Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (243)

Search Parameters:
Keywords = smart home energy technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 207
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

39 pages, 5325 KiB  
Review
Mechanical Ventilation Strategies in Buildings: A Comprehensive Review of Climate Management, Indoor Air Quality, and Energy Efficiency
by Farhan Lafta Rashid, Mudhar A. Al-Obaidi, Najah M. L. Al Maimuri, Arman Ameen, Ephraim Bonah Agyekum, Atef Chibani and Mohamed Kezzar
Buildings 2025, 15(14), 2579; https://doi.org/10.3390/buildings15142579 - 21 Jul 2025
Viewed by 669
Abstract
As the demand for energy-efficient homes continues to rise, the importance of advanced mechanical ventilation systems in maintaining indoor air quality (IAQ) has become increasingly evident. However, challenges related to energy balance, IAQ, and occupant thermal comfort persist. This review examines the performance [...] Read more.
As the demand for energy-efficient homes continues to rise, the importance of advanced mechanical ventilation systems in maintaining indoor air quality (IAQ) has become increasingly evident. However, challenges related to energy balance, IAQ, and occupant thermal comfort persist. This review examines the performance of mechanical ventilation systems in regulating indoor climate, improving air quality, and minimising energy consumption. The findings indicate that demand-controlled ventilation (DCV) can enhance energy efficiency by up to 88% while maintaining CO2 concentrations below 1000 ppm during 76% of the occupancy period. Heat recovery systems achieve efficiencies of nearly 90%, leading to a reduction in heating energy consumption by approximately 19%. Studies also show that employing mechanical rather than natural ventilation in schools lowers CO2 levels by 20–30%. Nevertheless, occupant misuse or poorly designed systems can result in CO2 concentrations exceeding 1600 ppm in residential environments. Hybrid ventilation systems have demonstrated improved thermal comfort, with predicted mean vote (PMV) values ranging from –0.41 to 0.37 when radiant heating is utilized. Despite ongoing technological advancements, issues such as system durability, user acceptance, and adaptability across climate zones remain. Smart, personalized ventilation strategies supported by modern control algorithms and continuous monitoring are essential for the development of resilient and health-promoting buildings. Future research should prioritize the integration of renewable energy sources and adaptive ventilation controls to further optimise system performance. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

31 pages, 4668 KiB  
Article
BLE Signal Processing and Machine Learning for Indoor Behavior Classification
by Yi-Shiun Lee, Yong-Yi Fanjiang, Chi-Huang Hung and Yung-Shiang Huang
Sensors 2025, 25(14), 4496; https://doi.org/10.3390/s25144496 - 19 Jul 2025
Viewed by 341
Abstract
Smart home technology enhances the quality of life, particularly with respect to in-home care and health monitoring. While video-based methods provide accurate behavior analysis, privacy concerns drive interest in non-visual alternatives. This study proposes a Bluetooth Low Energy (BLE)-enabled indoor positioning and behavior [...] Read more.
Smart home technology enhances the quality of life, particularly with respect to in-home care and health monitoring. While video-based methods provide accurate behavior analysis, privacy concerns drive interest in non-visual alternatives. This study proposes a Bluetooth Low Energy (BLE)-enabled indoor positioning and behavior recognition system, integrating machine learning techniques to support sustainable and privacy-preserving health monitoring. Key optimizations include: (1) a vertically mounted Data Collection Unit (DCU) for improved height positioning, (2) synchronized data collection to reduce discrepancies, (3) Kalman filtering to smooth RSSI signals, and (4) AI-based RSSI analysis for enhanced behavior recognition. Experiments in a real home environment used a smart wristband to assess BLE signal variations across different activities (standing, sitting, lying down). The results show that the proposed system reliably tracks user locations and identifies behavior patterns. This research supports elderly care, remote health monitoring, and non-invasive behavior analysis, providing a privacy-preserving solution for smart healthcare applications. Full article
Show Figures

