAT, a maximum tensile yield stress of 9.7 MPa and a Young’s modulus of 82.5 MPa were achieved and improved approximately by 107% and 361%, respectively. This research offers an effective strategy for synergistically enhancing the heat resistance and mechanical strength of PBAT. Full article
Show Figures

Figure 1

27 pages, 8970 KiB  
Article
Shear Instability and Localization in High-Speed Cold Spray Processes: Impact on Particle Fragmentation and Bonding Mechanisms
by Sabeur Msolli
Materials 2025, 18(3), 490; https://doi.org/10.3390/ma18030490 - 22 Jan 2025
Cited by 1 | Viewed by 835
Abstract
This study investigates the deformation behavior and interfacial phenomena occurring during the high-velocity impact of a copper particle into a copper substrate under various conditions using FEM. It also offers an enhanced physics-based model based on discrete dislocation dynamics simulations to depict newly [...] Read more.
This study investigates the deformation behavior and interfacial phenomena occurring during the high-velocity impact of a copper particle into a copper substrate under various conditions using FEM. It also offers an enhanced physics-based model based on discrete dislocation dynamics simulations to depict newly observed features such as interfacial instabilities and shear localization leading to bonding and particle fragmentation. To investigate bonding mechanisms at the particle–substrate interface, additional simulations using a one-element-thickness model are conducted. These simulations focus on the deformation behavior at the interface, revealing wavy shape formation in the substrate due to disparities in strain-rate levels. Material instabilities, localized at the intersection of plane and release waves, progress hand-in-hand during the early stages of impact, suggesting shear behavior as a precursor to instabilities. The effect of shear viscosity on particle deformation and interfacial behavior is also examined, showing that increased viscosity leads to thermal material softening and enhanced deformation. Material jetting and interfacial instability are observed, particularly at higher viscosity thresholds. Additionally, the impact of drag coefficient variations on particle deformation is explored, indicating a critical role in interfacial stability and particle flattening. Finally, the occurrence of adiabatic shear instability and localization is investigated, revealing shear localization regions at the particle–substrate interface and within the particle itself responsible for particle fragmentation. To this aim, damage initiation and evolution laws are applied to identify regions of shear localization, crucial for particle–substrate bonding and mechanical interlocking. The impact velocity is shown to influence shear localization, with higher velocities resulting in increased deformation and larger localization regions. Full article
Show Figures

Figure 1

28 pages, 3967 KiB  
Article
Degradation of Interfacial Bond for FRPs Near-Surface Mounted to Concrete Under Fatigue: An Analytical Approach
by Xun Wang and Lijuan Cheng
Fibers 2025, 13(1), 9; https://doi.org/10.3390/fib13010009 - 15 Jan 2025
Viewed by 846
Abstract
In this study, an analytical model was developed for the local bond degradation behavior between a near-surface mounted (NSM) fiber-reinforced polymer (FRP) and concrete under fatigue loading. A trilinear local bond stress–slip relationship was adopted to characterize the fundamental bond behavior at the [...] Read more.
In this study, an analytical model was developed for the local bond degradation behavior between a near-surface mounted (NSM) fiber-reinforced polymer (FRP) and concrete under fatigue loading. A trilinear local bond stress–slip relationship was adopted to characterize the fundamental bond behavior at the FRP-epoxy-concrete interface at different stages of elastic, softening and debonding. A series of post-fatigue direct pull-out tests (DPTs) of NSM FRP-bonded concrete blocks was conducted to provide the local bond degradation laws for the analytical model. The bond region was discretized into finite elements to include the effect of bond degradation to different extents, and a closed-form solution was derived by virtue of appropriate boundary conditions in each fatigue cycle. The model is capable of predicting the FRP strain distribution, local bond stress distribution and relative slip development at a targeted number of fatigue cycles. The reliability of the analytical model was confirmed by experimental data, and its sensitivity to various parameters such as local bond strength, the residual bond strength ratio and Young’s modulus of FRP reinforcement was also assessed in this study. Full article
Show Figures

