Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = smart repair patch

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 1038 KiB  
Review
Hydrogels in Cardiac Surgery: Versatile Platforms for Tissue Repair, Adhesion Prevention, and Localized Therapeutics
by Seok Beom Hong, Jin-Oh Jeong and Hoon Choi
Gels 2025, 11(7), 564; https://doi.org/10.3390/gels11070564 - 21 Jul 2025
Viewed by 444
Abstract
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular [...] Read more.
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular viability and integration under dynamic physiological conditions. In myocardial repair, injectable and patch-forming hydrogels have been shown to be effective in reducing infarct size, promoting angiogenesis, and preserving contractile function. Hydrogel coatings and films have been designed as adhesion barriers to minimize pericardial adhesions after cardiotomy and improve reoperative safety. In heart valve and patch engineering, hydrogels contribute to scaffold design by providing bio-instructive, mechanically resilient, and printable matrices that are compatible with 3D fabrication. Furthermore, hydrogels serve as localized delivery platforms for small molecules, proteins, and nucleic acids, enabling sustained or stimuli-responsive release while minimizing systemic toxicity. Despite these advances, challenges such as mechanical durability, immune compatibility, and translational scalability persist. Ongoing innovations in smart polymer chemistry, hybrid composite design, and patient-specific manufacturing are addressing these limitations. This review aims to provide an integrated perspective on the application of hydrogels in cardiac surgery. The relevant literature was identified through a narrative search of PubMed, Scopus, Web of Science, Embase, and Google Scholar. Taken together, hydrogels offer a uniquely versatile and clinically translatable platform for addressing the multifaceted challenges of cardiac surgery. Hydrogels are poised to redefine clinical strategies in cardiac surgery by enabling tailored, bioresponsive, and functionally integrated therapies. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Tissue Engineering Applications)
Show Figures

Figure 1

14 pages, 5581 KiB  
Article
Noggin-Loaded PLA/PCL Patch Inhibits BMP-Initiated Reactive Astrogliosis
by James Hawes, Ana Gonzalez-Manteiga, Kendall P. Murphy, Marina Sanchez-Petidier, Victoria Moreno-Manzano, Bedika Pathak, Kristin Lampe, Chia-Ying Lin, Jose L. Peiro and Marc Oria
Int. J. Mol. Sci. 2024, 25(21), 11626; https://doi.org/10.3390/ijms252111626 - 29 Oct 2024
Cited by 2 | Viewed by 1267
Abstract
Myelomeningocele (MMC) is a congenital birth defect of the spine and spinal cord, commonly treated clinically through prenatal or postnatal surgery by repairing the unclosed spinal canal. Having previously developed a PLA/PCL polymer smart patch for this condition, we aim to further expand [...] Read more.
Myelomeningocele (MMC) is a congenital birth defect of the spine and spinal cord, commonly treated clinically through prenatal or postnatal surgery by repairing the unclosed spinal canal. Having previously developed a PLA/PCL polymer smart patch for this condition, we aim to further expand the potential therapeutic options by providing additional cellular and biochemical support in addition to its mechanical properties. Bone morphogenetic proteins (BMPs) are a large class of secreted factors that serve as modulators of development in multiple organ systems, including the CNS. We hypothesize that our smart patch mitigates the astrogenesis induced, at least partly, by increased BMP activity during MMC. To test this hypothesis, neural stem or precursor cells were isolated from rat fetuses and cultured in the presence of Noggin, an endogenous antagonist of BMP action, with recombinant BMPs. We found that the developed PLA/PCL patch not only serves as a biocompatible material for developing neural stem cells but was also able to act as a carrier for BMP–Notch pathway inhibitor Noggin, effectively minimizing the effect of BMP2 or BMP4 on NPCs cultured with the Noggin-loaded patch. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Spinal Cord Injury and Repair)
Show Figures