Figure 1

18 pages, 3899 KiB  
Article
Multi-Agent-Based Estimation and Control of Energy Consumption in Residential Buildings
by Otilia Elena Dragomir and Florin Dragomir
Processes 2025, 13(7), 2261; https://doi.org/10.3390/pr13072261 - 15 Jul 2025
Viewed by 328
Abstract
Despite notable advancements in smart home technologies, residential energy management continues to face critical challenges. These include the complex integration of intermittent renewable energy sources, issues related to data latency, interoperability, and standardization across diverse systems, the inflexibility of centralized control architectures in [...] Read more.
Despite notable advancements in smart home technologies, residential energy management continues to face critical challenges. These include the complex integration of intermittent renewable energy sources, issues related to data latency, interoperability, and standardization across diverse systems, the inflexibility of centralized control architectures in dynamic environments, and the difficulty of accurately modeling and influencing occupant behavior. To address these challenges, this study proposes an intelligent multi-agent system designed to accurately estimate and control energy consumption in residential buildings, with the overarching objective of optimizing energy usage while maintaining occupant comfort and satisfaction. The methodological approach employed is a hybrid framework, integrating multi-agent system architecture with system dynamics modeling and agent-based modeling. This integration enables decentralized and intelligent control while simultaneously simulating physical processes such as heat exchange, insulation performance, and energy consumption, alongside behavioral interactions and real-time adaptive responses. The system is tested under varying conditions, including changes in building insulation quality and external temperature profiles, to assess its capability for accurate control and estimation of energy use. The proposed tool offers significant added value by supporting real-time responsiveness, behavioral adaptability, and decentralized coordination. It serves as a risk-free simulation platform to test energy-saving strategies, evaluate cost-effective insulation configurations, and fine-tune thermostat settings without incurring additional cost or real-world disruption. The high fidelity and predictive accuracy of the system have important implications for policymakers, building designers, and homeowners, offering a practical foundation for informed decision making and the promotion of sustainable residential energy practices. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 303
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

21 pages, 2170 KiB  
Article
IoT-Driven Intelligent Energy Management: Leveraging Smart Monitoring Applications and Artificial Neural Networks (ANN) for Sustainable Practices
by Azza Mohamed, Ibrahim Ismail and Mohammed AlDaraawi
Computers 2025, 14(7), 269; https://doi.org/10.3390/computers14070269 - 9 Jul 2025
Cited by 1 | Viewed by 419
Abstract
The growing mismanagement of energy resources is a pressing issue that poses significant risks to both individuals and the environment. As energy consumption continues to rise, the ramifications become increasingly severe, necessitating urgent action. In response, the rapid expansion of Internet of Things [...] Read more.
The growing mismanagement of energy resources is a pressing issue that poses significant risks to both individuals and the environment. As energy consumption continues to rise, the ramifications become increasingly severe, necessitating urgent action. In response, the rapid expansion of Internet of Things (IoT) devices offers a promising and innovative solution due to their adaptability, low power consumption, and transformative potential in energy management. This study describes a novel, integrative strategy that integrates IoT and Artificial Neural Networks (ANNs) in a smart monitoring mobile application intended to optimize energy usage and promote sustainability in residential settings. While both IoT and ANN technologies have been investigated separately in previous research, the uniqueness of this work is the actual integration of both technologies into a real-time, user-adaptive framework. The application allows for continuous energy monitoring via modern IoT devices and wireless sensor networks, while ANN-based prediction models evaluate consumption data to dynamically optimize energy use and reduce environmental effect. The system’s key features include simulated consumption scenarios and adaptive user profiles, which account for differences in household behaviors and occupancy patterns, allowing for tailored recommendations and energy control techniques. The architecture allows for remote device control, real-time feedback, and scenario-based simulations, making the system suitable for a wide range of home contexts. The suggested system’s feasibility and effectiveness are proved through detailed simulations, highlighting its potential to increase energy efficiency and encourage sustainable habits. This study contributes to the rapidly evolving field of intelligent energy management by providing a scalable, integrated, and user-centric solution that bridges the gap between theoretical models and actual implementation. Full article
Show Figures