Figure 1

17 pages, 7274 KiB  
Article
Stability Analysis of Slopes Under Seismic Action with Asynchronous Discounting of Strength Parameters
by Ruipeng Wang, Hongye Yan, Junkai Yao and Zhuqing Li
Appl. Sci. 2025, 15(1), 169; https://doi.org/10.3390/app15010169 - 28 Dec 2024
Viewed by 879
Abstract
A non-proportional reduction in strength parameters is widely used in slope stability assessment, but the current asynchronous reduction in strength parameters only considers the cohesion c and internal friction angle φ, which is suitable for slope stability assessment under static loads. Under seismic [...] Read more.
A non-proportional reduction in strength parameters is widely used in slope stability assessment, but the current asynchronous reduction in strength parameters only considers the cohesion c and internal friction angle φ, which is suitable for slope stability assessment under static loads. Under seismic loads, however, tension at the rear edge of the slope often accompanies the appearance of ground cracks. In order to consider the relationship between tensile strength, cohesion, and the internal friction angle reduction coefficient, starting with the linear softening attenuation law of soil material strength parameters, a functional relationship between cohesion and internal friction angle is obtained. Then, considering that the failure of microelements in the tensile and shear zones conforms to the tension and shear of joint failure, the relationship between tensile strength, cohesion, and the internal friction angle reduction coefficient is derived. By establishing a homogeneous slope model and comparing and analyzing the progressive instability failure modes of slopes under static and seismic conditions, the stability and potential slip surface differences of slopes under two different working conditions are explored. The research results indicate that slope instability is a gradual, cumulative failure process under both static and dynamic conditions. The instability mode of the slope under static conditions is shear failure. In contrast, under dynamic loads, the instability failure of the slope is manifested as shear failure upward at the foot of the slope and tensile failure downward at the top of the slope. The stability coefficient of slopes under earthquake conditions is reduced by 17.3% compared to that under static conditions. Under earthquake conditions, the potential sliding surface under an asynchronous reduction in strength parameters is shallower than that under static conditions and deeper than that without an asynchronous reduction in strength parameters. Overall, the research results provide a reference for slope stability analysis and support design optimization under earthquake loads. Full article
Show Figures

Figure 1

13 pages, 2351 KiB  
Article
Experimental Study on Mechanical Properties of Rock in Water-Sensitive Oil and Gas Reservoirs Under High Confining Pressure
by Mingfei Li, Jingwei Liang and Yihua Dou
Appl. Sci. 2024, 14(24), 11478; https://doi.org/10.3390/app142411478 - 10 Dec 2024
Cited by 2 | Viewed by 778
Abstract
Injecting high-pressure fluid into a reservoir rock mass will change the mechanical properties of the rock; the strength and safety of a shale well wall are also extremely critical. In order to investigate the law of variation in water-sensitive shale strength during fracturing, [...] Read more.
Injecting high-pressure fluid into a reservoir rock mass will change the mechanical properties of the rock; the strength and safety of a shale well wall are also extremely critical. In order to investigate the law of variation in water-sensitive shale strength during fracturing, an experimental study on the mechanical properties of shale under high confining pressure and water–rock coupling was carried out. Taking water-sensitive shale rock as the research object, the effects of high confining pressure and water content on the mechanical properties, residual strength, and macroscopic and microscopic failure modes of shale were analyzed. The test results show that the stress–strain curve of the shale gradually shortened with the decrease in the water content in the stage of void compaction and plastic yield, and the peak of the stress–strain curve was continuously enhanced. The water content and the peak intensity exhibited a negative linear correlation. The elastic modulus and water content showed an exponentially decreasing distribution. However, as the water content increased, the decreasing rate became slower, the softening coefficient increased, and the plastic deformation increased. The research results provide basic load parameters for the strength and safety of the casing of an oil layer under fracturing conditions. Full article
Show Figures

Figure 1

25 pages, 19929 KiB  
Article
Coupled Elastic–Plastic Damage Modeling of Rock Based on Irreversible Thermodynamics
by Xin Jin, Yufei Ding, Keke Qiao, Jiamin Wang, Cheng Fang and Ruihan Hu
Appl. Sci. 2024, 14(23), 10923; https://doi.org/10.3390/app142310923 - 25 Nov 2024
Viewed by 966
Abstract
Shale is a common rock in oil and gas extraction, and the study of its nonlinear mechanical behavior is crucial for the development of engineering techniques such as hydraulic fracturing. This paper establishes a new coupled elastic–plastic damage model based on the second [...] Read more.
Shale is a common rock in oil and gas extraction, and the study of its nonlinear mechanical behavior is crucial for the development of engineering techniques such as hydraulic fracturing. This paper establishes a new coupled elastic–plastic damage model based on the second law of thermodynamics, the strain equivalence principle, the non-associated flow rule, and the Drucker–Prager yield criterion. This model is used to describe the mechanical behavior of shale before and after peak strength and has been implemented in ABAQUS via UMAT for numerical computation. The model comprehensively considers the quasi-brittle and anisotropic characteristics of shale, as well as the strength degradation caused by damage during both the elastic and plastic phases. A damage yield function has been established as a criterion for damage occurrence, and the constitutive integration algorithm has been derived using a regression mapping algorithm. Compared with experimental data from La Biche shale in Canada, the theoretical model accurately simulated the stress–strain curves and volumetric–axial strain curves of shale under confining pressures of 5 MPa, 25 MPa, and 50 MPa. When compared with experimental data from shale in Western Hubei and Eastern Chongqing, China, the model precisely fitted the stress–strain curves of shale at pressures of 30 MPa, 50 MPa, and 70 MPa, and at bedding angles of 0°, 22.5°, 45°, and 90°. This proves that the model can effectively predict the failure behavior of shale under different confining pressures and bedding angles. Additionally, a sensitivity analysis has been performed on parameters such as the plastic hardening rate b, damage evolution rate Bω, weighting factor r, and damage softening parameter a. This research is expected to provide theoretical support for the efficient extraction technologies of shale oil and gas. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 5981 KiB  
Article
Influence of Specimen Width on Crack Propagation Process in Lightly Reinforced Concrete Beams
by Hongwei Wang, Hui Jin, Zhimin Wu, Baoping Zou and Wang Zhang
Materials 2024, 17(22), 5586; https://doi.org/10.3390/ma17225586 - 15 Nov 2024
Cited by 1 | Viewed by 759
Abstract
Models used to study the fracture process of concrete are often considered 2D, ignoring the influence of specimen width. However, during the fracture process in pre-cracked concrete beams, the crack length varies along the thickness direction, especially in reinforced concrete. To study the [...] Read more.
Models used to study the fracture process of concrete are often considered 2D, ignoring the influence of specimen width. However, during the fracture process in pre-cracked concrete beams, the crack length varies along the thickness direction, especially in reinforced concrete. To study the influence of specimen width on reinforced concrete fracture behavior, a 3D numerical method was used to simulate the crack propagation processes of lightly reinforced concrete beams based on Fracture Mechanics. Nonlinear spring elements with different stress-displacement constitutive laws were employed to characterize the softening behavior of concrete and the bond-slip behavior between the steel bars and concrete, respectively. It is assumed that the crack begins to propagate when the maximum stress intensity factor at the crack tip along the beam width reaches the initial fracture toughness of concrete. To verify the validity of the proposed method, the completed crack propagation processes of lightly reinforced concrete three-point bending notched beams were simulated, and the calculated load-crack mouth opening displacement curves showed a reasonable agreement with the experimental data. Moreover, the impact of the 2D reinforced concrete beam model on the crack propagation process was analyzed. The results indicate that at the initial loading stage, the external load P obtained from the 2D model is significantly larger than the result from the presented 3D model. Full article
Show Figures

