Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (635)

Search Parameters:
Keywords = smart waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1495 KiB  
Review
Computer Vision for Low-Level Nuclear Waste Sorting: A Review
by Tianshuo Li, Danielle E. Winckler and Zhong Li
Environments 2025, 12(8), 270; https://doi.org/10.3390/environments12080270 - 5 Aug 2025
Abstract
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises [...] Read more.
Nuclear power is a low-emission and economically competitive energy source, yet the effective disposal and management of its associated radioactive waste can be challenging. Radioactive waste can be categorised as high-level waste (HLW), intermediate-level waste (ILW), and low-level waste (LLW). LLW primarily comprises materials contaminated during routine clean-up, such as mop heads, paper towels, and floor sweepings. While LLW is less radioactive compared to HLW and ILW, the management of LLW poses significant challenges due to the large volume that requires processing and disposal. The volume of LLW can be significantly reduced through sorting, which is typically performed manually in a labour-intensive way. Smart management techniques, such as computer vision (CV) and machine learning (ML), have great potential to help reduce the workload and human errors during LLW sorting. This paper provides a comprehensive review of previous research related to LLW sorting and a summative review of existing applications of CV in solid waste management. It also discusses state-of-the-art CV and ML algorithms and their potential for automating LLW sorting. This review lays a foundation for and helps facilitate the applications of CV and ML techniques in LLW sorting, paving the way for automated LLW sorting and sustainable LLW management. Full article
Show Figures

Figure 1

22 pages, 1007 KiB  
Systematic Review
Mapping Drone Applications in Rural and Regional Cities: A Scoping Review of the Australian State of Practice
by Christine Steinmetz-Weiss, Nancy Marshall, Kate Bishop and Yuan Wei
Appl. Sci. 2025, 15(15), 8519; https://doi.org/10.3390/app15158519 (registering DOI) - 31 Jul 2025
Viewed by 155
Abstract
Consumer-accessible and user-friendly smart products such as unmanned aerial vehicles (UAVs), or drones, have become widely used, adaptable, and acceptable devices to observe, assess, measure, and explore urban and natural environments. A drone’s relatively low cost and flexibility in the level of expertise [...] Read more.
Consumer-accessible and user-friendly smart products such as unmanned aerial vehicles (UAVs), or drones, have become widely used, adaptable, and acceptable devices to observe, assess, measure, and explore urban and natural environments. A drone’s relatively low cost and flexibility in the level of expertise required to operate it has enabled users from novice to industry professionals to adapt a malleable technology to various disciplines. This review examines the academic literature and maps how drones are currently being used in 93 rural and regional city councils in New South Wales, Australia. Through a systematic review of the academic literature and scrutiny of current drone use in these councils using publicly available information found on council websites, findings reveal potential uses of drone technology for local governments who want to engage with smart technology devices. We looked at how drones were being used in the management of the council’s environment; health and safety initiatives; infrastructure; planning; social and community programmes; and waste and recycling. These findings suggest that drone technology is increasingly being utilised in rural and regional areas. While the focus is on rural and regional New South Wales, a review of the academic literature and local council websites provides a snapshot of drone use examples that holds global relevance for local councils in urban and remote areas seeking to incorporate drone technology into their daily practice of city, town, or region governance. Full article
Show Figures

