Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = smithsonite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4240 KiB  
Article
Sonication-Assisted Surface Erosion and Its Impact on the Flotation of Ultrafine Smithsonite
by Weiguang Zhou, Weiwei Cao, Haobin Wei, Shulan Shi, Chenwei Li and Liuyang Dong
Metals 2025, 15(7), 731; https://doi.org/10.3390/met15070731 - 30 Jun 2025
Viewed by 309
Abstract
Regulating the dissolution and interfacial behavior of minerals via external force fields is considered a promising strategy for enhancing the flotation of soluble minerals. This study explored the potential of ultrasound-assisted pulp conditioning in improving ultrafine smithsonite flotation. Specifically, we systematically evaluated the [...] Read more.
Regulating the dissolution and interfacial behavior of minerals via external force fields is considered a promising strategy for enhancing the flotation of soluble minerals. This study explored the potential of ultrasound-assisted pulp conditioning in improving ultrafine smithsonite flotation. Specifically, we systematically evaluated the effects of ultrasonic pretreatment (UP) on the physicochemical properties of smithsonite suspensions (focusing on surface erosion behavior) and assessed subsequent flotation performance using flotation tests and modern analytical techniques. It has been found that UP can significantly modify smithsonite suspension characteristics, including particle morphology, ionic composition, electrokinetic properties, and pulp pH. Flotation results demonstrate that UP yields higher recovery compared to traditional stirring (TS) conditioning, especially at medium-to-high sodium oleate (NaOL) concentrations. Comparative analysis reveals that ultrasonic-assisted dissolution and ion-selective migration are the main factors driving improved flotation performance. Unlike TS, UP promotes greater zinc ion release, facilitates the dissolution–hydrolysis–precipitation equilibrium, generates more and finer nanoparticles in the bulk phase, and induces the deposition of hydrozincite on smithsonite surfaces. These changes increase active zinc sites for more stable NaOL adsorption, thereby enhancing the flotation of ultrafine smithsonite particles. Full article
(This article belongs to the Special Issue State of the Art in Flotation and Separation of Metallic Minerals)
Show Figures

Figure 1

15 pages, 3976 KiB  
Article
Mechanism of Efficient Smithsonite Flotation with a Ternary Composite Collector Under Sulfur-Free Conditions
by Rui Li, Yanhai Shao, Jinhui Li, Chenjie Liu, Hongqin Chen, Xiao Meng and Xinru Jia
Molecules 2024, 29(24), 6014; https://doi.org/10.3390/molecules29246014 - 20 Dec 2024
Viewed by 820
Abstract
The increasing demand for zinc resources and the declining availability of sulfide zinc ore reserves have made the efficient utilization of zinc oxide a topic of considerable interest. In this study, a ternary composite collector ABN (Al-BHA-NaOL system) was applied to the direct [...] Read more.
The increasing demand for zinc resources and the declining availability of sulfide zinc ore reserves have made the efficient utilization of zinc oxide a topic of considerable interest. In this study, a ternary composite collector ABN (Al-BHA-NaOL system) was applied to the direct flotation of smithsonite. Micro-flotation studies showed that at pH 9, ABN exhibited better adsorption on smithsonite, achieving a recovery rate of 80.62%. Visual MINTEQ 3.1 and zeta potential analysis confirmed that ABN predominantly reacted with Zn(OH)2(aq) on the surface of smithsonite. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis results elucidated the formation of Al-O bonds through chemical adsorption on the smithsonite surface. Additionally, powder contact angle measurements indicated that ABN enhances the surface contact angle of smithsonite. These results illuminate that ABN is adsorbed by reacting with O sites on hydroxylated metal ions on the smithsonite surface, with Al serving as the adsorption center, thereby achieving separation and purification. Due to ABN’s adsorption characteristics, smithsonite can achieve efficient and clean direct flotation recovery without sulfidization. Full article
Show Figures

Figure 1

13 pages, 3858 KiB  
Article
The Controlling Effect of CaCO3 Supersaturation over Zn Carbonate Assemblages: Co-Crystallization in Silica Hydrogel
by André Jorge Pinto, Nuria Sánchez-Pastor and Angeles Fernández-González
Minerals 2024, 14(12), 1274; https://doi.org/10.3390/min14121274 - 15 Dec 2024
Viewed by 1224
Abstract
Weathering products of sphalerite-bearing ores play an important role in controlling the fate of Zn in the environment. In this framework, the relative stability of Zn carbonates is of special relevance for the common case of ore weathering by carbonated groundwater in the [...] Read more.
Weathering products of sphalerite-bearing ores play an important role in controlling the fate of Zn in the environment. In this framework, the relative stability of Zn carbonates is of special relevance for the common case of ore weathering by carbonated groundwater in the presence of calcium carbonates. We investigated the experimental (co)nucleation and growth of Zn and Ca carbonates at 25 °C in finite double diffusion silica hydrogel media with the purpose of deciphering the system’s reactive pathway and unraveling the major governing factors behind the obtained mineral assemblages. The crystallized solids were carefully extracted two months post-nucleation and studied with micro-Raman spectroscopy, micro X-ray diffraction (XRD), scanning electron microscopy, and electron microprobe (EMP) methods. The obtained results indicate that the grown Zn-bearing phases corresponded to smithsonite and/or Zn hydroxyl carbonate, while CaCO3 polymorphs aragonite and calcite were also crystallized. Moreover, the observed mineral textural relationships reflected the interplay between supersaturation with respect to CaCO3/pCO2 and the grown Zn-bearing carbonate. Experiments conducted in more supersaturated conditions with respect to CaCO3 polymorphs (higher pCO2) favored the precipitation of smithsonite, while the opposite was true for the obtained Zn hydroxyl carbonate phase. The gathered Raman, XRD, and EMP data indicate that the latter phase corresponded to a non-stoichiometric, poorly crystalline solid. Full article
Show Figures

Graphical abstract

16 pages, 3363 KiB  
Article
Open-Circuit Technology of Zinc Oxide Ore Flotation with Ternary Collector and Its Adsorption Characteristics on Smithsonite Surface
by Zhiwei Li, Qicheng Feng, Qian Zhang and Shuming Wen
Minerals 2024, 14(9), 902; https://doi.org/10.3390/min14090902 - 2 Sep 2024
Cited by 3 | Viewed by 1356
Abstract
The sulfidization-amine flotation method is commonly used for the beneficiation of zinc oxide ores. Lanping zinc oxide ores contains 8.40% zinc, with the main mineral being smithsonite; additionally, they have a high mud content. Conventional sulfidization–ammonium flotation presents a low flotation index and [...] Read more.
The sulfidization-amine flotation method is commonly used for the beneficiation of zinc oxide ores. Lanping zinc oxide ores contains 8.40% zinc, with the main mineral being smithsonite; additionally, they have a high mud content. Conventional sulfidization–ammonium flotation presents a low flotation index and unsatisfactory flotation froth. A new open-circuit technology is employed to treat Lanping zinc oxide ores, where Na2S, KG-248, and dodecyl amine + sodium isoamyl xanthate + ammonium dibutyl dithiophosphate are used as the regulator, depressant, and ternary collector, respectively. Consequently, the flotation indices for the zinc grade and recovery are 28.71% and 86.24%, respectively, and the flotation froth becomes more stable. Subsequently, the flotation behavior and adsorption mechanism of smithsonite with a ternary collector are investigated. The flotation recovery of smithsonite increases to 94.40% after treatment with the ternary collector. Surface-analysis results indicate that the ternary collector can synergistically adsorb onto the sulfidized smithsonite surface to enhance its hydrophobicity, thus increasing the floatability of smithsonite. Meanwhile, the total consumption of the collector in the ternary-collector system is lower than that in the binary- or unitary-collector system. Full article
(This article belongs to the Special Issue Advances in Flotation of Copper, Lead and Zinc Minerals)
Show Figures

Figure 1

14 pages, 14341 KiB  
Article
Sulfidation of Smithsonite via Microwave Roasting under Low-Temperature Conditions
by Jiawei Kang, Shubiao Yin, Mingxiao Li, Xingzhi Zhang, Xujie Wen, Hanping Zhang, Qi Nie and Ting Lei
Minerals 2024, 14(9), 855; https://doi.org/10.3390/min14090855 - 23 Aug 2024
Cited by 1 | Viewed by 956
Abstract
This study employs microwave roasting to decompose smithsonite mineral (zinc carbonate) into zinc oxide, which then reacts with pyrite to sulfurize its surface, forming zinc sulfide. This process is beneficial for the flotation recovery of zinc oxide minerals. The surface sulfidation behavior of [...] Read more.
This study employs microwave roasting to decompose smithsonite mineral (zinc carbonate) into zinc oxide, which then reacts with pyrite to sulfurize its surface, forming zinc sulfide. This process is beneficial for the flotation recovery of zinc oxide minerals. The surface sulfidation behavior of smithsonite under low-temperature microwave roasting conditions is examined through X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and thermodynamic calculations. XRD and thermodynamic analysis indicate that smithsonite completely decomposes into zinc oxide at 400 °C. Introducing a small amount of pyrite as a sulfidizing reagent leads to the formation of sulfides on the surface of decomposed smithsonite. XPS analysis confirms that the sulfide formed on the surface is zinc sulfide. SEM analysis reveals that sulfides are distributed on the surface of smithsonite, and the average sulfur concentration increases with the pyrite dosage. Microwave-assisted sulfurization of smithsonite (ZnCO3) was found to significantly enhance its floatability compared to conventional sulfurization methods. The optimal mass ratio of ZnCO3 to FeS2 is approximately 1:1.5, with the best temperature being 400 °C. These findings provide a technical solution for the application of microwave roasting in the efficient recovery of smithsonite through flotation. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

16 pages, 9957 KiB  
Article
Effect of Pre-Sulfidization on the Octadecyl Amine Adsorption on the Smithsonite Surface and Its Flotation
by Mengtao Wang, Haobin Wei, Saizhen Jin and Guofan Zhang
Molecules 2024, 29(16), 3921; https://doi.org/10.3390/molecules29163921 - 20 Aug 2024
Cited by 3 | Viewed by 1314
Abstract
The low-grade zinc oxide ore was sulfidized to increase the efficiency of flotation, but the effect of pre-sulfidization on the adsorption mechanism of octadecyl amine (ODA) on the smithsonite surface is currently unclear. In this study, the effect of pre-sulfidization on the adsorption [...] Read more.
The low-grade zinc oxide ore was sulfidized to increase the efficiency of flotation, but the effect of pre-sulfidization on the adsorption mechanism of octadecyl amine (ODA) on the smithsonite surface is currently unclear. In this study, the effect of pre-sulfidization on the adsorption mechanism of ODA and the flotation behavior was studied using smithsonite and pre-sulfidized smithsonite as the samples by zeta potential, contact angle measurement, total organic carbon analyzer (TOC), quartz microcrystalline balance (QCM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and micro-flotation tests. Micro-flotation tests showed that the pretreatment of sulfidization could improve the floatability of smithsonite. Zeta potential and contact angle measurements demonstrated that pre-sulfidization could favor the adsorption of ODA, which is further confirmed by the adsorption tests of ODA using TOC and QCM. Furthermore, FTIR and XPS analysis showed that pre-sulfidization changes the adsorption mode of ODA, changing it from physical adsorption to chemical adsorption. These results suggested that the favorable effect of pre-sulfidization on the adsorption of ODA and the flotation of smithsonite might provide important guidance for industrial application. Full article
(This article belongs to the Special Issue Molecular Structure of Minerals)
Show Figures

Figure 1

17 pages, 6851 KiB  
Article
Enhancing Sulfidization and Flotation of Smithsonite Using Eco-Friendly Triethanolamine: Insights from Experimental and Simulation Studies
by Song Zhang, Guanyu Liang, Yongjun Xian and Shuming Wen
Molecules 2024, 29(14), 3433; https://doi.org/10.3390/molecules29143433 - 22 Jul 2024
Cited by 1 | Viewed by 1347
Abstract
Triethanolamine (TEA) is a promising eco-friendly alternative to inorganic ammonia for enhancing surface sulfidization and flotation recovery of smithsonite. Micro-flotation experiments revealed an enhancement in smithsonite recovery to 95.21% with TEA modification, comparable to the results obtained using ammonia. The mechanisms behind the [...] Read more.
Triethanolamine (TEA) is a promising eco-friendly alternative to inorganic ammonia for enhancing surface sulfidization and flotation recovery of smithsonite. Micro-flotation experiments revealed an enhancement in smithsonite recovery to 95.21% with TEA modification, comparable to the results obtained using ammonia. The mechanisms behind the ability of TEA to enhance the sulfidization process were investigated through surface analysis and molecular dynamics simulations. TEA modification increased the content of sulfidization products, the proportion of crucial S22− in adsorbed products, and the thickness and size of the sulfidization product layer. The complexation of TEA with Zn sites formed positively charged Zn–TEA complexes that adsorb onto the smithsonite surface. These complexes promoted negatively charged HS adsorption, creating a multi-layered adsorption structure. Moreover, TEA modification reduced the total energy required for the sulfidization. These findings open up new possibilities for using eco-friendly reagents in mineral processing, highlighting the potential of TEA in green mineral processing practices. Full article
Show Figures

Graphical abstract

14 pages, 12256 KiB  
Article
Genesis of Gypsum/Anhydrite in the World-Class Jinding Zn-Pb Deposit, SW China: Constraints from Field Mapping, Petrography, and S-O-Sr Isotope Geochemistry
by Gang Huang, Yu-Cai Song, Liang-Liang Zhuang, Chuan-Dong Xue, Li-Dan Tian and Wei Wu
Minerals 2024, 14(6), 564; https://doi.org/10.3390/min14060564 - 29 May 2024
Cited by 1 | Viewed by 1496
Abstract
The world-class Jinding deposit in SW China has ~15 Mt of Zn and Pb metals combined, in an evaporite dome containing amounts of gypsum/anhydrite. These gypsum and anhydrite are mainly located in limestone breccias (Member I), gypsum-bearing complexes (Member III), and red mélange, [...] Read more.
The world-class Jinding deposit in SW China has ~15 Mt of Zn and Pb metals combined, in an evaporite dome containing amounts of gypsum/anhydrite. These gypsum and anhydrite are mainly located in limestone breccias (Member I), gypsum-bearing complexes (Member III), and red mélange, with some occurring as veins in clast-free sandstone (Member IV) and as fractures/vugs of host rock. The gypsum/anhydrite and dome genesis remain equivocal. The gypsum in limestone breccias and in red mélange with flow texture contains numerous Late Triassic Sanhedong limestone fragments. The δ34S (14.1%–17%), δ18O (9.7%–14.6%), and 87Sr/86Sr ratios (0.706913–0.708711) of these gypsum are close to the S-O-Sr isotopes of the Upper Triassic Sanhedong Formation anhydrite in the Lanping Basin (δ34S = 15.2%–15.9%, δ18O = 10.9%–13.1%, 87Sr/86Sr = 0.707541–0.707967), and are inconsistent with the Paleocene Yunlong Formation gypsum in the Lanping Basin (87Sr/86Sr = 0.709406–0.709845), indicating that these gypsum were derived from the Upper Triassic Sanhedong Formation evaporite but not from the Paleocene Yunlong Formation, and formed as a result of evaporite diapirism. The δ34S (14.3%–14.5%), δ18O (10.1%–10.3%), and 87Sr/86Sr ratios (0.709503–0.709725) of gypsum as gypsum–sand mixtures in gypsum-bearing complexes are similar to the 87Sr/86Sr ratios of gypsum in the Yunlong Formation of the Lanping Basin and Cenozoic basins in the northern part of the Himalayan–Tibetan orogen, suggesting that the material source of this gypsum was derived from the Yunlong Formation, and formed as a result of gypsum–sand diapirism. The gypsum veins in clast-free pillow-shaped mineralized sandstone and the gypsum in host rock fractures and vugs formed after the supergene minerals such as smithsonite. The δ34S (−16.3%~−12.7%) and δ18O (−9.8%~−4.7%) of this gypsum indicate that the gypsum is of supergene origin with sulfate derived from the reoxidation of reduced sulfur. We confirmed that the Jinding dome is genetically related to diapir of the Late-Triassic Sanhedong Formation evaporite. Clast-free sandstone and gypsum-bearing complexes in the dome were produced by diapir of the Paleocene Yunlong Formation unconsolidated gypsum–sand mixtures. Full article
(This article belongs to the Special Issue Ag-Pb-Zn Deposits: Geology and Geochemistry)
Show Figures

Figure 1

21 pages, 7288 KiB  
Article
Investigation of the Leaching Kinetics of Zinc from Smithsonite in Ammonium Citrate Solution
by Huiqin Chen, Dandan Wu and Ziang Wang
Metals 2024, 14(5), 519; https://doi.org/10.3390/met14050519 - 29 Apr 2024
Cited by 2 | Viewed by 2234
Abstract
In this study, the response surface method is used to develop a model for analyzing and optimizing zinc leaching experiments. An investigation into the leaching kinetics of smithsonite in ammonium citrate solution is also conducted. A model of kinetics is studied in order [...] Read more.
In this study, the response surface method is used to develop a model for analyzing and optimizing zinc leaching experiments. An investigation into the leaching kinetics of smithsonite in ammonium citrate solution is also conducted. A model of kinetics is studied in order to represent these effects. The experimental data show that an increase in the solution temperature, concentration, and stirring speed has a positive impact on the leaching rate, while an increase in the particle size has a negative impact on it. The optimal experimental conditions consist of a leaching temperature of 70 °C, ammonium citrate concentration of 5 mol/L, particle size of 38 µm, and rotational speed of 1000 rpm. Under these optimal conditions, the leaching rate of zinc from smithsonite is 83.51%. It is speculated that the kinetic model will change when the temperature is higher than 60 °C. When the temperature is lower than 60 °C, the leaching process is under the control of the shrinking core model of the surface chemical reactions. The calculated activation energy of the leaching reaction is equal to 42 kJ/mol. The model of the leaching process can be described by the following equation: 11x1/3=k0(C)0.6181r00.5868SS0.6901exp42/RT]t. This demonstrates that an ammonium citrate solution can be used in the leaching process of zinc in smithsonite as an effective and clean leaching agent. Full article
(This article belongs to the Special Issue Metal Extraction/Refining and Product Development)
Show Figures

Figure 1

23 pages, 6931 KiB  
Article
Oxygen Isotope Fractionation between Carbonate Minerals and Carbonic Acid Systems and Constraints for Environmental Science and Geological Processes
by Jixi Zhang
Molecules 2024, 29(3), 698; https://doi.org/10.3390/molecules29030698 - 2 Feb 2024
Cited by 5 | Viewed by 2014
Abstract
The equilibrium oxygen isotope fractionation factor is widely used in geological thermometry. However, under most natural conditions, the oxygen isotope exchange is rare to reach equilibrium. Especially for the complex water–rock interaction process, the contribution of the H2CO3 solution, CO [...] Read more.
The equilibrium oxygen isotope fractionation factor is widely used in geological thermometry. However, under most natural conditions, the oxygen isotope exchange is rare to reach equilibrium. Especially for the complex water–rock interaction process, the contribution of the H2CO3 solution, CO32− solution, Ca(HCO3)2 solution, and CaCO3 solution to the equilibrium oxygen isotope fractionation factor of this process is poorly understood. In view of this predicament, these key parameters are obtained by ab initio calculations. The results showed that the contributions of different carbonate minerals and different aqueous solutions to the equilibrium oxygen isotope fractionation factor were different. Among all nine carbonate minerals (dolomite, calcite, aragonite, magnesite, siderite, otavite, smithsonite, ankerite, and strontianite), the minerals with the highest and lowest reduced partition function ratios (RPFR) were siderite and strontianite, respectively. At the same time, the RPFR of nitratine, which has the same structure as carbonate, was studied. The RPFRs of the three most widely distributed carbonates in nature (dolomite, calcite, and aragonite) were dolomite > calcite > aragonite. Among the H2CO3 solution, CO32− solution, Ca(HCO3)2 solution, and CaCO3 solution, the H2CO3 solution had the strongest ability to enrich 18O. In addition, the equilibrium oxygen isotope fractionation factors between aqueous solutions and gas phase species (CO2(g), H2O(g), and O2(g), etc.) were calculated systematically. The results showed that the oxygen isotope fractionation factors between solutions and gas phases were often inconsistent with the temperature change direction and that the kinetic effects played a key role. These theoretical parameters obtained in this study will provide key equilibrium oxygen isotope constraints for water-rock interaction processes. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

