Subgrain Size Modeling and Substructure Evolution in an AA1050 Aluminum Alloy during High-Temperature Compression
Abstract
:1. Introduction
2. Model Description
2.1. Empirical Average Subgrain Size Model
2.2. Substructure-Based Model
3. Experimental Results
3.1. Material and Experiments
3.2. Substructure Evolution
4. Model Application and Discussion
4.1. Model Input Parameters
4.2. Model Validation
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Humphreys, F.J.; Hatherly, M. Recrystallization and Related Annealing Phenomena, 2nd ed.; Elsevier: Oxford, UK, 2004. [Google Scholar]
- Doherty, R.D.; Hughes, D.A.; Humphreys, F.J.; Jonas, J.J.; Jensen, D.J.; Kassner, M.E.; McNelley, T.R.; McQueen, H.J.; Rollet, A.D. Current issues in recrystallization: A review. Mater. Sci. Eng. A 1997, 238, 219–274. [Google Scholar] [CrossRef]
- Lv, J.X.; Zheng, J.H.; Yardley, V.A.; Shi, Z.S.; Lin, J.G. A review of microstructural evolution and modelling of aluminium alloys under hot forming conditions. Metals 2020, 10, 1516. [Google Scholar] [CrossRef]
- Kaibyshev, R.; Shipilova, K.; Musin, F.; Motohashi, Y. Continuous dynamic recrystallization in an Al-Li-Mg-Sc alloy during equal-channel angular extrusion. Mater. Sci. Eng. A 2005, 396, 341–351. [Google Scholar] [CrossRef]
- Li, J.C.; Wu, X.D.; Cao, L.F.; Liao, B.; Wang, Y.C.; Liu, Q. Hot deformation and dynamic recrystallization in Al-Mg-Si alloy. Mater. Charact. 2021, 173, 110976. [Google Scholar] [CrossRef]
- Lee, J.W.; Son, K.T.; Jung, T.K.; Yoon, Y.O.; Kim, S.K.; Choi, H.J.; Hyun, S.K. Continuous dynamic recrystallization behavior and kinetics of Al-Mg-Si alloy modified with CaO-added Mg. Mater. Sci. Eng. A 2016, 673, 648–659. [Google Scholar] [CrossRef]
- Feng, X.M.; Wang, Y.T.; Huang, Q.G.; Liu, H.L.; Zhang, Z.H. The dynamic recrystallization microstructure characteristics and the effects on static recrystallization and mechanical properties of Al–Mg–Si alloy. Mater. Sci. Eng. A 2024, 899, 146454. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yi, Y.P.; Huang, S.Q.; Mao, X.C.; He, H.L.; Tang, J.G.; Guo, W.F.; Dong, F. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation. Mater. Sci. Eng. A 2021, 804, 140650. [Google Scholar] [CrossRef]
- Sakai, T.; Miura, H.; Goloborodko, A.; Sitdikov, O. Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475. Acta Mater. 2009, 57, 153–162. [Google Scholar] [CrossRef]
- Maizza, G.; Pero, R.; Richetta, M.; Montanari, R. Continuous dynamic recrystallization (CDRX) model for aluminum alloys. J. Mater. Sci. 2018, 53, 4563–4573. [Google Scholar] [CrossRef]
- Yang, Q.; Wojcik, T.; Kozeschnik, E. Continuous dynamic recrystallization and deformation behavior of an AA1050 aluminum alloy during high-temperature compression. Metals 2024, 14, 889. [Google Scholar] [CrossRef]
- Huang, K.; Logé, R.E. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 2016, 111, 548–574. [Google Scholar] [CrossRef]
- Sakai, T.; Belyakov, A.; Kaibyshev, R.; Miura, H.; Jonas, J.J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 2014, 60, 130–207. [Google Scholar] [CrossRef]
- Zhang, J.J.; Yi, Y.P.; He, H.L.; Huang, S.Q.; Mao, X.C.; Guo, W.F.; You, W.; Guo, Y.L.; Dong, F.; Tang, J.G. Kinetic model for describing continuous and discontinuous dynamic recrystallization behaviors of 2195 aluminum alloy during hot deformation. Mater. Charact. 2021, 181, 111492. [Google Scholar] [CrossRef]