Figure 1

28 pages, 1431 KiB  
Article
From Mine to Market: Streamlining Sustainable Gold Production with Cutting-Edge Technologies for Enhanced Productivity and Efficiency in Central Asia
by Mohammad Shamsuddoha, Adil Kaibaliev and Tasnuba Nasir
Logistics 2025, 9(3), 100; https://doi.org/10.3390/logistics9030100 - 29 Jul 2025
Viewed by 274
Abstract
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and [...] Read more.
Background: Gold mining is a critical part of the industry of Central Asia, contributing significantly to regional economic growth. However, gold production management faces numerous challenges, including adopting innovative technologies such as AI, using improved logistical equipment, resolving supply chain inefficiencies and disruptions, and incorporating modernized waste management and advancements in gold bar processing technologies. This study explores how advanced technologies and improved logistical processes can enhance efficiency and sustainability. Method: This paper examines gold production processes in Kyrgyzstan, a gold-producing country in Central Asia. The case study approach combines qualitative interviews with industry stakeholders and a system dynamics (SD) simulation model to compare current operations with a technology-based scenario. Results: The simulation model shows improved outcomes when innovative technologies are applied to ore processing, waste refinement, and gold bar production. The results also indicate an approximate twenty-five percent reduction in transport time, a thirty percent decrease in equipment downtime, a thirty percent reduction in emissions, and a fifteen percent increase in gold extraction when using artificial intelligence, smart logistics, and regional smelting. Conclusions: The study concludes with recommendations to modernize equipment, localize processing, and invest in digital logistics to support sustainable mining and improve operational performance in Kyrgyzstan’s gold sector. Full article
(This article belongs to the Topic Sustainable Supply Chain Practices in A Digital Age)
Show Figures

Figure 1

29 pages, 4159 KiB  
Review
Nanomaterials for Smart and Sustainable Food Packaging: Nano-Sensing Mechanisms, and Regulatory Perspectives
by Arjun Muthu, Duyen H. H. Nguyen, Chaima Neji, Gréta Törős, Aya Ferroudj, Reina Atieh, József Prokisch, Hassan El-Ramady and Áron Béni
Foods 2025, 14(15), 2657; https://doi.org/10.3390/foods14152657 - 29 Jul 2025
Viewed by 494
Abstract
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due [...] Read more.
The global food industry is facing growing pressure to enhance food safety, extend shelf life, minimize waste, and adopt environmentally sustainable packaging solution. Nanotechnology offers innovative ways to meet these demands by enabling the creation of smart and sustainable food packaging systems. Due to their unique properties, nanomaterials can significantly enhance the functional performance of packaging by boosting mechanical strength, barrier efficiency, antimicrobial activity, and responsiveness to environmental stimuli. This review provides a comprehensive overview of nanomaterials used as smart and sustainable food packaging, focusing on their role in active and intelligent packaging systems. By integrating nanomaterials like metal and metal oxide nanoparticles, carbon-based nanostructures, and nano-biopolymers, packaging can now perform real-time sensing, spoilage detection, and traceability. These systems improve food quality management and supply chain transparency while supporting global sustainability goals. The review also discusses potential risks related to nanomaterials’ migration, environmental impact, and consumer safety, as well as the current regulatory landscape and limitations in industrial scalability. Emphasis is placed on the importance of standardized safety assessments and eco-friendly design to support responsible innovation. Overall, nano-enabled smart packaging represents a promising strategy for advancing food safety and sustainability. Future developments will require collaboration across disciplines and robust regulatory frameworks to ensure the safe and practical application of nanotechnology in food systems. Full article
Show Figures

Graphical abstract

33 pages, 2299 KiB  
Review
Edge Intelligence in Urban Landscapes: Reviewing TinyML Applications for Connected and Sustainable Smart Cities
by Athanasios Trigkas, Dimitrios Piromalis and Panagiotis Papageorgas
Electronics 2025, 14(14), 2890; https://doi.org/10.3390/electronics14142890 - 19 Jul 2025
Viewed by 529
Abstract
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste [...] Read more.
Tiny Machine Learning (TinyML) extends edge AI capabilities to resource-constrained devices, offering a promising solution for real-time, low-power intelligence in smart cities. This review systematically analyzes 66 peer-reviewed studies from 2019 to 2024, covering applications across urban mobility, environmental monitoring, public safety, waste management, and infrastructure health. We examine hardware platforms and machine learning models, with particular attention to power-efficient deployment and data privacy. We review the approaches employed in published studies for deploying machine learning models on resource-constrained hardware, emphasizing the most commonly used communication technologies—while noting the limited uptake of low-power options such as Low Power Wide Area Networks (LPWANs). We also discuss hardware–software co-design strategies that enable sustainable operation. Furthermore, we evaluate the alignment of these deployments with the United Nations Sustainable Development Goals (SDGs), highlighting both their contributions and existing gaps in current practices. This review identifies recurring technical patterns, methodological challenges, and underexplored opportunities, particularly in the areas of hardware provisioning, usage of inherent privacy benefits in relevant applications, communication technologies, and dataset practices, offering a roadmap for future TinyML research and deployment in smart urban systems. Among the 66 studies examined, 29 focused on mobility and transportation, 17 on public safety, 10 on environmental sensing, 6 on waste management, and 4 on infrastructure monitoring. TinyML was deployed on constrained microcontrollers in 32 studies, while 36 used optimized models for resource-limited environments. Energy harvesting, primarily solar, was featured in 6 studies, and low-power communication networks were used in 5. Public datasets were used in 27 studies, custom datasets in 24, and the remainder relied on hybrid or simulated data. Only one study explicitly referenced SDGs, and 13 studies considered privacy in their system design. Full article
(This article belongs to the Special Issue New Advances in Embedded Software and Applications)
Show Figures

