Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = smoothened drug resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5978 KiB  
Article
Identification of Novel GANT61 Analogs with Activity in Hedgehog Functional Assays and GLI1-Dependent Cancer Cells
by Dina Abu Rabe, Lhoucine Chdid, David R. Lamson, Christopher P. Laudeman, Michael Tarpley, Naglaa Elsayed, Ginger R. Smith, Weifan Zheng, Maria S. Dixon and Kevin P. Williams
Molecules 2024, 29(13), 3095; https://doi.org/10.3390/molecules29133095 - 28 Jun 2024
Cited by 4 | Viewed by 2409
Abstract
Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at [...] Read more.
Aberrant activation of hedgehog (Hh) signaling has been implicated in various cancers. Current FDA-approved inhibitors target the seven-transmembrane receptor Smoothened, but resistance to these drugs has been observed. It has been proposed that a more promising strategy to target this pathway is at the GLI1 transcription factor level. GANT61 was the first small molecule identified to directly suppress GLI-mediated activity; however, its development as a potential anti-cancer agent has been hindered by its modest activity and aqueous chemical instability. Our study aimed to identify novel GLI1 inhibitors. JChem searches identified fifty-two compounds similar to GANT61 and its active metabolite, GANT61-D. We combined high-throughput cell-based assays and molecular docking to evaluate these analogs. Five of the fifty-two GANT61 analogs inhibited activity in Hh-responsive C3H10T1/2 and Gli-reporter NIH3T3 cellular assays without cytotoxicity. Two of the GANT61 analogs, BAS 07019774 and Z27610715, reduced Gli1 mRNA expression in C3H10T1/2 cells. Treatment with BAS 07019774 significantly reduced cell viability in Hh-dependent glioblastoma and lung cancer cell lines. Molecular docking indicated that BAS 07019774 is predicted to bind to the ZF4 region of GLI1, potentially interfering with its ability to bind DNA. Our findings show promise in developing more effective and potent GLI inhibitors. Full article
Show Figures

Graphical abstract

15 pages, 19731 KiB  
Article
Hedgehog Pathway Inhibition by Novel Small Molecules Impairs Melanoma Cell Migration and Invasion under Hypoxia
by Alessandro Falsini, Gaia Giuntini, Mattia Mori, Francesca Ghirga, Deborah Quaglio, Antonino Cucinotta, Federica Coppola, Irene Filippi, Antonella Naldini, Bruno Botta and Fabio Carraro
Pharmaceuticals 2024, 17(2), 227; https://doi.org/10.3390/ph17020227 - 8 Feb 2024
Cited by 4 | Viewed by 1855
Abstract
Melanoma is the principal cause of death in skin cancer due to its ability to invade and cause metastasis. Hypoxia, which characterises the tumour microenvironment (TME), plays an important role in melanoma development, as cancer cells can adapt and acquire a more aggressive [...] Read more.
Melanoma is the principal cause of death in skin cancer due to its ability to invade and cause metastasis. Hypoxia, which characterises the tumour microenvironment (TME), plays an important role in melanoma development, as cancer cells can adapt and acquire a more aggressive phenotype. Carbonic anhydrases (CA) activity, involved in pH regulation, is related to melanoma cell migration and invasion. Furthermore, the Hedgehog (Hh) pathway, already known for its role in physiological processes, is a pivotal character in cancer cell growth and can represent a promising pharmacological target. In this study, we targeted Hh pathway components with cyclopamine, glabrescione B and C22 in order to observe their effect on carbonic anhydrase XII (CAXII) expression especially under hypoxia. We then performed a migration and invasion assay on two melanoma cell lines (SK-MEL-28 and A375) where Smoothened, the upstream protein involved in Hh regulation, and GLI1, the main transcription factor that determines Hh pathway activation, were chemically inhibited. Data suggest the existence of a relationship between CAXII, hypoxia and the Hedgehog pathway demonstrating that the chemical inhibition of the Hh pathway and CAXII reduction resulted in melanoma migration and invasion impairment especially under hypoxia. As in recent years drug resistance to small molecules has arisen, the development of new chemical compounds is crucial. The multitarget Hh inhibitor C22 proved to be effective without signs of cytotoxicity and, for this reason, it can represent a promising compound for future studies, with the aim to reach a better melanoma disease management. Full article
(This article belongs to the Special Issue Pharmacological Treatments for Melanoma)
Show Figures