Figure 1

20 pages, 782 KiB  
Review
Automated Repair of Smart Contract Vulnerabilities: A Systematic Literature Review
by Rasoul Kiani and Victor S. Sheng
Electronics 2024, 13(19), 3942; https://doi.org/10.3390/electronics13193942 - 6 Oct 2024
Cited by 1 | Viewed by 2881
Abstract
The substantial value held by smart contracts (SCs) makes them an enticing target for malicious attacks. The process of fixing vulnerabilities in SCs is intricate, primarily due to the immutability of blockchain technology. This research paper introduces a systematic literature review (SLR) that [...] Read more.
The substantial value held by smart contracts (SCs) makes them an enticing target for malicious attacks. The process of fixing vulnerabilities in SCs is intricate, primarily due to the immutability of blockchain technology. This research paper introduces a systematic literature review (SLR) that evaluates rectification systems designed to patch vulnerabilities in SCs. Following the guidelines set forth by the PRISMA statement, this SLR meticulously reviews a total of 31 papers. In this context, we classify recently published SC automated repair frameworks based on their methodologies for automatic program repair (APR), rewriting strategies, and tools for vulnerability detection. We argue that automated patching enhances the reliability and adoption of SCs, thereby allowing developers to promptly address identified vulnerabilities. Furthermore, existing automated repair tools are capable of addressing only a restricted range of vulnerabilities, and in some cases, patches may not be effective in preventing the targeted vulnerabilities. Another key point that should be taken into account is the simplicity of the patch and the gas consumption of the modified program. Alternatively, large language models (LLMs) have opened new avenues for automatic patch generation, and their performance can be improved by innovative methodologies. Full article
(This article belongs to the Special Issue Current Trends on Data Management)
Show Figures

Figure 1

13 pages, 2808 KiB  
Article
Smart Patch for Structural Health Monitoring of Composite Repair
by Tianyi Feng and M. H. Ferri Aliabadi
Appl. Sci. 2022, 12(10), 4916; https://doi.org/10.3390/app12104916 - 12 May 2022
Cited by 7 | Viewed by 2969
Abstract
The bondline integrity of a repair patch to the parent composite laminate is considered the most important factor in the repair design. A smart repair patch is proposed here to allow for real-time ultrasonic guided wave monitoring of repaired composites. A diagnostic film [...] Read more.
The bondline integrity of a repair patch to the parent composite laminate is considered the most important factor in the repair design. A smart repair patch is proposed here to allow for real-time ultrasonic guided wave monitoring of repaired composites. A diagnostic film with lead zirconate titanate (PZT) transducers and inkjet-printed wires is embedded into the repair patch using a cut-out method. The electro-mechanical impedance (EMI) method is used to verify the integrity of the embedded PZT transducers. The performance of the smart repair patch is assessed on the external panel with artificial bondline delamination and surface-mounted artificial damage. The damage index correlation coefficient and delay-and-sum (DAS) algorithm are used for damage detection and localization. The results show that the developed repair patch can successfully detect and locate damages. Full article
(This article belongs to the Special Issue Ultrasonic Modelling for Non-destructive Testing)
Show Figures

Figure 1

19 pages, 10525 KiB  
Article
Moving Car Recognition and Removal for 3D Urban Modelling Using Oblique Images
by Chong Yang, Fan Zhang, Yunlong Gao, Zhu Mao, Liang Li and Xianfeng Huang
Remote Sens. 2021, 13(17), 3458; https://doi.org/10.3390/rs13173458 - 31 Aug 2021
Cited by 14 | Viewed by 4965
Abstract
With the progress of photogrammetry and computer vision technology, three-dimensional (3D) reconstruction using aerial oblique images has been widely applied in urban modelling and smart city applications. However, state-of-the-art image-based automatic 3D reconstruction methods cannot effectively handle the unavoidable geometric deformation and incorrect [...] Read more.
With the progress of photogrammetry and computer vision technology, three-dimensional (3D) reconstruction using aerial oblique images has been widely applied in urban modelling and smart city applications. However, state-of-the-art image-based automatic 3D reconstruction methods cannot effectively handle the unavoidable geometric deformation and incorrect texture mapping problems caused by moving cars in a city. This paper proposes a method to address this situation and prevent the influence of moving cars on 3D modelling by recognizing moving cars and combining the recognition results with a photogrammetric 3D modelling procedure. Through car detection using a deep learning method and multiview geometry constraints, we can analyse the state of a car’s movement and apply a proper preprocessing method to the geometrically model generation and texture mapping steps of 3D reconstruction pipelines. First, we apply the traditional Mask R-CNN object detection method to detect cars from oblique images. Then, a detected car and its corresponding image patch calculated by the geometry constraints in the other view images are used to identify the moving state of the car. Finally, the geometry and texture information corresponding to the moving car will be processed according to its moving state. Experiments on three different urban datasets demonstrate that the proposed method is effective in recognizing and removing moving cars and can repair the geometric deformation and error texture mapping problems caused by moving cars. In addition, the methods proposed in this paper can be applied to eliminate other moving objects in 3D modelling applications. Full article
(This article belongs to the Special Issue Urban Multi-Category Object Detection Using Aerial Images)
Show Figures