Figure 1

46 pages, 10548 KiB  
Review
A Review of Hybrid LSTM Models in Smart Cities
by Bum-Jun Kim and Il-Woo Nam
Processes 2025, 13(7), 2298; https://doi.org/10.3390/pr13072298 - 18 Jul 2025
Viewed by 691
Abstract
Rapid global urbanization poses complex challenges that demand advanced data-driven forecasting solutions for smart cities. Traditional statistical and standalone Long Short-Term Memory (LSTM) models often struggle to capture non-linear dynamics and long-term dependencies in urban time-series data. This review critically examines hybrid LSTM [...] Read more.
Rapid global urbanization poses complex challenges that demand advanced data-driven forecasting solutions for smart cities. Traditional statistical and standalone Long Short-Term Memory (LSTM) models often struggle to capture non-linear dynamics and long-term dependencies in urban time-series data. This review critically examines hybrid LSTM models that integrate LSTM with complementary algorithms, including CNN, GRU, ARIMA, and SVM. These hybrid architectures aim to enhance prediction accuracy, integrate diverse data sources, and improve computational efficiency. This study systematically reviews principles, trends, and real-world applications, quantitatively evaluating hybrid LSTM models using performance metrics such as mean absolute error (MAE), root mean square error (RMSE), and the coefficient of determination (R2), while identifying key study limitations. The case studies considered include traffic management, environmental monitoring, energy forecasting, public health, infrastructure assessment, and urban waste management. For example, hybrid models have achieved substantial accuracy improvements in traffic congestion forecasting, reducing their mean absolute error by up to 29%. Despite the inherent challenges related to structural complexity, interpretability, and data requirements, ongoing research on attention mechanisms, model compression, and explainable AI has significantly mitigated these limitations. Thus, hybrid LSTM models have emerged as vital analytical tools capable of robust spatiotemporal prediction, effectively supporting sustainable urban development and data-driven decision-making in evolving smart city environments. Full article
Show Figures

Figure 1

27 pages, 1666 KiB  
Article
Artificial Intelligence and Environmental Sustainability Playbook for Energy Sector Leaders
by Abdullah Abonamah, Salah Hassan and Tena Cale
Sustainability 2025, 17(14), 6529; https://doi.org/10.3390/su17146529 - 17 Jul 2025
Viewed by 620
Abstract
The energy sector uses artificial intelligence (AI) as a crucial instrument to achieve environmental sustainability targets by improving resource efficiency and decreasing emissions while minimizing waste production. This paper establishes an industry-specific executive playbook that guides energy sector leaders by implementing AI technologies [...] Read more.
The energy sector uses artificial intelligence (AI) as a crucial instrument to achieve environmental sustainability targets by improving resource efficiency and decreasing emissions while minimizing waste production. This paper establishes an industry-specific executive playbook that guides energy sector leaders by implementing AI technologies for sustainability management with approaches suitable for industrial needs. The playbook provides an industry-specific framework along with strategies and AI-based solutions to help organizations overcome their sustainability challenges. Predictive analytics combined with smart grid management implemented through AI applications produced 15% less energy waste and reduced carbon emissions by 20% according to industry pilot project data. AI has proven its transformative capabilities by optimizing energy consumption while detecting inefficiencies to create both operational improvements and cost savings. The real-time monitoring capabilities of AI systems help companies meet strict environmental regulations and international climate goals by optimizing resource use and waste reduction, supporting circular economy practices for sustainable operations and enduring profitability. Leaders can establish impactful technology-based sustainability initiatives through the playbook which addresses the energy sector requirements for corporate goals and regulatory standards. Full article
Show Figures