Figure 1

20 pages, 5870 KiB  
Article
Increasing Ciliary ARL13B Expression Drives Active and Inhibitor-Resistant Smoothened and GLI into Glioma Primary Cilia
by Ping Shi, Jia Tian, Julianne C. Mallinger, Dahao Ling, Loic P. Deleyrolle, Jeremy C. McIntyre, Tamara Caspary, Joshua J. Breunig and Matthew R. Sarkisian
Cells 2023, 12(19), 2354; https://doi.org/10.3390/cells12192354 - 26 Sep 2023
Cited by 3 | Viewed by 3484
Abstract
ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased ARL13B, SMO, and GLI2 expression are [...] Read more.
ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased ARL13B, SMO, and GLI2 expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition. Here, we show that SMO accumulation is due to increased ciliary, but not extraciliary, ARL13B. Increasing ARL13B expression promotes the accumulation of both activated SMO and GLI2 in glioma cilia. ARL13B-driven increases in ciliary SMO and GLI2 are resistant to SMO inhibitors, GDC-0449, and cyclopamine. Surprisingly, ARL13B-induced changes in ciliary SMO/GLI2 did not correlate with canonical changes in downstream SHH pathway genes. However, glioma cell lines whose cilia overexpress WT but not guanine exchange factor-deficient ARL13B, display reduced INPP5e, a ciliary membrane component whose depletion may favor SMO/GLI2 enrichment. Glioma cells overexpressing ARL13B also display reduced ciliary intraflagellar transport 88 (IFT88), suggesting that altered retrograde transport could further promote SMO/GLI accumulation. Collectively, our data suggest that factors increasing ARL13B expression in glioma cells may promote both changes in ciliary membrane characteristics and IFT proteins, leading to the accumulation of drug-resistant SMO and GLI. The downstream targets and consequences of these ciliary changes require further investigation. Full article
(This article belongs to the Special Issue Cilia-Mediated Signaling Pathways)
Show Figures

Graphical abstract

13 pages, 1268 KiB  
Review
The Hedgehog Pathway as a Therapeutic Target in Chronic Myeloid Leukemia
by Andrew Wu, Kelly A. Turner, Adrian Woolfson and Xiaoyan Jiang
Pharmaceutics 2023, 15(3), 958; https://doi.org/10.3390/pharmaceutics15030958 - 16 Mar 2023
Cited by 6 | Viewed by 3039
Abstract
Despite the development of therapeutic agents that selectively target cancer cells, relapse driven by acquired drug resistance and resulting treatment failure remains a significant issue. The highly conserved Hedgehog (HH) signaling pathway performs multiple roles in both development and tissue homeostasis, and its [...] Read more.
Despite the development of therapeutic agents that selectively target cancer cells, relapse driven by acquired drug resistance and resulting treatment failure remains a significant issue. The highly conserved Hedgehog (HH) signaling pathway performs multiple roles in both development and tissue homeostasis, and its aberrant regulation is known to drive the pathogenesis of numerous human malignancies. However, the role of HH signaling in mediating disease progression and drug resistance remains unclear. This is especially true for myeloid malignancies. The HH pathway, and in particular the protein Smoothened (SMO), has been shown to be essential for regulating stem cell fate in chronic myeloid leukemia (CML). Evidence suggests that HH pathway activity is critical for maintaining the drug-resistant properties and survival of CML leukemic stem cells (LSCs), and that dual inhibition of BCR-ABL1 and SMO may comprise an effective therapeutic strategy for the eradication of these cells in patients. This review will explore the evolutionary origins of HH signaling, highlighting its roles in development and disease, which are mediated by canonical and non-canonical HH signaling. Development of small molecule inhibitors of HH signaling and clinical trials using these inhibitors as therapeutic agents in cancer and their potential resistance mechanisms, are also discussed, with a focus on CML. Full article
(This article belongs to the Special Issue Targeting Drug Resistance and Metastatic Pathways for Cancer Therapy)
Show Figures