Figure 1

24 pages, 92015 KiB  
Article
Development of Hybrid Piezoelectric-Fibre Optic Composite Patch Repair Solutions
by Florian Lambinet and Zahra Sharif Khodaei
Sensors 2021, 21(15), 5131; https://doi.org/10.3390/s21155131 - 29 Jul 2021
Cited by 14 | Viewed by 3238
Abstract
This paper proposes a hybrid structural health monitoring (SHM) solution for a smart composite patch repair for aircraft structures based on piezoelectric (PZT) and fibre optic (FO) sensors to monitor the integrity of a the bondline and detect any degradation. FO sensors are [...] Read more.
This paper proposes a hybrid structural health monitoring (SHM) solution for a smart composite patch repair for aircraft structures based on piezoelectric (PZT) and fibre optic (FO) sensors to monitor the integrity of a the bondline and detect any degradation. FO sensors are used to acquire guided waves excited by PZT transducers to allow the advantages of both sensor technologies to be utilised. One of the main challenges of guided wave based detection methodologies is to distinguish the effect of temperature on the propagating waves, from that of an existing damage. In this research, the application of the hybrid SHM system is tested on a composite step sanded repair coupon under operational condition (temperature variation) representative of an aircraft for the first time. The sensitivity of the embedded FO sensor in recording the strain waves is compared to the signals acquired by PZT sensors under varying temperature. A novel compensation algorithm is proposed to correct for the effect of the temperature on the embedded FO sensor spectrum in the hybrid set-up. The repaired specimen is then impacted with a drop mass to cause barely visible impact damage (BVID). The hybrid SHM system is then used to detect the damage, and its diagnosis results are compared to a PZT only based smart repair solution. The results show promising application of the hybrid solution for monitoring bondline integrity as well as highlighting challenges of the embedding of FO sensors for a reliable and repeatable diagnosis. Full article
Show Figures

Figure 1

14 pages, 1124 KiB  
Article
Numerical Analysis of Piezoelectric Active Repair in the Presence of Frictional Contact Conditions
by Andrea Alaimo, Alberto Milazzo, Calogero Orlando and Antonio Messineo
Sensors 2013, 13(4), 4390-4403; https://doi.org/10.3390/s130404390 - 2 Apr 2013
Cited by 11 | Viewed by 6495
Abstract
The increasing development of smart materials, such as piezoelectric and shape memory alloys, has opened new opportunities for improving repair techniques. Particularly, active repairs, based on the converse piezoelectric effect, can increase the life of a structure by reducing the crack opening. A [...] Read more.
The increasing development of smart materials, such as piezoelectric and shape memory alloys, has opened new opportunities for improving repair techniques. Particularly, active repairs, based on the converse piezoelectric effect, can increase the life of a structure by reducing the crack opening. A deep characterization of the electromechanical behavior of delaminated composite structures, actively repaired by piezoelectric patches, can be achieved by considering the adhesive layer between the host structure and the repair and by taking into account the frictional contact between the crack surfaces. In this paper, Boundary Element (BE) analyses performed on delaminated composite structures repaired by active piezoelectric patches are presented. A two-dimensional boundary integral formulation for piezoelectric solids based on the multi-domain technique to model the composite host damaged structures and the bonded piezoelectric patches is employed. An interface spring model is also implemented to take into account the finite stiffness of the bonding layers and to model the frictional contact between the delamination surfaces, by means of an iterative procedure. The effect of the adhesive between the plies of piezoelectric bimorph devices on the electromechanical response is first pointed out for both sensing and actuating behavior. Then, the effect of the frictional contact condition on the fracture mechanics behavior of actively repaired delaminated composite structures is investigated. Full article
(This article belongs to the Special Issue Piezoelectric Sensors and Actuators)
Show Figures

Back to TopTop