Figure 1

16 pages, 2690 KiB  
Article
Empowering Energy Transition: IoT-Driven Heat Pump Management for Optimal Thermal Comfort
by Ivica Glavan, Ivan Gospić and Igor Poljak
IoT 2025, 6(2), 33; https://doi.org/10.3390/iot6020033 - 17 Jun 2025
Viewed by 396
Abstract
This paper analyzes the process of energy transition from traditional solid fuel heating to an air-to-air (A2A) heat pump-based heating system. Special emphasis was placed on the implementation of new technologies for improved management of energy systems, aiming to elevate both comfort levels [...] Read more.
This paper analyzes the process of energy transition from traditional solid fuel heating to an air-to-air (A2A) heat pump-based heating system. Special emphasis was placed on the implementation of new technologies for improved management of energy systems, aiming to elevate both comfort levels and energy efficiency. This paper explores the use of the open-source software Home Assistant as an integration platform for home automation, designed to manage smart home devices while preserving local control, user privacy, and increasing cybersecurity. The proposed hardware platform includes a Raspberry Pi with appropriate IoT modules, providing a flexible and economically viable solution for household needs. Full article
Show Figures

Figure 1

33 pages, 1867 KiB  
Article
AI-Enhanced Non-Intrusive Load Monitoring for Smart Home Energy Optimization and User-Centric Interaction
by Xiang Li, Yunhe Chen, Xinyu Jia, Fan Shen, Bowen Sun, Shuqing He and Jia Guo
Informatics 2025, 12(2), 55; https://doi.org/10.3390/informatics12020055 - 17 Jun 2025
Viewed by 715
Abstract
Non-Intrusive Load Monitoring (NILM) technology, enabled by high-precision electrical data acquisition sensors at household entry points, facilitates real-time monitoring of electricity consumption, enhancing user interaction with smart home systems and reducing electrical safety risks. However, the growing diversity of household appliances and limitations [...] Read more.
Non-Intrusive Load Monitoring (NILM) technology, enabled by high-precision electrical data acquisition sensors at household entry points, facilitates real-time monitoring of electricity consumption, enhancing user interaction with smart home systems and reducing electrical safety risks. However, the growing diversity of household appliances and limitations in NILM accuracy and robustness necessitate innovative solutions. Additionally, outdated public datasets fail to capture the rapid evolution of modern appliances. To address these challenges, we constructed a high-sampling-rate voltage–current dataset, measuring 15 common household appliances across diverse scenarios in a controlled laboratory environment tailored to regional grid standards (220 V/50 Hz). We propose an AI-driven NILM method that integrates power-mapped, color-coded voltage–current (V–I) trajectories with frequency-domain features to significantly improve load recognition accuracy and robustness. By leveraging deep learning frameworks, this approach enriches temporal feature representation through chromatic mapping of instantaneous power and incorporates frequency-domain spectrograms to capture dynamic load behaviors. A novel channel-wise attention mechanism optimizes multi-dimensional feature fusion, dynamically prioritizing critical information while suppressing noise. Comparative experiments on the custom dataset demonstrate superior performance, particularly in distinguishing appliances with similar load profiles, underscoring the method’s potential for advancing smart home energy management, user-centric energy feedback, and social informatics applications in complex electrical environments. Full article
Show Figures

Figure 1

36 pages, 4500 KiB  
Article
Evaluation of Personal Ecological Footprints for Climate Change Mitigation and Adaptation: A Case Study in the UK
by Ahmed Abugabal, Mawada Abdellatif, Ana Armada Bras and Laurence Brady
Sustainability 2025, 17(12), 5415; https://doi.org/10.3390/su17125415 - 12 Jun 2025
Viewed by 686
Abstract
Climate change is one of our most critical challenges, requiring urgent and comprehensive action across all levels of society. Individual actions and their roles in mitigating and adapting to climate change remain underexplored, despite global efforts. Under this context, this study was conducted [...] Read more.
Climate change is one of our most critical challenges, requiring urgent and comprehensive action across all levels of society. Individual actions and their roles in mitigating and adapting to climate change remain underexplored, despite global efforts. Under this context, this study was conducted to evaluate the ecological footprint of individuals for climate change mitigation. A structured online survey was designed and distributed through email lists, social media platforms, and community organisations to over 200 potential participants in the northwest of the UK. Due to the anonymous nature of the survey, only 83 individuals from diverse demographics completed the questionnaire. A carbon footprint calculator using conversion factors has been employed, based on energy consumption, travel, and material goods use. Participants are categorised into four groups based on their annual CO2 emissions, ranging from less than 2 tonnes to over 10 tonnes. Personalised recommendations provided by the calculator focus on practical strategies, including adopting renewable energy, minimising unnecessary consumption, and opting for sustainable transportation. Results showed that only 5.5% of participants who employed advanced technologies and smart home technologies, 1.8% were implementing water-saving practices and 65.4% preferred to use their own car over other modes of transportation. In addition, the study found that 67.3% of participants had no or only a very limited knowledge of renewable energy technologies, indicating a need for education and awareness campaigns. The findings also highlight the importance of addressing demographic differences in ecological footprints, as these variations can provide insights into tailored policy interventions. Overall, despite the study’s limited sample size, this research contributes to the growing body of evidence on the importance of individual action in combating climate change and provides actionable insights for policymakers and educators aiming to foster a more sustainable lifestyle. Future studies with larger samples are recommended to validate and expand upon these findings. Full article
Show Figures

Figure 1

26 pages, 9618 KiB  
Article
Predicting Energy Consumption and Time of Use of Home Appliances in an HEMS Using LSTM Networks and Smart Meters: A Case Study in Sincelejo, Colombia
by Zurisaddai Severiche-Maury, Carlos Uc-Ríos, Javier E. Sierra and Alejandro Guerrero
Sustainability 2025, 17(11), 4749; https://doi.org/10.3390/su17114749 - 22 May 2025
Cited by 1 | Viewed by 611
Abstract
Rising household electricity consumption, driven by technological advances and increased indoor activity, has led to higher energy costs and an increased reliance on non-renewable sources, exacerbating the carbon footprint. Home energy management systems (HEMS) are positioning themselves as an efficient alternative by integrating [...] Read more.
Rising household electricity consumption, driven by technological advances and increased indoor activity, has led to higher energy costs and an increased reliance on non-renewable sources, exacerbating the carbon footprint. Home energy management systems (HEMS) are positioning themselves as an efficient alternative by integrating artificial intelligence to improve their accuracy. Predictive algorithms that provide accurate data on the future behavior of energy consumption and appliance usage time are required in these HEMS to achieve this goal. This study presents a predictive model based on recurrent neural networks with long short-term memory (LSTM), known to capture nonlinear relationships and long-term dependencies in time series data. The model predicts individual and total household energy consumption and appliance usage time. Training data were collected for 12 months from an HEMS installed in a typical Colombian house, using smart meters developed in this research. The model’s performance is evaluated using the mean squared error (MSE), reaching a value of 0.0168 kWh2. The results confirm the effectiveness of HEMS and demonstrate that the integration of LSTM-based predictive models can significantly improve energy efficiency and optimize household energy consumption. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Graphical abstract

19 pages, 5673 KiB  
Article
LoRa Communications Spectrum Sensing Based on Artificial Intelligence: IoT Sensing
by Partemie-Marian Mutescu, Valentin Popa and Alexandru Lavric
Sensors 2025, 25(9), 2748; https://doi.org/10.3390/s25092748 - 26 Apr 2025
Viewed by 906
Abstract
The backbone of the Internet of Things ecosystem relies heavily on wireless sensor networks and low-power wide area network technologies, such as LoRa modulation, to provide the long-range, energy-efficient communications essential for applications as diverse as smart homes, healthcare, agriculture, smart grids, and [...] Read more.
The backbone of the Internet of Things ecosystem relies heavily on wireless sensor networks and low-power wide area network technologies, such as LoRa modulation, to provide the long-range, energy-efficient communications essential for applications as diverse as smart homes, healthcare, agriculture, smart grids, and transportation. With the number of IoT devices expected to reach approximately 41 billion by 2034, managing radio spectrum resources becomes a critical issue. However, as these devices are deployed at an increasing rate, the limited spectral resources will result in increased interference, packet collisions, and degraded quality of service. Current methods for increasing network capacity have limitations and require advanced solutions. This paper proposes a novel hybrid spectrum sensing framework that combines traditional signal processing and artificial intelligence techniques specifically designed for LoRa spreading factor detection and communication channel analytics. Our proposed framework processes wideband signals directly from IQ samples to identify and classify multiple concurrent LoRa transmissions. The results show that the framework is highly effective, achieving a detection accuracy of 96.2%, a precision of 99.16%, and a recall of 95.4%. The proposed framework’s flexible architecture separates the AI processing pipeline from the channel analytics pipeline, ensuring adaptability to various communication protocols beyond LoRa. Full article
(This article belongs to the Special Issue LoRa Communication Technology for IoT Applications)
Show Figures

Figure 1

19 pages, 3009 KiB  
Article
Occupancy Monitoring Using BLE Beacons: Intelligent Bluetooth Virtual Door System
by Nasrettin Koksal, AbdulRahman Ghannoum, William Melek and Patricia Nieva
Sensors 2025, 25(9), 2638; https://doi.org/10.3390/s25092638 - 22 Apr 2025
Viewed by 928
Abstract
Occupancy monitoring (OM) and the localization of individuals within indoor environments using wearable devices offer a very promising data communication solution in applications such as home automation, smart office management, outbreak monitoring, and emergency operating plans. OM is challenging when developing solutions that [...] Read more.
Occupancy monitoring (OM) and the localization of individuals within indoor environments using wearable devices offer a very promising data communication solution in applications such as home automation, smart office management, outbreak monitoring, and emergency operating plans. OM is challenging when developing solutions that focus on reduced power consumption and cost. Bluetooth low energy (BLE) technology is energy- and cost-efficient compared to other technologies. Integrating BLE Received Signal Strength Indicator (RSSI) signals with machine learning (ML) introduces a new Artificial Intelligence- (AI-) enhanced OM approach. In this paper, we propose an Intelligent Bluetooth Virtual Door (IBVD) OM system for the indoor/outdoor tracking of individuals using the interaction between a BLE device worn by the occupant and two BLE beacons located at the entrance/exit points of a doorway. ML algorithms are used to perform intelligent OM through pattern detection from the BLE RSSI signal(s). This approach differs from other technologies in that it does not require any floorplan information. The developed OM system achieves a range between 96.6% and 97.3% classification accuracy for all tested ML models, where the error translates to a minor delay in the time in which an individual’s location is classified, introducing a highly reliable indoor/outdoor tracking system. Full article
(This article belongs to the Special Issue Smart Sensor Systems for Positioning and Navigation)
Show Figures

Figure 1

26 pages, 2006 KiB  
Article
Edge AI for Real-Time Anomaly Detection in Smart Homes
by Manuel J. C. S. Reis and Carlos Serôdio
Future Internet 2025, 17(4), 179; https://doi.org/10.3390/fi17040179 - 18 Apr 2025
Cited by 1 | Viewed by 4090
Abstract
The increasing adoption of smart home technologies has intensified the demand for real-time anomaly detection to improve security, energy efficiency, and device reliability. Traditional cloud-based approaches introduce latency, privacy concerns, and network dependency, making Edge AI a compelling alternative for low-latency, on-device processing. [...] Read more.
The increasing adoption of smart home technologies has intensified the demand for real-time anomaly detection to improve security, energy efficiency, and device reliability. Traditional cloud-based approaches introduce latency, privacy concerns, and network dependency, making Edge AI a compelling alternative for low-latency, on-device processing. This paper presents an Edge AI-based anomaly detection framework that combines Isolation Forest (IF) and Long Short-Term Memory Autoencoder (LSTM-AE) models to identify anomalies in IoT sensor data. The system is evaluated on both synthetic and real-world smart home datasets, including temperature, motion, and energy consumption signals. Experimental results show that LSTM-AE achieves higher detection accuracy (up to 93.6%) and recall but requires more computational resources. In contrast, IF offers faster inference and lower power consumption, making it suitable for constrained environments. A hybrid architecture integrating both models is proposed to balance accuracy and efficiency, achieving sub-50 ms inference latency on embedded platforms such as Raspberry Pi and NVIDEA Jetson Nano. Optimization strategies such as quantization reduced LSTM-AE inference time by 76% and power consumption by 35%. Adaptive learning mechanisms, including federated learning, are also explored to minimize cloud dependency and enhance data privacy. These findings demonstrate the feasibility of deploying real-time, privacy-preserving, and energy-efficient anomaly detection directly on edge devices. The proposed framework can be extended to other domains such as smart buildings and industrial IoT. Future work will investigate self-supervised learning, transformer-based detection, and deployment in real-world operational settings. Full article
Show Figures