Figure 1

7 pages, 2378 KiB  
Communication
Study on the Effect of Soft–Hard Material Interface Differences on Crack Deflection in Nacre-Inspired Brick-and-Mortar Structures
by Yifan Wang, Xiao Yang, Shichao Niu, Biao Tang and Chun Shao
Biomimetics 2024, 9(11), 685; https://doi.org/10.3390/biomimetics9110685 - 9 Nov 2024
Viewed by 1165
Abstract
Nacre has excellent balanced strength and toughness. In this paper, the mechanical performance of the typical “brick-and-mortar” structure, including the stress–strain and strain at the interface as well as the stress in the bricks, was calculated by a simplified analytical model of the [...] Read more.
Nacre has excellent balanced strength and toughness. In this paper, the mechanical performance of the typical “brick-and-mortar” structure, including the stress–strain and strain at the interface as well as the stress in the bricks, was calculated by a simplified analytical model of the nacre. This paper proposes a new method to control the crack deflection based on the toughening mechanism of the nacre. The crack extension of the “brick-and-mortar” structure was simulated using cohesive elements based on the traction–separation law with elastic and softening stiffness as variables, and it was found that both stiffness could effectively control the crack extension. The strength and toughness of the models with different stiffness combinations were calculated and plotted as a function of elastic stiffness and softening stiffness, showing that elastic stiffness significantly affects strength and softening stiffness is a determinant of toughness. Full article
Show Figures

Figure 1

17 pages, 21122 KiB  
Article
Subgrain Size Modeling and Substructure Evolution in an AA1050 Aluminum Alloy during High-Temperature Compression
by Qi Yang, Tomasz Wojcik and Ernst Kozeschnik
Materials 2024, 17(17), 4385; https://doi.org/10.3390/ma17174385 - 5 Sep 2024
Cited by 2 | Viewed by 1285
Abstract
For materials with high stacking fault energy (SFE), such as aluminum alloys, dynamic recovery (DRV) and dynamic recrystallization (DRX) are essential softening mechanisms during plastic deformation, which lead to the continuous generation and refinement of newborn subgrains (2° ˂ misorientation angle ˂ 15°). [...] Read more.
For materials with high stacking fault energy (SFE), such as aluminum alloys, dynamic recovery (DRV) and dynamic recrystallization (DRX) are essential softening mechanisms during plastic deformation, which lead to the continuous generation and refinement of newborn subgrains (2° ˂ misorientation angle ˂ 15°). The present work investigates the influence of compression parameters on the evolution of the substructures for a 1050 aluminum alloy at elevated temperatures. The alloy microstructure was investigated under deformation temperatures ranging from 300 °C to 500 °C and strain rates from 0.01 to 0.1 s−1, respectively. A well-defined substructure and subsequent subgrain refinement provided indication of the evolution laws of the substructure under high-temperature compression. Corresponding experimental data on the average subgrain size under various compression conditions were obtained. Two different independent average subgrain size evolution models (empirical and substructure-based) were used and applied with several internal state variables. The substructure model employed physical variables to simulate subgrain refinement and thermal coarsening during deformation, incorporating a corresponding dislocation density evolution model. The correlation coefficient (R) and root mean square error (RMSE) of the substructure-based model were calculated to be 0.98 and 5.7%, respectively. These models can provide good estimates of the average subgrain size, with both predictions and experiments reproducing the expected subgrain size evolution using physically meaningful variables during continuous deformation. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop