Development of Hybrid Piezoelectric-Fibre Optic Composite Patch Repair Solutions
Abstract
:1. Introduction
2. SHM for Composite Patch Repair
3. Hybrid PZT-FO Data Acquisition System
3.1. Optimum Focus Wavelength
3.2. Calibration Method
3.2.1. Strain Conversion
3.2.2. Temperature Compensation
4. Experimental Set-Up
4.1. Repair Manufacturing and Sensorising
4.2. Temperature Variations
4.3. Impact Test
5. Results and Discussion
5.1. FBG Sensors Only
Reflectivity Spectrum under Temperature Change
5.2. Hybrid Lamb Waves
- guided wave recordings sensitivity to damage is great at low frequencies, and it does not depend on the direction of propagation, but it is lower than hybrid.
- guided wave recordings, depending on the propagation angle, shows greater sensitivity than its counterpart for S0 mode at any frequencies. Angle dependency is problematic for damage localisation purposes.
5.3. Calibration Performance
5.3.1. Strain Conversion
5.3.2. Temperature Change
5.3.3. Damage and Temperature Change
5.4. Damage Detection
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Reflectivity Spectrum under Temperature Variation
Appendix B. Damage Detection Results under Varying Temperature
References
- Marsh, G. The challenge of composite fuselage repair. Reinf. Plast. 2012, 56, 30–35. [Google Scholar] [CrossRef]
- Katnam, K.B.; Da Silva, L.; Young, T. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Prog. Aerosp. Sci. 2013, 61, 26–42. [Google Scholar] [CrossRef]
- Sharif-Khodaei, Z.; Ghajari, M.; Aliabadi, M. Determination of impact location on composite stiffened panels. Smart Mater. Struct. 2012, 21, 105026. [Google Scholar] [CrossRef]
- Ghajari, M.; Sharif-Khodaei, Z.; Aliabadi, M.; Apicella, A. Identification of impact force for smart composite stiffened panels. Smart Mater. Struct. 2013, 22, 085014. [Google Scholar] [CrossRef] [Green Version]
- Seno, A.H.; Khodaei, Z.S.; Aliabadi, M.F. Passive sensing method for impact localisation in composite plates under simulated environmental and operational conditions. Mech. Syst. Signal Process. 2019, 129, 20–36. [Google Scholar] [CrossRef]
- Tabian, I.; Fu, H.; Sharif Khodaei, Z. A convolutional neural network for impact detection and characterization of complex composite structures. Sensors 2019, 19, 4933. [Google Scholar] [CrossRef] [Green Version]
- Andreades, C.; Fierro, G.P.M.; Meo, M. A Nonlinear ultrasonic SHM method for impact damage localisation in composite panels using a sparse array of piezoelectric PZT transducers. Ultrasonics 2020, 106181. [Google Scholar] [CrossRef]
- Yanaseko, T.; Sato, H.; Narita, F.; Kuboki, I.; Asanuma, H. Improvement Estimation Accuracy of Impact Detection Using Metal-Core Piezoelectric Fiber/Aluminum Composites. Adv. Eng. Mater. 2019, 21, 1900550. [Google Scholar] [CrossRef]
- Sharif Khodaei, Z.; Aliabadi, M. A multi-level decision fusion strategy for condition based maintenance of composite structures. Materials 2016, 9, 790. [Google Scholar] [CrossRef] [Green Version]
- Aliabadi, M.F.; Sharif-Khodaei, Z. Structural Health Monitoring for Advanced Composite Structures; World Scientific: Singpore, 2017; Volume 8. [Google Scholar]
- Ostachowicz, W.; Güemes, A. New Trends in Structural Health Monitoring; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 542. [Google Scholar]
- Dafydd, I.; Sharif Khodaei, Z. Analysis of barely visible impact damage severity with ultrasonic guided Lamb waves. Struct. Health Monit. 2019. [Google Scholar] [CrossRef]
- Fu, H.; Sharif-Khodaei, Z.; Aliabadi, M.F. An energy-efficient cyber-physical system for wireless on-board aircraft structural health monitoring. Mech. Syst. Signal Process. 2019, 128, 352–368. [Google Scholar] [CrossRef]
- Singh, S.K.; Soman, R.; Wandowski, T.; Malinowski, P. A Variable Data Fusion Approach for Electromechanical Impedance-Based Damage Detection. Sensors 2020, 20, 4204. [Google Scholar] [CrossRef]
- Soman, R.N.; Majewska, K.; Mieloszyk, M.; Ostachowicz, W. Damage assessment in composite beam using infrared thermography, optical sensors, and terahertz technique. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2018, 1. [Google Scholar] [CrossRef]
- Soman, R.; Ostachowicz, W. Kalman Filter Based Load Monitoring in Beam Like Structures Using Fibre-Optic Strain Sensors. Sensors 2019, 19, 103. [Google Scholar] [CrossRef] [Green Version]
- Güemes, A.; Fernandez-Lopez, A.; Pozo, A.R.; Sierra-Pérez, J. Structural health monitoring for advanced composite structures: A review. J. Compos. Sci. 2020, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Saito, O.; Okabe, Y. An ultrasonic visualization system using a fiber-optic Bragg grating sensor and its application to damage detection at a temperature of 1000 °C. Mech. Syst. Signal Process. 2021, 147, 107140. [Google Scholar] [CrossRef]
- Soman, R.; Golestani, A.; Balasubramaniam, K.; Karpiński, M.; Malinowski, P.; Ostachowicz, W. Application of ellipse and hyperbola methods for guided waves based structural health monitoring using fiber Bragg grating sensors. In Health Monitoring of Structural and Biological Systems XV; International Society for Optics and Photonics: Bellingham, WA, USA, 2021; Volume 11593, p. 115930F. [Google Scholar]
- Wu, Z.; Qing, X.P.; Chang, F.K. Damage detection for composite laminate plates with a distributed hybrid PZT/FBG sensor network. J. Intell. Mater. Syst. Struct. 2009, 20, 1069–1077. [Google Scholar]
- Soejima, H.; Ogisu, T.; Yoneda, H.; Okabe, Y.; Takeda, N.; Koshioka, Y. Demonstration of detectability of SHM system with FBG/PZT hybrid system in composite wing box structure. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2008; International Society for Optics and Photonics: Bellingham, WA, USA, 2008; Volume 6932, p. 69322E. [Google Scholar]
- Xu, C.; Sharif Khodaei, Z. A Novel Fabry-Pérot Optical Sensor for Guided Wave Signal Acquisition. Sensors 2020, 20, 1728. [Google Scholar] [CrossRef] [Green Version]
- Bekas, D.G.; Sharif-Khodaei, Z.; Aliabadi, F.M. A smart multi-functional printed sensor for monitoring curing and damage of composite repair patch. Smart Mater. Struct. 2019, 28, 085029. [Google Scholar] [CrossRef]
- Bekas, D.G.; Sharif-Khodaei, Z.; Baltzis, D.; Aliabadi, M.F.; Paipetis, A.S. Quality assessment and damage detection in nanomodified adhesively-bonded composite joints using inkjet-printed interdigital sensors. Compos. Struct. 2019, 211, 557–563. [Google Scholar] [CrossRef]
- Shohag, M.A.; Ndebele, T.; Okoli, O. Real-time damage monitoring in trailing edge bondlines of wind turbine blades with triboluminescent sensors. Struct. Health Monit. 2019, 18, 1129–1140. [Google Scholar] [CrossRef]
- Wu, Q.; Okabe, Y.; Yu, F. Ultrasonic structural health monitoring using fiber Bragg grating. Sensors 2018, 18, 3395. [Google Scholar] [CrossRef] [Green Version]
- Feng, T.; Bekas, D.; Aliabadi, M.H. Active health monitoring of thick composite structures by embedded and surface-mounted piezo diagnostic layer. Sensors 2020, 20, 3410. [Google Scholar] [CrossRef]
- Okabe, Y.; Yashiro, S.; Kosaka, T.; Takeda, N. Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors. Smart Mater. Struct. 2000, 9, 832. [Google Scholar] [CrossRef]
- Yashiro, S.; Takeda, N.; Okabe, T.; Sekine, H. A new approach to predicting multiple damage states in composite laminates with embedded FBG sensors. Compos. Sci. Technol. 2005, 65, 659–667. [Google Scholar] [CrossRef]
- Minakuchi, S.; Okabe, Y.; Takeda, N. Real-time detection of debonding between honeycomb core and facesheet using a small-diameter FBG sensor embedded in adhesive layer. J. Sandw. Struct. Mater. 2007, 9, 9–33. [Google Scholar] [CrossRef]
- Ning, X.; Murayama, H.; Kageyama, K.; Wada, D.; Kanai, M.; Ohsawa, I.; Igawa, H. Dynamic strain distribution measurement and crack detection of an adhesive-bonded single-lap joint under cyclic loading using embedded FBG. Smart Mater. Struct. 2014, 23, 105011. [Google Scholar] [CrossRef]
- Takeda, S.; Yamamoto, T.; Okabe, Y.; Takeda, N. Debonding monitoring of composite repair patches using embedded small-diameter FBG sensors. Smart Mater. Struct. 2007, 16, 763. [Google Scholar] [CrossRef]
- Lambinet, F.; Khodaei, Z.S. Damage detection & localization on composite patch repair under different environmental effects. Eng. Res. Express 2020, 2, 045032. [Google Scholar]
- Baker, A.; Gunnion, A.J.; Wang, J.; Chang, P. Advances in the proof test for certification of bonded repairs–Increasing the Technology Readiness Level. Int. J. Adhes. Adhes. 2016, 64, 128–141. [Google Scholar] [CrossRef]
- Nagy, P.B. Ultrasonic detection of kissing bonds at adhesive interfaces. J. Adhes. Sci. Technol. 1991, 5, 619–630. [Google Scholar] [CrossRef]
- Baker, A.; Galea, S.C.; Powlesland, I.G. A smart patch approach for bonded composite repairs to primary airframe structures. In Proceedings of the Second Joint FAA/DOD/NASA Conference on Aging Aircraft, Williamsberg, VA, USA, 31 August–3 September 1998. [Google Scholar]
- Galea, S.C.; Powlesland, I.G.; Moss, S.D.; Konak, M.J.; van der Velden, S.P.; Stade, B.; Baker, A.A. Development of structural health monitoring systems for composite bonded repairs on aircraft structures. In Smart Structures and Materials 2001: Smart Structures and Integrated Systems; International Society for Optics and Photonics: Bellingham, WA, USA, 2001; Volume 4327, pp. 246–258. [Google Scholar]
- Christopoulos, A.; Koulalis, I.; Chemama, R.; Hristoforu, E.; Kanterakis, G.; Tsamasphyros, G.; Kitsianos, K. Strain monitoring and damage detection of bonded composite structures, using Magnetostcrive sensors—Latest developments and applications. In Proceedings of the 6th EASN Conference on Innovation in European Aeronautics Research, Porto, Portugal, 18–21 October 2016. [Google Scholar]
- Davis, C.; Baker, W.; Moss, S.D.; Galea, S.C.; Jones, R. In-situ health monitoring of bonded composite repairs using a novel fiber Bragg grating sensing arrangement. In Smart Materials II; International Society for Optics and Photonics: Bellingham, WA, USA, 2002; Volume 4934, pp. 140–149. [Google Scholar]
- Jones, R.; Galea, S. Health monitoring of composite repairs and joints using optical fibres. Compos. Struct. 2002, 58, 397–403. [Google Scholar] [CrossRef]
- Baker, W.; McKenzie, I.; Jones, R. Development of life extension strategies for Australian military aircraft, using structural health monitoring of composite repairs and joints. Compos. Struct. 2004, 66, 133–143. [Google Scholar] [CrossRef]
- Chaudhry, Z.; Lalande, F.; Ganino, A.; Rogers, C.; Chung, J. Monitoring the integrity of composite patch structural repair via piezoelectric actuators/sensors. In Proceedings of the 36th Structures, Structural Dynamics and Materials Conference, New Orleans, LA, USA, 10–13 April 1995; p. 1074. [Google Scholar]
- Chiu, W.K.; Galea, S.C.; Koss, L.L.; Rajic, N. Damage detection in bonded repairs using piezoceramics. Smart Mater. Struct. 2000, 9, 466. [Google Scholar] [CrossRef]
- Koh, Y.; Chiu, W.; Marshall, I.; Rajic, N.; Galea, S. Detection of disbonding in a repair patch by means of an array of lead zirconate titanate and polyvinylidene fluoride sensors and actuators. Smart Mater. Struct. 2001, 10, 946. [Google Scholar] [CrossRef]
- Koh, Y.; Chiu, W.K.; Rajic, N. Integrity assessment of composite repair patch using propagating Lamb waves. Compos. Struct. 2002, 58, 363–371. [Google Scholar] [CrossRef]
- Baker, A.; Rajic, N.; Davis, C. Towards a practical structural health monitoring technology for patched cracks in aircraft structure. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1340–1352. [Google Scholar] [CrossRef]
- Diamanti, K.; Soutis, C. Structural health monitoring techniques for aircraft composite structures. Prog. Aerosp. Sci. 2010, 46, 342–352. [Google Scholar] [CrossRef]
- Pavlopoulou, S.; Grammatikos, S.; Kordatos, E.; Worden, K.; Paipetis, A.; Matikas, T.; Soutis, C. Continuous debonding monitoring of a patch repaired helicopter stabilizer: Damage assessment and analysis. Compos. Struct. 2015, 127, 231–244. [Google Scholar] [CrossRef]
- Habib, F.; Martinez, M.; Artemev, A.; Brothers, M. Structural health monitoring of bonded composite repairs–A critical comparison between ultrasonic Lamb wave approach and surface mounted crack sensor approach. Compos. Part B Eng. 2013, 47, 26–34. [Google Scholar] [CrossRef]