14 pages, 1464 KiB  
Article
The Flotation Separation Mechanism of Smithsonite from Calcite and Dolomite with Combined Collectors
by Xiangxiang Chen, Junzhi Bai, Zhaoyang Zhang, Wen Qiang, Shiyi Huang, Yunfei Ouyang, Tianhao Liu and Wanzhong Yin
Minerals 2023, 13(12), 1527; https://doi.org/10.3390/min13121527 - 8 Dec 2023
Cited by 1 | Viewed by 1811
Abstract
Smithsonite, dolomite, and calcite are carbonate minerals. The crystal structures and spatial distribution characteristics of their common surface metal sites are similar, leading to difficulty in the flotation separation of smithsonite from these carbonate gangues. In this paper, the floatability of smithsonite, dolomite, [...] Read more.
Smithsonite, dolomite, and calcite are carbonate minerals. The crystal structures and spatial distribution characteristics of their common surface metal sites are similar, leading to difficulty in the flotation separation of smithsonite from these carbonate gangues. In this paper, the floatability of smithsonite, dolomite, and calcite in sodium oleate, salicylhydroxamic acid, and their combined-collector system were systematically studied through single-mineral flotation tests, respectively. The results showed that it was difficult to obtain a noticeable recovery difference between smithsonite–calcite and smithsonite–dolomite in a single-collector system of sodium oleate and salicylhydroxamic acid, both at the same time. In the combined-collector system of salicylhydroxamic acid and sodium oleate with total dosage of 6 × 10−4 mol/L, molar ratio of 3:1, and pH of 8.0, the recovery difference of smithsonite–calcite and smithsonite–dolomite could reach the highest values of 38.46% and 37.98%, respectively, while obtaining the highest smithsonite recovery of 88.19%. The adsorption mechanism of the combined collectors was investigated via Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, a collector adsorption test, and zeta potential measurements, respectively. Full article
(This article belongs to the Special Issue Flotation Chemistry of Oxidized Ore)
Show Figures

Figure 1

15 pages, 4148 KiB  
Article
Study on the Reverse Flotation Separation of Smithsonite from Dolomite Using the Saponified 2-(4,4-Dimethylpentan-2-yl)-5,7,7-trimethyloctanoic Acid as a Collector
by Xiaoliang Zhang, Yangge Zhu, Zhiqiang Zhao and Peilong Wang
Minerals 2023, 13(10), 1322; https://doi.org/10.3390/min13101322 - 13 Oct 2023
Viewed by 1744
Abstract
Dolomite, a prominent calcium-bearing gangue mineral found in carbonate-type zinc oxide ores, poses a significant challenge for effective flotation separation alongside smithsonite due to their highly similar surface properties. The present study explores the potential of 2-(4,4-dimethylpentan-2-yl)-5,7,7-trimethyloctanoic acid (2-DMPT) as a collector for [...] Read more.
Dolomite, a prominent calcium-bearing gangue mineral found in carbonate-type zinc oxide ores, poses a significant challenge for effective flotation separation alongside smithsonite due to their highly similar surface properties. The present study explores the potential of 2-(4,4-dimethylpentan-2-yl)-5,7,7-trimethyloctanoic acid (2-DMPT) as a collector for the reverse flotation of smithsonite from dolomite. Micro-flotation experiments indicated that saponified 2-DMPT exhibited superior collecting ability and selectivity for dolomite over smithsonite under highly alkaline conditions. Specifically, the flotation recovery of dolomite reached 62%, whereas only 6% of smithsonite was recovered in the flotation foam products. Zeta potential and attenuated total reflectance–Fourier transform infrared (ATR-FTIR) analysis revealed that changes in pH values had minimal influence on the collector’s adsorption onto dolomite, while significantly hindering its adsorption on the smithsonite surface. Furthermore, X-ray photoelectron spectroscopy (XPS) analysis showed that 2-DMPT could form hydrophobic complexes with the active Ca2+ sites on the dolomite surface at pH 11.5. However, the interaction between smithsonite and carboxylic groups of 2-DMPT under the same conditions was relatively weaker, facilitating their reverse flotation separation. As a result, 2-DMPT shows promise as a potential collector for the reverse flotation process, effectively removing dolomite from smithsonite and reducing acid consumption in subsequent acid-leaching processes. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