Figure 1

18 pages, 5912 KiB  
Review
Novel Approaches in Non-Melanoma Skin Cancers—A Focus on Hedgehog Pathway in Basal Cell Carcinoma (BCC)
by Paulina Chmiel, Martyna Kłosińska, Alicja Forma, Zuzanna Pelc, Katarzyna Gęca and Magdalena Skórzewska
Cells 2022, 11(20), 3210; https://doi.org/10.3390/cells11203210 - 13 Oct 2022
Cited by 19 | Viewed by 4845
Abstract
Basal cell carcinoma (BCC) is one of the most common neoplasms in the population. A good prognosis and mainly non-aggressive development have made it underdiagnosed and excluded from the statistics. Due to the availability of efficient surgical therapy, BCC is sometimes overlooked in [...] Read more.
Basal cell carcinoma (BCC) is one of the most common neoplasms in the population. A good prognosis and mainly non-aggressive development have made it underdiagnosed and excluded from the statistics. Due to the availability of efficient surgical therapy, BCC is sometimes overlooked in the search for novel therapies. Most clinicians are unaware of its complicated pathogenesis or the availability of effective targeted therapy based on Hedgehog inhibitors (HHI) used in advanced or metastatic cases. Nevertheless, the concomitance and esthetic burden of this neoplasm are severe. As with other cancers, its pathogenesis is multifactorial and complicated with a network of dependencies. Although the tumour microenvironment (TME), genetic aberrations, and risk factors seem crucial in all skin cancers, in BCC they all have become accessible as therapeutic or prevention targets. The results of this review indicate that a central role in the development of BCC is played by the Hedgehog (Hh) signalling pathway. Two signalling molecules have been identified as the main culprits, namely Patched homologue 1 (PTCH1) and, less often, Smoothened homologue (SMO). Considering effective immunotherapy for other neoplastic growths being introduced, implementing immunotherapy in advanced BCC is pivotal and beneficial. Up to now, the US Food and Drug Administration (FDA) has approved two inhibitors of SMO for the treatment of advanced BCC. Sonidegib and vismodegib are registered based on their efficacy in clinical trials. However, despite this success, limitations might occur during the therapy, as some patients show resistance to these molecules. This review aims to summarize novel options of targeted therapies in BCC and debate the mechanisms and clinical implications of tumor resistance. Full article
(This article belongs to the Special Issue Skin Research: Cellular Mechanism and Therapeutic Potentials)
Show Figures

Figure 1

22 pages, 2648 KiB  
Review
Towards Precision Oncology: The Role of Smoothened and Its Variants in Cancer
by Alina Nicheperovich and Andrea Townsend-Nicholson
J. Pers. Med. 2022, 12(10), 1648; https://doi.org/10.3390/jpm12101648 - 5 Oct 2022
Cited by 7 | Viewed by 3223
Abstract
The G protein-coupled receptor Smoothened (Smo) is a central signal transducer of the Hedgehog (Hh) pathway which has been linked to diverse forms of tumours. Stimulated by advancements in structural and functional characterisation, the Smo receptor has been recognised as an important therapeutic [...] Read more.
The G protein-coupled receptor Smoothened (Smo) is a central signal transducer of the Hedgehog (Hh) pathway which has been linked to diverse forms of tumours. Stimulated by advancements in structural and functional characterisation, the Smo receptor has been recognised as an important therapeutic target in Hh-driven cancers, and several Smo inhibitors have now been approved for cancer therapy. This receptor is also known to be an oncoprotein itself and its gain-of-function variants have been associated with skin, brain, and liver cancers. According to the COSMIC database, oncogenic mutations of Smo have been identified in various other tumours, although their oncogenic effect remains unknown in these tissues. Drug resistance is a common challenge in cancer therapies targeting Smo, and data analysis shows that healthy individuals also harbour resistance mutations. Based on the importance of Smo in cancer progression and the high incidence of resistance towards Smo inhibitors, this review suggests that detection of Smo variants through tumour profiling could lead to increased precision and improved outcomes of anti-cancer treatments. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