Figure 1

25 pages, 2968 KiB  
Article
Modernizing District Heating Networks: A Strategic Decision-Support Framework for Sustainable Retrofitting
by Reza Bahadori, Matthias Speich and Silvia Ulli-Beer
Energies 2025, 18(14), 3759; https://doi.org/10.3390/en18143759 - 16 Jul 2025
Viewed by 348
Abstract
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct [...] Read more.
This study explores modernization strategies for existing district heating (DH) networks to enhance their efficiency and sustainability, focusing on achieving net-zero emissions in urban heating systems. Building upon a literature review and expert interviews, we developed a strategic decision-support framework that outlines distinct strategies for retrofitting district heating grids and includes a portfolio analysis. This framework serves as a tool to guide DH operators and stakeholders in selecting well-founded modernization pathways by considering technical, economic, and social dimensions. The review identifies several promising measures, such as reducing operational temperatures at substations, implementing optimized substations, integrating renewable and waste heat sources, implementing thermal energy storage (TES), deploying smart metering and monitoring infrastructure, and expanding networks while addressing public concerns. Additionally, the review highlights the importance of stakeholder engagement and policy support in successfully implementing these strategies. The developed strategic decision-support framework helps practitioners select a tailored modernization strategy aligned with the local context. Furthermore, the findings show the necessity of adopting a comprehensive approach that combines technical upgrades with robust stakeholder involvement and supportive policy measures to facilitate the transition to sustainable urban heating solutions. For example, the development of decision-support tools enables stakeholders to systematically evaluate and select grid modernization strategies, directly helping to reduce transmission losses and lower greenhouse gas (GHG) emissions contributing to climate goals and enhancing energy security. Indeed, as shown in the reviewed literature, retrofitting high-temperature district heating networks with low-temperature distribution and integrating renewables can lead to near-complete decarbonization of the supplied heat. Additionally, integrating advanced digital technologies, such as smart grid systems, can enhance grid efficiency and enable a greater share of variable renewable energy thus supporting national decarbonization targets. Further investigation could point to the most determining context factors for best choices to improve the sustainability and efficiency of existing DH systems. Full article
Show Figures

Figure 1

72 pages, 22031 KiB  
Article
AI-Enabled Sustainable Manufacturing: Intelligent Package Integrity Monitoring for Waste Reduction in Supply Chains
by Mohammad Shahin, Ali Hosseinzadeh and F. Frank Chen
Electronics 2025, 14(14), 2824; https://doi.org/10.3390/electronics14142824 - 14 Jul 2025
Viewed by 380
Abstract
Despite advances in automation, the global manufacturing sector continues to rely heavily on manual package inspection, creating bottlenecks in production and increasing labor demands. Although disruptive technologies such as big data analytics, smart sensors, and machine learning have revolutionized industrial connectivity and strategic [...] Read more.
Despite advances in automation, the global manufacturing sector continues to rely heavily on manual package inspection, creating bottlenecks in production and increasing labor demands. Although disruptive technologies such as big data analytics, smart sensors, and machine learning have revolutionized industrial connectivity and strategic decision-making, real-time quality control (QC) on conveyor lines remains predominantly analog. This study proposes an intelligent package integrity monitoring system that integrates waste reduction strategies with both narrow and Generative AI approaches. Narrow AI models were deployed to detect package damage at full line speed, aiming to minimize manual intervention and reduce waste. Using a synthetically generated dataset of 200 paired top-and-side package images, we developed and evaluated 10 distinct detection pipelines combining various algorithms, image enhancements, model architectures, and data processing strategies. Several pipeline variants demonstrated high accuracy, precision, and recall, particularly those utilizing a YOLO v8 segmentation model. Notably, targeted preprocessing increased top-view MobileNetV2 accuracy from chance to 67.5%, advanced feature extractors with full enhancements achieved 77.5%, and a segmentation-based ensemble with feature extraction and binary classification reached 92.5% accuracy. These results underscore the feasibility of deploying AI-driven, real-time QC systems for sustainable and efficient manufacturing operations. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Intelligent Manufacturing)
Show Figures

Figure 1

42 pages, 5041 KiB  
Article
Autonomous Waste Classification Using Multi-Agent Systems and Blockchain: A Low-Cost Intelligent Approach
by Sergio García González, David Cruz García, Rubén Herrero Pérez, Arturo Álvarez Sanchez and Gabriel Villarrubia González
Sensors 2025, 25(14), 4364; https://doi.org/10.3390/s25144364 - 12 Jul 2025
Viewed by 401
Abstract
The increase in garbage generated in modern societies demands the implementation of a more sustainable model as well as new methods for efficient waste management. This article describes the development and implementation of a prototype of a smart bin that automatically sorts waste [...] Read more.
The increase in garbage generated in modern societies demands the implementation of a more sustainable model as well as new methods for efficient waste management. This article describes the development and implementation of a prototype of a smart bin that automatically sorts waste using a multi-agent system and blockchain integration. The proposed system has sensors that identify the type of waste (organic, plastic, paper, etc.) and uses collaborative intelligent agents to make instant sorting decisions. Blockchain has been implemented as a technology for the immutable and transparent control of waste registration, favoring traceability during the classification process, providing sustainability to the process, and making the audit of data in smart urban environments transparent. For the computer vision algorithm, three versions of YOLO (YOLOv8, YOLOv11, and YOLOv12) were used and evaluated with respect to their performance in automatic detection and classification of waste. The YOLOv12 version was selected due to its overall performance, which is superior to others with mAP@50 values of 86.2%, an overall accuracy of 84.6%, and an average F1 score of 80.1%. Latency was kept below 9 ms per image with YOLOv12, ensuring smooth and lag-free processing, even for utilitarian embedded systems. This allows for efficient deployment in near-real-time applications where speed and immediate response are crucial. These results confirm the viability of the system in both accuracy and computational efficiency. This work provides an innovative solution in the field of ambient intelligence, characterized by low equipment cost and high scalability, laying the foundations for the development of smart waste management infrastructures in sustainable cities. Full article
(This article belongs to the Special Issue Sensing and AI: Advancements in Robotics and Autonomous Systems)
Show Figures

Figure 1

27 pages, 1889 KiB  
Article
Advancing Smart City Sustainability Through Artificial Intelligence, Digital Twin and Blockchain Solutions
by Ivica Lukić, Mirko Köhler, Zdravko Krpić and Miljenko Švarcmajer
Technologies 2025, 13(7), 300; https://doi.org/10.3390/technologies13070300 - 11 Jul 2025
Cited by 1 | Viewed by 660
Abstract
This paper presents an integrated Smart City platform that combines digital twin technology, advanced machine learning, and a private blockchain network to enhance data-driven decision making and operational efficiency in both public enterprises and small and medium-sized enterprises (SMEs). The proposed cloud-based business [...] Read more.
This paper presents an integrated Smart City platform that combines digital twin technology, advanced machine learning, and a private blockchain network to enhance data-driven decision making and operational efficiency in both public enterprises and small and medium-sized enterprises (SMEs). The proposed cloud-based business intelligence model automates Extract, Transform, Load (ETL) processes, enables real-time analytics, and secures data integrity and transparency through blockchain-enabled audit trails. By implementing the proposed solution, Smart City and public service providers can significantly improve operational efficiency, including a 15% reduction in costs and a 12% decrease in fuel consumption for waste management, as well as increased citizen engagement and transparency in Smart City governance. The digital twin component facilitated scenario simulations and proactive resource management, while the participatory governance module empowered citizens through transparent, immutable records of proposals and voting. This study also discusses technical, organizational, and regulatory challenges, such as data integration, scalability, and privacy compliance. The results indicate that the proposed approach offers a scalable and sustainable model for Smart City transformation, fostering citizen trust, regulatory compliance, and measurable environmental and social benefits. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