20 pages, 8134 KiB  
Review
Recent Progress on Chelating Reagents in Flotation of Zinc Oxide Ores: A Review
by Zhengyong Song, Shuming Wen, Guang Han and Qicheng Feng
Minerals 2023, 13(10), 1278; https://doi.org/10.3390/min13101278 - 29 Sep 2023
Cited by 11 | Viewed by 3355
Abstract
Zinc oxide minerals (primarily smithsonite and hemimorphite) are important sources of Zn. Flotation is the most widely used method of enriching zinc oxide minerals for mineral processing. Chelating reagents have received extensive attention for the flotation of zinc oxide ores because of their [...] Read more.
Zinc oxide minerals (primarily smithsonite and hemimorphite) are important sources of Zn. Flotation is the most widely used method of enriching zinc oxide minerals for mineral processing. Chelating reagents have received extensive attention for the flotation of zinc oxide ores because of their high selectivity and stability. This paper systematically summarizes the selective separation performance and mechanisms of various chelating reagents as collectors, activators, and depressants in the flotation of zinc oxide ores. The types and mechanisms of chelating reagents in the flotation of zinc oxide ores are discussed, providing new ideas for the development of efficient flotation reagents for zinc oxide ores. Full article
(This article belongs to the Special Issue Advances in Flotation of Copper, Lead and Zinc Minerals)
Show Figures

Figure 1

14 pages, 3646 KiB  
Article
Flotation Separation of Smithsonite from Calcite Using Cupferron as a Collector
by Qingqing Wang, Lei Sun, Yang Cao, Xin Wang, Yi Qiao, Guobin Liu, Meitao Xiang and Wei Sun
Minerals 2023, 13(8), 992; https://doi.org/10.3390/min13080992 - 26 Jul 2023
Cited by 2 | Viewed by 1609
Abstract
The flotation separation of smithsonite and calcite is difficult due to their similar surface properties. In this study, cupferron was applied as a collector to realize the separation of smithsonite and calcite. Micro-flotation experiment results indicated that smithsonite and calcite express different floatability [...] Read more.
The flotation separation of smithsonite and calcite is difficult due to their similar surface properties. In this study, cupferron was applied as a collector to realize the separation of smithsonite and calcite. Micro-flotation experiment results indicated that smithsonite and calcite express different floatability after treatment with cupferron. The maximum recovery difference was 63%, from a cupferron concentration of 2 × 10−4 mol/L at pH 8. Based on a series of tests, including an adsorption test, Fourier-transform infrared (FTIR), zeta potential and X-ray photoelectron spectroscopy (XPS), the selective collection mechanism of cupferron was studied. It was found that the cupferron was more easily adsorbed on the surface of smithsonite and the reaction was violent. The adsorption capacity of the cupferron on the surface of smithsonite was higher than that of calcite, and the surface potential shift was greater. The cupferron chelated with the exposed Zn sites on the smithsonite surface to form a N-O-Zn ring structure. This special chelate structure caused the smithsonite surface to be more hydrophobic, which confirmed that the cupferron can selectively collect smithsonite instead of calcite. Full article
(This article belongs to the Special Issue Advances in Flotation of Copper, Lead and Zinc Minerals)
Show Figures

Figure 1

11 pages, 5299 KiB  
Article
Utilization of Phytic Acid as a Selective Depressant for Quartz Activated by Zinc Ions in Smithsonite Flotation
by Mengtao Wang and Saizhen Jin
Molecules 2023, 28(14), 5361; https://doi.org/10.3390/molecules28145361 - 12 Jul 2023
Cited by 3 | Viewed by 1650
Abstract
It is difficult to separate smithsonite from quartz with metal ion activation through flotation using sodium oleate (NaOL) as the collector. The inevitable Zn2+ in the flotation process of zinc oxide ore makes the separation of smithsonite and quartz more difficult. Thus, [...] Read more.
It is difficult to separate smithsonite from quartz with metal ion activation through flotation using sodium oleate (NaOL) as the collector. The inevitable Zn2+ in the flotation process of zinc oxide ore makes the separation of smithsonite and quartz more difficult. Thus, this study investigated the use of phytic acid (PA) as a flotation depressant to separate smithsonite from Zn2+-activated quartz while utilizing sodium oleate as the collector. Microflotation tests indicated that phytic acid could selectively inhibit the flotation of Zn2+-activated quartz without affecting the flotation of smithsonite. The measured zeta potentials revealed that the existence of phytic acid hindered sodium oleate adsorption to the surface of Zn2+-activated quartz but had little influence on the adsorption of smithsonite. Zn2+ dissolution tests and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis indicated that the phytic acid could dissolve the Zn2+ from the minerals’ surfaces into the solution. In conjunction with X-ray photoelectron spectroscopy results, the analysis indicated that phytic acid could adsorb onto the Zn2+-activated quartz surface and eliminate active sites for sodium oleate adsorption by dissolving the active Zn2+ from the quartz surface into the solution. Full article
Show Figures

Figure 1

Back to TopTop