12 pages, 3504 KiB  
Article
Eight Years of Real-Life Experience with Smoothened Inhibitors in a Swiss Tertiary Skin Referral Center
by Lara E. Grossmann, Egle Ramelyte, Mirjam C. Nägeli and Reinhard Dummer
Cancers 2022, 14(10), 2496; https://doi.org/10.3390/cancers14102496 - 19 May 2022
Cited by 13 | Viewed by 3016
Abstract
Background: The hedgehog inhibitors vismodegib and sonidegib are approved for the treatment of advanced basal cell carcinoma. This study reports the experiences with these therapies in a tertiary skin referral center in daily practice. Methods: A retrospective, observational, single-center study analyzing medical records [...] Read more.
Background: The hedgehog inhibitors vismodegib and sonidegib are approved for the treatment of advanced basal cell carcinoma. This study reports the experiences with these therapies in a tertiary skin referral center in daily practice. Methods: A retrospective, observational, single-center study analyzing medical records of patients with aBCC treated with a smoothened (SMO) inhibitor outside a clinical trial for at least one month between 2013 and 2021. Results: In total, 33 patients were included: 21 (64%) patients were treated with vismodegib, 3 (9%) patients with sonidegib and 9 (27%) patients with both treatments subsequently. With vismodegib, the best overall response was complete response (CR) in 33% cases, and partial response (PR) in 33% cases. Under sonidegib, 42% patients achieved CR and 17% PR. Mean duration to next treatment was 33 and 14 months for vismodegib and sonidegib, respectively. Adverse events varied in frequency between continuous and intermittent dosing and they were the most common reason for therapy discontinuation. Conclusions: Our real-world data illustrate the pitfalls and benefits of HhIs as well as the impact of different dosing regimens on adverse events, patient adherence and response. Treatment duration remains limited by adverse events and resistance. Additional treatment options, including immunotherapy and drug combinations, are needed. Full article
Show Figures

Figure 1

27 pages, 2654 KiB  
Review
Hedgehog Pathway Inhibitors as Targeted Cancer Therapy and Strategies to Overcome Drug Resistance
by Ngoc Minh Nguyen and Jungsook Cho
Int. J. Mol. Sci. 2022, 23(3), 1733; https://doi.org/10.3390/ijms23031733 - 3 Feb 2022
Cited by 86 | Viewed by 11809
Abstract
Hedgehog (Hh) signaling is a highly conserved pathway that plays a vital role during embryonic development. Recently, uncontrolled activation of this pathway has been demonstrated in various types of cancer. Therefore, Hh pathway inhibitors have emerged as an important class of anti-cancer agents. [...] Read more.
Hedgehog (Hh) signaling is a highly conserved pathway that plays a vital role during embryonic development. Recently, uncontrolled activation of this pathway has been demonstrated in various types of cancer. Therefore, Hh pathway inhibitors have emerged as an important class of anti-cancer agents. Unfortunately, however, their reputation has been tarnished by the emergence of resistance during therapy, necessitating clarification of mechanisms underlying the drug resistance. In this review, we briefly overview canonical and non-canonical Hh pathways and their inhibitors as targeted cancer therapy. In addition, we summarize the mechanisms of resistance to Smoothened (SMO) inhibitors, including point mutations of the drug binding pocket or downstream molecules of SMO, and non-canonical mechanisms to reinforce Hh pathway output. A distinct mechanism involving loss of primary cilia is also described to maintain GLI activity in resistant tumors. Finally, we address the main strategies to circumvent the drug resistance. These strategies include the development of novel and potent inhibitors targeting different components of the canonical Hh pathway or signaling molecules of the non-canonical pathway. Further studies are necessary to avoid emerging resistance to Hh inhibitors and establish an optimal customized regimen with improved therapeutic efficacy to treat various types of cancer, including basal cell carcinoma. Full article
(This article belongs to the Special Issue Hedgehog Signaling 3.0)
Show Figures