29 pages, 1282 KiB  
Article
The Role of Business Models in Smart-City Waste Management: A Framework for Sustainable Decision-Making
by Silvia Krúpová, Gabriel Koman, Jakub Soviar and Martin Holubčík
Systems 2025, 13(7), 556; https://doi.org/10.3390/systems13070556 - 8 Jul 2025
Viewed by 480
Abstract
This study addresses the multifaceted challenges inherent in implementing effective smart-city waste-management systems. Recent global trends indicate increased adoption of Industry 4.0 technologies—such as the Internet of Things (IoT), artificial intelligence (AI), and data analytics—to optimize waste collection and processing. The central research [...] Read more.
This study addresses the multifaceted challenges inherent in implementing effective smart-city waste-management systems. Recent global trends indicate increased adoption of Industry 4.0 technologies—such as the Internet of Things (IoT), artificial intelligence (AI), and data analytics—to optimize waste collection and processing. The central research question investigates the role of innovative business models and sustainable decision-making frameworks in advancing smart waste management within urban environments. This research integrates three interrelated domains: business-model innovation, smart-city paradigms, and sustainability in waste management. Its novelty lies in synthesizing these domains, conducting a comparative analysis of best practices from leading European smart cities, and proposing a conceptual framework to guide sustainable decision-making. Methodologically, the study employs a systematic literature review, case-study analyses, and the synthesis of theoretical and empirical data. Key findings demonstrate that innovative business models—such as product-as-a-service, circular-economy approaches, and waste-as-a-service—substantially enhance the sustainability and operational efficiency of urban waste systems. However, many cities lack comprehensive strategies for integrating these models, highlighting the necessity for deliberate planning and active stakeholder engagement. Based on these insights, the study offers actionable recommendations for policymakers and urban managers to embed sustainable business models into smart-city waste infrastructures. These contributions aim to promote the development of resilient, efficient, and environmentally responsible waste-management systems in smart cities. Full article
Show Figures

Figure 1

25 pages, 5231 KiB  
Article
Using AI for Optimizing Packing Design and Reducing Cost in E-Commerce
by Hayder Zghair and Rushi Ganesh Konathala
AI 2025, 6(7), 146; https://doi.org/10.3390/ai6070146 - 4 Jul 2025
Viewed by 899
Abstract
This research explores how artificial intelligence (AI) can be leveraged to optimize packaging design, reduce operational costs, and enhance sustainability in e-commerce. As packaging waste and shipping inefficiencies grow alongside global online retail demand, traditional methods for determining box size, material use, and [...] Read more.
This research explores how artificial intelligence (AI) can be leveraged to optimize packaging design, reduce operational costs, and enhance sustainability in e-commerce. As packaging waste and shipping inefficiencies grow alongside global online retail demand, traditional methods for determining box size, material use, and logistics planning have become economically and environmentally inadequate. Using a three-phase framework, this study integrates data-driven diagnostics, AI modeling, and real-world validation. In the first phase, a systematic analysis of current packaging inefficiencies was conducted through secondary data, benchmarking, and cost modeling. Findings revealed significant waste caused by over-packaging, suboptimal box-sizing, and poor alignment between product characteristics and logistics strategy. In the second phase, a random forest (RF) machine learning model was developed to predict optimal packaging configurations using key product features: weight, volume, and fragility. This model was supported by AI simulation tools that enabled virtual testing of material performance, space efficiency, and damage risk. Results demonstrated measurable improvements in packaging optimization, cost reduction, and emission mitigation. The third phase validated the AI framework using practical case studies—ranging from a college textbook to a fragile kitchen dish set and a high-volume children’s bicycle. The model successfully recommended right-sized packaging for each product, resulting in reduced material usage, improved shipping density, and enhanced protection. Simulated cost-saving scenarios further confirmed that smart packaging and AI-generated configurations can drive efficiency. The research concludes that AI-based packaging systems offer substantial strategic value, including cost savings, environmental benefits, and alignment with regulatory and consumer expectations—providing scalable, data-driven solutions for e-commerce enterprises such as Amazon and others. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
Show Figures