- National Instruments. 100 MS/s, 14-Bit Arbitrary Waveform Generator; National Instruments: Austin, TX, USA, 2004. [Google Scholar]
- National Instruments. 60 MS/s, 60 MHz, 12-Bit, 8-Channel Digitizers NI PCI-5105, NI PXI-5105; National Instruments: Austin, TX, USA, 2014. [Google Scholar]
- Pickering. User Manual 12 × 8 RF Matrix Module (Model No. 40-726A); Pickering Inc.: Memphis, TN, USA, 2015. [Google Scholar]
- Falco Systems. Falco Systems WMA-300 High Voltage Amplifier DC—5MHz User Manual; Falco Systems: Singapore, 2016. [Google Scholar]
- SANTEC CORPORATION. High Performance Tunable Laser TSL-710; SANTEC CORPORATION: Tokyo, Japan, 2018. [Google Scholar]
- Thorlabs. APD130× Operation Manual; Thorlabs: Newton, NJ, USA, 2018. [Google Scholar]
- Stanford Research Systems. SIM965—Bessel and Butterworth Filter; Stanford Research Systems: Sunnyvale, CA, USA, 2011. [Google Scholar]
- Thorlabs. OSW12(22)-xxxE Operation Manual; Thorlabs: Newton, NJ, USA, 2018. [Google Scholar]
- Salmanpour, M.S.; Khodaei, Z.S.; Aliabadi, M.H. Instantaneous baseline damage localization using sensor mapping. IEEE Sens. J. 2016, 17, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Sohn, H.; Kim, S.B. Development of dual PZT transducers for reference-free crack detection in thin plate structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2009, 57, 229–240. [Google Scholar] [CrossRef]
- Hettler, J.; Tabatabaeipour, M.; Delrue, S.; Van Den Abeele, K. Linear and nonlinear guided wave imaging of impact damage in CFRP using a probabilistic approach. Materials 2016, 9, 901. [Google Scholar] [CrossRef] [Green Version]
- Huan, Q.; Li, F. A baseline-free SH wave sparse array system for structural health monitoring. Smart Mater. Struct. 2019, 28, 105010. [Google Scholar] [CrossRef]
- Yue, N.; Aliabadi, M. A scalable data-driven approach to temperature baseline reconstruction for guided wave structural health monitoring of anisotropic carbon-fibre-reinforced polymer structures. Struct. Health Monit. 2020, 19, 1487–1506. [Google Scholar] [CrossRef]
- Environmental Engineering Considerations and Laboratory Tests. Military Standard MIL-STD-810G; United States Department of Defense: Washington, DC, USA, 2008.
- Bodendorfer, T.; Muller, M.S.; Hirth, F.; Koch, A.W. Comparison of different peak detection algorithms with regards to spectrometic fiber Bragg grating interrogation systems. In Proceedings of the 2009 IEEE International Symposium on Optomechatronic Technologies, Istanbul, Turkey, 21–23 September 2009; pp. 122–126. [Google Scholar]
Name | Product | Specifications |
---|---|---|
AWG | NI PXI-5412 | 14-bit, 100 MS/s, 12 V output max [50] |
Digitizer | NI PXI-5105 | 12-bit, 8 channels, 60 MS/s, 50 mV to 30 V input range [51] |
Switch | 40-726A-511-L | 12 × 8 RF Matrix Module, 100 VDC max [52] |
Chassis | NI PXIe-1073 | - |
Amplifier | Falco WMA-300 | 50 Gain, ±150 V max, 2000 slew rate [53] |
Laser | Santec TSL-710 | 1480–1640 nm, ±2 pm accuracy [54] |
APD | Thorlabs APD130C/M | 900–1700 nm, 0.9 × 106 V/W max [55] |
Filter | SRS SIM965 | ±5 V max, low or high pass analog filter [56] |
Switch | OSW12-1310E | 1280–1625 nm, 300 mW max [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambinet, F.; Sharif Khodaei, Z. Development of Hybrid Piezoelectric-Fibre Optic Composite Patch Repair Solutions. Sensors 2021, 21, 5131. https://doi.org/10.3390/s21155131
Lambinet F, Sharif Khodaei Z. Development of Hybrid Piezoelectric-Fibre Optic Composite Patch Repair Solutions. Sensors. 2021; 21(15):5131. https://doi.org/10.3390/s21155131
Chicago/Turabian StyleLambinet, Florian, and Zahra Sharif Khodaei. 2021. "Development of Hybrid Piezoelectric-Fibre Optic Composite Patch Repair Solutions" Sensors 21, no. 15: 5131. https://doi.org/10.3390/s21155131
APA StyleLambinet, F., & Sharif Khodaei, Z. (2021). Development of Hybrid Piezoelectric-Fibre Optic Composite Patch Repair Solutions. Sensors, 21(15), 5131. https://doi.org/10.3390/s21155131