Figure 1

17 pages, 1831 KiB  
Article
Casein Kinase 1D Encodes a Novel Drug Target in Hedgehog—GLI-Driven Cancers and Tumor-Initiating Cells Resistant to SMO Inhibition
by Elisabeth Peer, Sophie Karoline Aichberger, Filip Vilotic, Wolfgang Gruber, Thomas Parigger, Sandra Grund-Gröschke, Dominik Patrick Elmer, Florian Rathje, Andrea Ramspacher, Mirko Zaja, Susanne Michel, Svetlana Hamm and Fritz Aberger
Cancers 2021, 13(16), 4227; https://doi.org/10.3390/cancers13164227 - 23 Aug 2021
Cited by 8 | Viewed by 4223
Abstract
(1) Background: Aberrant activation of the hedgehog (HH)—GLI pathway in stem-like tumor-initiating cells (TIC) is a frequent oncogenic driver signal in various human malignancies. Remarkable efficacy of anti-HH therapeutics led to the approval of HH inhibitors targeting the key pathway effector smoothened (SMO) [...] Read more.
(1) Background: Aberrant activation of the hedgehog (HH)—GLI pathway in stem-like tumor-initiating cells (TIC) is a frequent oncogenic driver signal in various human malignancies. Remarkable efficacy of anti-HH therapeutics led to the approval of HH inhibitors targeting the key pathway effector smoothened (SMO) in basal cell carcinoma and acute myeloid leukemia. However, frequent development of drug resistance and severe adverse effects of SMO inhibitors pose major challenges that require alternative treatment strategies targeting HH—GLI in TIC downstream of SMO. We therefore investigated members of the casein kinase 1 (CSNK1) family as novel drug targets in HH—GLI-driven malignancies. (2) Methods: We genetically and pharmacologically inhibited CSNK1D in HH-dependent cancer cells displaying either sensitivity or resistance to SMO inhibitors. To address the role of CSNK1D in oncogenic HH signaling and tumor growth and initiation, we quantitatively analyzed HH target gene expression, performed genetic and chemical perturbations of CSNK1D activity, and monitored the oncogenic transformation of TIC in vitro and in vivo using 3D clonogenic tumor spheroid assays and xenograft models. (3) Results: We show that CSNK1D plays a critical role in controlling oncogenic GLI activity downstream of SMO. We provide evidence that inhibition of CSNK1D interferes with oncogenic HH signaling in both SMO inhibitor-sensitive and -resistant tumor settings. Furthermore, genetic and pharmacologic perturbation of CSNK1D decreases the clonogenic growth of GLI-dependent TIC in vitro and in vivo. (4) Conclusions: Pharmacologic targeting of CSNK1D represents a novel therapeutic approach for the treatment of both SMO inhibitor-sensitive and -resistant tumors. Full article
(This article belongs to the Special Issue Stemness and Differentiation in Cancer)
Show Figures