Graphical abstract

30 pages, 17202 KiB  
Review
Exploration of Advanced Applications of Triboelectric Nanogenerator-Based Self-Powered Sensors in the Era of Artificial Intelligence
by Yifeng Su, Dezhi Yin, Xinmao Zhao, Tong Hu and Long Liu
Sensors 2025, 25(8), 2520; https://doi.org/10.3390/s25082520 - 17 Apr 2025
Cited by 2 | Viewed by 1259
Abstract
The integration of Deep Learning with sensor technologies has significantly advanced the field of intelligent sensing and decision making by enhancing perceptual capabilities and delivering sophisticated data analysis and processing functionalities. This review provides a comprehensive overview of the synergy between Deep Learning [...] Read more.
The integration of Deep Learning with sensor technologies has significantly advanced the field of intelligent sensing and decision making by enhancing perceptual capabilities and delivering sophisticated data analysis and processing functionalities. This review provides a comprehensive overview of the synergy between Deep Learning and sensors, with a particular focus on the applications of triboelectric nanogenerator (TENG)-based self-powered sensors combined with artificial intelligence (AI) algorithms. First, the evolution of Deep Learning is reviewed, highlighting the advantages, limitations, and application domains of several classical models. Next, the innovative applications of intelligent sensors in autonomous driving, wearable devices, and the Industrial Internet of Things (IIoT) are discussed, emphasizing the critical role of neural networks in enhancing sensor precision and intelligent processing capabilities. The review then delves into TENG-based self-powered sensors, introducing their self-powered mechanisms based on contact electrification and electrostatic induction, material selection strategies, novel structural designs, and efficient energy conversion methods. The integration of TENG-based self-powered sensors with Deep Learning algorithms is showcased through their groundbreaking applications in motion recognition, smart healthcare, smart homes, and human–machine interaction. Finally, future research directions are outlined, including multimodal data fusion, edge computing integration, and brain-inspired neuromorphic computing, to expand the application of self-powered sensors in robotics, space exploration, and other high-tech fields. This review offers theoretical and technical insights into the collaborative innovation of Deep Learning and self-powered sensor technologies, paving the way for the development of next-generation intelligent systems. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

36 pages, 4603 KiB  
Article
Different Types of Heat Pump Owners in Austria—Purchase Arguments, User Satisfaction, Operating Habits, and Expectations Regarding Control and Regulation Strategies
by Gabriel Reichert, Sophie Ehrenbrandtner, Robert Fina, Franz Theuretzbacher, Clemens Birklbauer and Christoph Schmidl
Businesses 2025, 5(2), 18; https://doi.org/10.3390/businesses5020018 - 11 Apr 2025
Viewed by 948
Abstract
Heat pumps (HPs) are considered as a key technology in the future energy system. Besides technical and ecological aspects, user acceptance and user friendliness are also essential. The aim of the study was therefore to research which aspects are decisive for the purchase [...] Read more.
Heat pumps (HPs) are considered as a key technology in the future energy system. Besides technical and ecological aspects, user acceptance and user friendliness are also essential. The aim of the study was therefore to research which aspects are decisive for the purchase decision, which different types of HP owners can be distinguished, how their specific user behavior can be characterized in terms of control and operation, and what their respective requirements and wishes are for the functions and operation of their HPs. A mixed-methods approach in an exploratory sequential design was used. Based on nine qualitative interviews and a survey with 510 respondents, both conducted in Austria, it is observed that the most relevant arguments for the purchase decision of HPs are high environmental friendliness and efficiency, as well as resource independence. Respecting certain usage and requirement patterns, four user types could be identified and defined—the minimalist, the functionalist, the tech-savvy tinkerer, and the anxious user. In the future, intelligent control and regulation approaches and the integration of HPs into a holistic energy and building management system (smart home) will become more important. Based on the results, tailor-made system solutions can be developed, user friendliness optimized, and new services developed. Full article
Show Figures

Figure 1

Back to TopTop