Figure 1

20 pages, 2601 KiB  
Article
Waste as a Source of Fuel and Developments in Hydrogen Storage: Applied Cases in Spain and Their Future Potential
by Juan Pous de la Flor, María-Pilar Martínez-Hernando, Roberto Paredes, Enrique Garcia-Franco, Juan Pous Cabello and Marcelo F. Ortega
Appl. Sci. 2025, 15(13), 7514; https://doi.org/10.3390/app15137514 - 4 Jul 2025
Viewed by 365
Abstract
The integration of renewable energy with circular economy strategies offers effective pathways to reduce greenhouse gas emissions while enhancing local energy independence. This study analyses three real-world projects implemented in Spain that exemplify this synergy. LIFE Smart Agromobility converts pig manure into biomethane [...] Read more.
The integration of renewable energy with circular economy strategies offers effective pathways to reduce greenhouse gas emissions while enhancing local energy independence. This study analyses three real-world projects implemented in Spain that exemplify this synergy. LIFE Smart Agromobility converts pig manure into biomethane to power farm vehicles, using anaerobic digestion and microalgae-based upgrading systems. Smart Met Value refines biogas from a wastewater treatment plant in Guadalajara to produce high-purity biomethane for the municipal fleet, demonstrating the viability of energy recovery from sewage sludge. The UNDERGY project addresses green hydrogen storage by repurposing a depleted natural gas reservoir, showing geochemical and geomechanical feasibility for seasonal underground hydrogen storage. Each project utilises regionally available resources to produce clean fuels—biomethane or hydrogen—while mitigating methane and CO2 emissions. Results show significant energy recovery potential: biomethane production can replace a substantial portion of fossil fuel use in rural and urban settings, while hydrogen storage provides a scalable solution for surplus renewable energy. These applied cases demonstrate not only the technical feasibility but also the socio-economic benefits of integrating waste valorisation and energy transition technologies. Together, they represent replicable models for sustainable development and energy resilience across Europe and beyond. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

23 pages, 1056 KiB  
Article
Enabling Smart Cold Chain Logistics Through Standardization and Digital Transformation: A Structural Model for Reducing Food Loss in Thailand’s Agri-Food Sector
by Thammasak Kuaites and Sompon Thungwha
Sustainability 2025, 17(13), 6085; https://doi.org/10.3390/su17136085 - 2 Jul 2025
Viewed by 752
Abstract
Addressing the challenges of Industry 4.0 in Thailand’s agri-food logistics (AFL), this study develops a structural logistics management model grounded in the Technology–Organization–Environment (TOE) framework, Resource-Based View (RBV), and Dynamic Capabilities (DC) theory. The model integrates four key constructs: standardization, operations management, smart [...] Read more.
Addressing the challenges of Industry 4.0 in Thailand’s agri-food logistics (AFL), this study develops a structural logistics management model grounded in the Technology–Organization–Environment (TOE) framework, Resource-Based View (RBV), and Dynamic Capabilities (DC) theory. The model integrates four key constructs: standardization, operations management, smart technology, and wastage management targeting cold chain logistics (CCL) systems. Using a mixed-methods design, the study combines in-depth expert interviews with a quantitative survey of 300 logistics firms certified under the Q Cold Chain standard. Structural equation modeling (SEM) analysis confirms the robustness of the model (CMIN/DF = 1.151; GFI = 0.928; RMSEA = 0.022), supporting all five hypotheses. The findings show that standardization significantly enhances both operational performance and the adoption of digital technology, while waste reduction acts as a key mediator linking organizational processes to technological transformation. By highlighting institutional certification as a policy instrument, this research addresses existing gaps in logistics innovation literature. The results inform both theory and practice, supporting Thailand’s strategic transition toward sustainable, digitally enabled agri-logistics ecosystems. Full article
Show Figures

Figure 1

Back to TopTop