Graphical abstract

29 pages, 25606 KiB  
Article
A New Smoothened Antagonist Bearing the Purine Scaffold Shows Antitumour Activity In Vitro and In Vivo
by Ana María Zárate, Christian Espinosa-Bustos, Simón Guerrero, Angélica Fierro, Felipe Oyarzún-Ampuero, Andrew F. G. Quest, Lucia Di Marcotullio, Elena Loricchio, Miriam Caimano, Andrea Calcaterra, Matías González-Quiroz, Adam Aguirre, Jaime Meléndez and Cristian O. Salas
Int. J. Mol. Sci. 2021, 22(16), 8372; https://doi.org/10.3390/ijms22168372 - 4 Aug 2021
Cited by 14 | Viewed by 3930
Abstract
The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, [...] Read more.
The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer. Full article
(This article belongs to the Special Issue Molecular Target and Action Mechanism of Anti-Cancer Agents)
Show Figures

Figure 1

18 pages, 10789 KiB  
Article
Involvement of a Multidrug Efflux Pump and Alterations in Cell Surface Structure in the Synergistic Antifungal Activity of Nagilactone E and Anethole against Budding Yeast Saccharomyces cerevisiae
by Yuki Ueda, Yuhei O. Tahara, Makoto Miyata, Akira Ogita, Yoshihiro Yamaguchi, Toshio Tanaka and Ken-ichi Fujita
Antibiotics 2021, 10(5), 537; https://doi.org/10.3390/antibiotics10050537 - 6 May 2021
Cited by 7 | Viewed by 3371
Abstract
Nagilactone E, an antifungal agent derived from the root bark of Podocarpus nagi, inhibits 1,3-β glucan synthesis; however, its inhibitory activity is weak. Anethole, the principal component of anise oil, enhances the antifungal activity of nagilactone E. We aimed to determine the [...] Read more.
Nagilactone E, an antifungal agent derived from the root bark of Podocarpus nagi, inhibits 1,3-β glucan synthesis; however, its inhibitory activity is weak. Anethole, the principal component of anise oil, enhances the antifungal activity of nagilactone E. We aimed to determine the combinatorial effect and underlying mechanisms of action of nagilactone E and anethole against the budding yeast Saccharomyces cerevisiae. Analyses using gene-deficient strains showed that the multidrug efflux pump PDR5 is associated with nagilactone E resistance; its transcription was gradually restricted in cells treated with the drug combination for a prolonged duration but not in nagilactone-E-treated cells. Green-fluorescent-protein-tagged Pdr5p was intensively expressed and localized on the plasma membrane of nagilactone-E-treated cells but not in drug-combination-treated cells. Quick-freeze deep-etch electron microscopy revealed the smoothening of intertwined fiber structures on the cell surface of drug-combination-treated cells and spheroplasts, indicating a decline in cell wall components and loss of cell wall strength. Anethole enhanced the antifungal activity of nagilactone E by enabling its retention within cells, thereby accelerating cell wall damage. The combination of nagilactone E and anethole can be employed in clinical settings as an antifungal, as well as a food preservative to restrict food spoilage. Full article
Show Figures

Figure 1

31 pages, 1445 KiB  
Review
Hedgehog Signaling and Truncated GLI1 in Cancer
by Daniel Doheny, Sara G. Manore, Grace L. Wong and Hui-Wen Lo
Cells 2020, 9(9), 2114; https://doi.org/10.3390/cells9092114 - 17 Sep 2020
Cited by 146 | Viewed by 14386
Abstract
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of [...] Read more.
The hedgehog (HH) signaling pathway regulates normal cell growth and differentiation. As a consequence of improper control, aberrant HH signaling results in tumorigenesis and supports aggressive phenotypes of human cancers, such as neoplastic transformation, tumor progression, metastasis, and drug resistance. Canonical activation of HH signaling occurs through binding of HH ligands to the transmembrane receptor Patched 1 (PTCH1), which derepresses the transmembrane G protein-coupled receptor Smoothened (SMO). Consequently, the glioma-associated oncogene homolog 1 (GLI1) zinc-finger transcription factors, the terminal effectors of the HH pathway, are released from suppressor of fused (SUFU)-mediated cytoplasmic sequestration, permitting nuclear translocation and activation of target genes. Aberrant activation of this pathway has been implicated in several cancer types, including medulloblastoma, rhabdomyosarcoma, basal cell carcinoma, glioblastoma, and cancers of lung, colon, stomach, pancreas, ovarian, and breast. Therefore, several components of the HH pathway are under investigation for targeted cancer therapy, particularly GLI1 and SMO. GLI1 transcripts are reported to undergo alternative splicing to produce truncated variants: loss-of-function GLI1ΔN and gain-of-function truncated GLI1 (tGLI1). This review covers the biochemical steps necessary for propagation of the HH activating signal and the involvement of aberrant HH signaling in human cancers, with a highlight on the tumor-specific gain-of-function tGLI1 isoform. Full article
(This article belongs to the Special Issue Hedgehog Signaling in Development and Cancer)
Show Figures