- Ding, S.; Khan, S.A.; Yanagimoto, J. Flow behavior and dynamic recrystallization mechanism of A5083 aluminum alloys with different initial microstructures during hot compression. Mater. Sci. Eng. A 2020, 787, 139522. [Google Scholar] [CrossRef]
- Li, H.; Huang, Y.C.; Liu, Y. Dynamic recrystallization mechanisms of as-forged Al–Zn–Mg-(Cu) aluminum alloy during hot compression deformation. Mater. Sci. Eng. A 2023, 878, 145236. [Google Scholar] [CrossRef]
- Illgen, C.; Bohne, B.; Wagner, M.F.X.; Frint, P. Thermal stability of SPD-processed aluminum alloys—Internal friction as an indication for recovery, recrystallization and abnormal grain growth. J. Mater. Res. Technol. 2022, 17, 1752–1759. [Google Scholar] [CrossRef]
- Meng, Z.J.; Zhang, C.S.; Zhang, G.F.; Wang, K.Z.; Wang, Z.J.; Chen, L.; Zhao, G.Q. Hot compressive deformation behavior and microstructural evolution of the spray-formed 1420 Al–Li alloy. J. Mater. Res. Technol. 2023, 27, 4469–4484. [Google Scholar] [CrossRef]
- Wang, K.Z.; Zhang, C.S.; Cheng, Z.N.; Zhao, H.B.; Meng, Z.J.; Chen, L.; Zhao, G.Q. Dynamic evolution of the T1 phase and its effect on continuous dynamic recrystallization in Al–Cu–Li alloys. Int. J. Plast. 2024, 175, 103948. [Google Scholar] [CrossRef]
- Velay, X. Prediction and control of subgrain size in the hot extrusion of aluminium alloys with feeder plates. J. Mater. Process. Technol. 2009, 209, 3610–3620. [Google Scholar] [CrossRef]
- Poletti, C.; Rodriguez-Hortalá, M.; Hauser, M.; Sommitsch, C. Microstructure development in hot deformed AA6082. Mater. Sci. Eng. A 2011, 528, 2423–2430. [Google Scholar] [CrossRef]
- Sellars, C.; Zhu, Q. Microstructural modelling of aluminium alloys during thermomechanical processing. Mater. Sci. Eng. A 2000, 280, 1–7. [Google Scholar] [CrossRef]
- Furu, T.; Ørsund, R.; Nes, E. Subgrain growth in heavily deformed aluminium-experimental investigation and modelling treatment. Acta Metall. Mater. 1995, 43, 2209–2232. [Google Scholar] [CrossRef]
- Nes, E.; Vatne, H.E.; Daaland, O.; Furu, T.; Ørsund, R.; Marthinsen, K. Physical Modelling of Microstructural Evolution during Thermomechanical Processing of Aluminium Alloys; Report STF24 S94003; SINTEF: Trondheim, Norway, 1994. [Google Scholar]
- Nes, E. Modelling of work hardening and stress saturation in FCC metals. Prog. Mater. Sci. 1998, 41, 129–193. [Google Scholar] [CrossRef]
- Sheppard, T. Development of structure, recrystallization kinetics and prediction of recrystallized layer thickness in some Al-alloys. In Proceedings of the 6th International Seminar on Aluminium Extrusion Technology, Chicago, IL, USA, 14–17 May 1996; Aluminium Association and Aluminium Extruder Council: Wauconda, IL, USA, 1996; Volume 1, pp. 163–170. [Google Scholar]
- Duan, X.; Sheppard, T. Simulation of substructural strengthening in hot flat rolling. J. Mater. Process. Technol. 2002, 125–126, 179–187. [Google Scholar] [CrossRef]
- Duan, X.; Sheppard, T. Three dimensional thermal mechanical coupled simulation during hot rolling of aluminium alloy 3003. J. Mater. Sci. 2002, 44, 2155–2172. [Google Scholar] [CrossRef]
- Marthinsen, K.; Nes, E. Modelling strain hardening and steady state deformation of Al-Mg alloys. Mater. Sci. Technol. 2001, 17, 376–388. [Google Scholar] [CrossRef]
- Gourdet, S.; Montheillet, F. A model of continuous dynamic recrystallization. Acta Mater. 2003, 51, 2685–2699. [Google Scholar] [CrossRef]
- Sun, Z.C.; Wu, H.L.; Cao, J.; Yin, Z.K. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method. Int. J. Plast. 2018, 106, 73–87. [Google Scholar] [CrossRef]
- Chen, S.F.; Li, D.Y.; Zhang, S.H.; Han, H.N.; Lee, H.W.; Lee, M.G. Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach. Int. J. Plast. 2020, 131, 102710. [Google Scholar] [CrossRef]
- Chen, F.; Tian, X.; Wu, G.; Zhu, H.; Ou, H.; Cui, Z. Coupled quantitative modeling of microstructural evolution and plastic flow during continuous dynamic recrystallization. Int. J. Plast. 2022, 156, 103372. [Google Scholar] [CrossRef]
- Furu, T.; Shercliff, H.R.; Sellars, C.M.; Ashby, M.F. Physically-based modelling of strength, microstructure and recrystallisation during thermomechanical processing of Al-Mg alloys. Mater. Sci. Forum 1996, 217, 453–458. [Google Scholar] [CrossRef]
- Sherby, O.D.; Klundt, R.H.; Miller, A.K. Flow stress, subgrain size, and subgrain stability at elevated temperature. Metall. Trans. A 1977, 8, 843–850. [Google Scholar] [CrossRef]
- Hallberg, H.; Wallin, M.; Ristinmaa, M. Modeling of continuous dynamic recrystallization in commercial-purity aluminum. Mater. Sci. Eng. A 2010, 527, 1126–1134. [Google Scholar] [CrossRef]
- Huang, Y.; Humphreys, F.J. Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110}〈001〉. Acta Mater. 2000, 48, 2017–2030. [Google Scholar] [CrossRef]
- Sherstnev, P.; Lang, P.; Kozeschnik, E. Treatment of simultaneous deformation and solid-state precipitation in thermo-kinetic calculations. In Proceedings of the 6th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Vienna, Austria, 10–14 September 2012; pp. 1–8. [Google Scholar]
- Kreyca, J.; Kozeschnik, E. State parameter-based constitutive modelling of stress strain curves in Al-Mg solid solutions. Int. J. Plast. 2018, 103, 67–80. [Google Scholar] [CrossRef]
- Buken, H.; Kozeschnik, E. Modeling static recrystallization in Al-Mg alloys. Metall. Mater. Trans. A 2021, 52, 544–552. [Google Scholar] [CrossRef]
- Raabe, D. 23—Recovery and Recrystallization: Phenomena, Physics, Models, Simulation. In Physical Metallurgy; Laughlin, D.E., Hono, K., Eds.; Elsevier: Oxford, UK, 2014; pp. 2291–2397. [Google Scholar]
- McQueen, H.J.; Kassner, M.E. Comments on ‘a model of continuous dynamic recrystallization’ proposed for aluminum. Scr. Mater. 2004, 51, 461–465. [Google Scholar] [CrossRef]
- Federighi, T. A possible determination of the activation energy for self-diffusion in aluminium. Philos. Mag. 1959, 4, 502–510. [Google Scholar] [CrossRef]
- Hirth, J.P.; Lothe, J. Theory of Dislocations; Krieger Publishing Company: Malabar, FL, USA, 1991. [Google Scholar]
- Galindo-Nava, E.I.; Rivera-Díaz-del-Castillo, P.E.J. A thermostatistical theory of low and high temperature deformation in metals. Mater. Sci. Eng. A 2012, 543, 110–116. [Google Scholar] [CrossRef]
- Mecking, H.; Nicklas, B.; Zarubova, N. A universal temperature scale for plastic flow. Acta Mater. 1986, 34, 527–535. [Google Scholar] [CrossRef]
- Frost, H.; Ashby, M. Deformation-Mechanism Maps, 1st ed.; Pergamon Press: Oxford, UK, 1982. [Google Scholar]
- Bergström, Y. The plastic deformation of metals-a dislocation model and its applicability. Rev. Powder Metall. Phys. Ceram. 1983, 2, 79–265. [Google Scholar]
- Alankar, A.; Field, D.P.; Raabe, D. Plastic anisotropy of electro-deposited pure a-iron with sharpcrystallographic <111>// texture in normal direction: Analysis by an explicitly dislocation-based crystal plasticity model. Int. J. Plast. 2014, 52, 18–32. [Google Scholar]
- Mirzadeh, H.; Cabrera, J.M.; Najafizadeh, A. Modeling and prediction of hot deformation flow curves. Metall. Mater. Trans. A 2012, 43, 108–123. [Google Scholar] [CrossRef]
- Gourdet, S.; Montheillet, F. An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater. Sci. Eng. A 2000, 283, 274–288. [Google Scholar] [CrossRef]
- Yanushkevich, Z.; Belyakov, A.; Kaibyshev, R. Microstructural evolution of a 304-type austenitic stainless steel during rolling at temperatures of 773-1273 K. Acta Mater. 2015, 82, 244–254. [Google Scholar] [CrossRef]
- Wu, G.C.; Lin, Y.C.; Chen, M.S.; Qiu, W.; Zeng, N.F.; Zhang, S.; Wan, M.; He, D.G.; Jiang, Y.Q.; Naseri, M. Continuous dynamic recrystallization behaviors in a single-phase deformed Ti-55511 alloy by cellular automata model. J. Alloys Compd. 2024, 1002, 175293. [Google Scholar] [CrossRef]
- Hines, J.A.; Vecchio, K.S.; Ahzi, S. A model for microstructure evolution in adiabatic shear bands. Metall. Mater. Trans. A 1998, 29, 191–203. [Google Scholar] [CrossRef]
- Wu, S.; Fan, K.; Jiang, P.; Chen, S. Grain refinement of pure Ti during plastic deformation. Mater. Sci. Eng. A 2010, 527, 6917–6921. [Google Scholar] [CrossRef]
- Hansen, N. Hall–Petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806. [Google Scholar] [CrossRef]
- Summers, P.T.; Mouritz, A.P.; Case, S.W.; Lattimer, B.Y. Microstructure-based modeling of residual yield strength and strain hardening after fire exposure of aluminum alloy 5083-H116. Mater. Sci. Eng. A 2015, 632, 14–28. [Google Scholar] [CrossRef]
Average Subgrain Size (μm) | Temperature (°C) | Strain Rate (s−1) | Strain 0.1 | Strain 0.3 | Strain 0.6 | Strain 0.9 |
---|---|---|---|---|---|---|
subgrain size | 300 | 0.1 | 63 | 21 | 11 | 1.7 |
400 | 0.1 | 71 | 33 | 21 | 3.5 | |
500 | 0.1 | 65 | 37 | 25 | 11 | |
500 | 0.01 | 83 | 43 | 28 | 19 |
Symbol | Name | Unit | Value | Ref. |
---|---|---|---|---|
Poisson’s ratio | - | 0.347 | [44] | |
G | Shear modulus | MPa | 29,438.4–15.052T | [45,46] |
b | Burgers vector | m | 2.86·10−10 | [47] |
M | Taylor factor | - | 3.06 | [48] |
Debye frequency | s−1 | 1·1013 | [49] | |
Subgrain boundary misorientation | ° | 5 | This work | |
Material coefficient for subgrain refinement | - | This work | ||
Material coefficient for subgrain coarsening | - | This work | ||
A | A parameter | - | This work | |
B | B parameter | - | 2.5 | This work |
C | C parameter | - | 1·10−3 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Wojcik, T.; Kozeschnik, E. Subgrain Size Modeling and Substructure Evolution in an AA1050 Aluminum Alloy during High-Temperature Compression. Materials 2024, 17, 4385. https://doi.org/10.3390/ma17174385
Yang Q, Wojcik T, Kozeschnik E. Subgrain Size Modeling and Substructure Evolution in an AA1050 Aluminum Alloy during High-Temperature Compression. Materials. 2024; 17(17):4385. https://doi.org/10.3390/ma17174385
Chicago/Turabian StyleYang, Qi, Tomasz Wojcik, and Ernst Kozeschnik. 2024. "Subgrain Size Modeling and Substructure Evolution in an AA1050 Aluminum Alloy during High-Temperature Compression" Materials 17, no. 17: 4385. https://doi.org/10.3390/ma17174385
APA StyleYang, Q., Wojcik, T., & Kozeschnik, E. (2024). Subgrain Size Modeling and Substructure Evolution in an AA1050 Aluminum Alloy during High-Temperature Compression. Materials, 17(17), 4385. https://doi.org/10.3390/ma17174385