Figure 1

26 pages, 7021 KiB  
Article
Inhibition of Non-Small Cell Lung Cancer Cells by Oxy210, an Oxysterol-Derivative that Antagonizes TGFβ and Hedgehog Signaling
by Frank Stappenbeck, Feng Wang, Liu-Ya Tang, Ying E. Zhang and Farhad Parhami
Cells 2019, 8(10), 1297; https://doi.org/10.3390/cells8101297 - 22 Oct 2019
Cited by 14 | Viewed by 5726
Abstract
Non-Small Cell Lung Cancer (NSCLC) is a common malignancy and leading cause of death by cancer. Metastasis and drug resistance are serious clinical problems encountered in NSCLC therapy. Aberrant activation of the Transforming Growth Factor beta (TGFβ) and Hedgehog (Hh) signal transduction cascades [...] Read more.
Non-Small Cell Lung Cancer (NSCLC) is a common malignancy and leading cause of death by cancer. Metastasis and drug resistance are serious clinical problems encountered in NSCLC therapy. Aberrant activation of the Transforming Growth Factor beta (TGFβ) and Hedgehog (Hh) signal transduction cascades often associate with poor prognosis and aggressive disease progression in NSCLC, as these signals can drive cell proliferation, angiogenesis, metastasis, immune evasion and emergence of drug resistance. Therefore, simultaneous inhibition of TGFβ and Hh signaling, by a single agent, or in combination with other drugs, could yield therapeutic benefits in NSCLC and other cancers. In the current study, we report on the biological and pharmacological evaluation of Oxy210, an oxysterol-based dual inhibitor of TGFβ and Hh signaling. In NSCLC cells, Oxy210 inhibits proliferation, epithelial-mesenchymal transition (EMT) and invasive activity. Combining Oxy210 with Carboplatin (CP) increases the anti-proliferative response to CP and inhibits TGFβ-induced resistance to CP in A549 NSCLC cells. In addition, Oxy210 displays encouraging drug-like properties, including chemical scalability, metabolic stability and oral bioavailability in mice. Unlike other known inhibitors, Oxy210 antagonizes TGFβ and Hh signaling independently of TGFβ receptor kinase inhibition and downstream of Smoothened, respectively. Full article
(This article belongs to the Special Issue Hedgehog Signaling in Development and Cancer)
Show Figures

Figure 1

17 pages, 2568 KiB  
Article
A Smo/Gli Multitarget Hedgehog Pathway Inhibitor Impairs Tumor Growth
by Ludovica Lospinoso Severini, Deborah Quaglio, Irene Basili, Francesca Ghirga, Francesca Bufalieri, Miriam Caimano, Silvia Balducci, Marta Moretti, Isabella Romeo, Elena Loricchio, Marella Maroder, Bruno Botta, Mattia Mori, Paola Infante and Lucia Di Marcotullio
Cancers 2019, 11(10), 1518; https://doi.org/10.3390/cancers11101518 - 9 Oct 2019
Cited by 43 | Viewed by 5325
Abstract
Pharmacological Hedgehog (Hh) pathway inhibition has emerged as a valuable anticancer strategy. A number of small molecules able to block the pathway at the upstream receptor Smoothened (Smo) or the downstream effector glioma-associated oncogene 1 (Gli1) has been designed and developed. In a [...] Read more.
Pharmacological Hedgehog (Hh) pathway inhibition has emerged as a valuable anticancer strategy. A number of small molecules able to block the pathway at the upstream receptor Smoothened (Smo) or the downstream effector glioma-associated oncogene 1 (Gli1) has been designed and developed. In a recent study, we exploited the high versatility of the natural isoflavone scaffold for targeting the Hh signaling pathway at multiple levels showing that the simultaneous targeting of Smo and Gli1 provided synergistic Hh pathway inhibition stronger than single administration. This approach seems to effectively overcome the drug resistance, particularly at the level of Smo. Here, we combined the pharmacophores targeting Smo and Gli1 into a single and individual isoflavone, compound 22, which inhibits the Hh pathway at both upstream and downstream level. We demonstrate that this multitarget agent suppresses medulloblastoma growth in vitro and in vivo through antagonism of Smo and Gli1, which is a novel mechanism of action in Hh inhibition. Full article
(This article belongs to the Special Issue Hedgehog Signaling in Cancer)
Show Figures

Graphical abstract

13 pages, 917 KiB  
Review
The Hedgehog Signaling Pathway: A Viable Target in Breast Cancer?
by Priyanka Bhateja, Mathew Cherian, Sarmila Majumder and Bhuvaneswari Ramaswamy
Cancers 2019, 11(8), 1126; https://doi.org/10.3390/cancers11081126 - 7 Aug 2019
Cited by 109 | Viewed by 17963
Abstract
The hedgehog (Hh) pathway plays a key role in embryonic development and stem cell programs. Deregulation of the Hh pathway is a key driver of basal cell carcinoma, and therapeutic targeting led to approval of Hh inhibitor, vismodegib, in the management of this [...] Read more.
The hedgehog (Hh) pathway plays a key role in embryonic development and stem cell programs. Deregulation of the Hh pathway is a key driver of basal cell carcinoma, and therapeutic targeting led to approval of Hh inhibitor, vismodegib, in the management of this cancer. The Hh pathway is implicated in other malignancies including hormone receptor (HR+) positive and triple negative breast cancer (TNBC). Hh signaling, which is activated in human mammary stem cells, results in activation of glioma-associated oncogene (GLI) transcription factors. High GLI1 expression correlates with worse outcomes in breast cancer. Non-canonical GLI1 activation is one mechanism by which estrogen exposure promotes breast cancer stem cell proliferation and epithelial–mesenchymal transition. Tamoxifen resistant cell lines show aberrant activation of Hh signaling, and knockdown of Hh pathway inhibited growth of tamoxifen resistant cells. As in other cancers Hh signaling is activated by the PI3K/AKT pathway in these endocrine resistant cell lines. Hh pathway activation has also been reported to mediate chemotherapy resistance in TNBC via various mechanisms including paracrine signaling to tumor micro-environment and selective proliferation of cancer stem cells. Co-activation of Hh and Wnt signaling pathways is a poor prognostic marker in TNBC. Early phase clinical trials are evaluating the combination of smoothened (SMO) inhibitors and chemotherapy in TNBC. In addition to SMO inhibitors like vismodegib and sonidegib, which are in clinical use for basal cell carcinoma, GLI1 inhibitors like GANT58 and GANT61 are in preclinical drug development and might be an effective mechanism to overcome drug resistance in breast cancer. Gene signatures predictive of Hh pathway activation could enrich for patients likely to respond to these agents. Full article
(This article belongs to the Special Issue Hedgehog Signaling in Cancer)
Show Figures

Figure 1

Back to TopTop