Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (163)

Search Parameters:
Keywords = smart and connected healthcare

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1328 KiB  
Review
Security Issues in IoT-Based Wireless Sensor Networks: Classifications and Solutions
by Dung T. Nguyen, Mien L. Trinh, Minh T. Nguyen, Thang C. Vu, Tao V. Nguyen, Long Q. Dinh and Mui D. Nguyen
Future Internet 2025, 17(8), 350; https://doi.org/10.3390/fi17080350 - 1 Aug 2025
Viewed by 240
Abstract
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to [...] Read more.
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to be important components of the IoT system (WSN-IoT) to create smart applications and automate processes. As the number of connected IoT devices increases, privacy and security issues become more complicated due to their external working environments and limited resources. Hence, solutions need to be updated to ensure that data and user privacy are protected from threats and attacks. To support the safety and reliability of such systems, in this paper, security issues in the WSN-IoT are addressed and classified as identifying security challenges and requirements for different kinds of attacks in either WSNs or IoT systems. In addition, security solutions corresponding to different types of attacks are provided, analyzed, and evaluated. We provide different comparisons and classifications based on specific goals and applications that hopefully can suggest suitable solutions for specific purposes in practical. We also suggest some research directions to support new security mechanisms. Full article
Show Figures

Figure 1

36 pages, 2671 KiB  
Article
DIKWP-Driven Artificial Consciousness for IoT-Enabled Smart Healthcare Systems
by Yucong Duan and Zhendong Guo
Appl. Sci. 2025, 15(15), 8508; https://doi.org/10.3390/app15158508 (registering DOI) - 31 Jul 2025
Viewed by 219
Abstract
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and [...] Read more.
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and purpose-driven actions. This is achieved through a structured DIKWP pipeline—from data acquisition and information processing to knowledge extraction, wisdom inference, and purpose-driven decision-making—that enables semantic reasoning, adaptive goal-driven responses, and privacy-preserving decision-making in healthcare environments. The architecture integrates wearable sensors, edge computing nodes, and cloud services to enable dynamic task orchestration and secure data fusion. For evaluation, a smart healthcare scenario for early anomaly detection (e.g., arrhythmia and fever) was implemented using wearable devices with coordinated edge–cloud analytics. Simulated experiments on synthetic vital sign datasets achieved approximately 98% anomaly detection accuracy and up to 90% reduction in communication overhead compared to cloud-centric solutions. Results also demonstrate enhanced explainability via traceable decisions across DIKWP layers and robust performance under intermittent connectivity. These findings indicate that the DIKWP-driven approach can significantly advance IoT-based healthcare by providing secure, explainable, and adaptive services aligned with clinical objectives and patient-centric care. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

30 pages, 3898 KiB  
Article
Application of Information and Communication Technologies for Public Services Management in Smart Villages
by Ingrida Kazlauskienė and Vilma Atkočiūnienė
Businesses 2025, 5(3), 31; https://doi.org/10.3390/businesses5030031 - 31 Jul 2025
Viewed by 235
Abstract
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how [...] Read more.
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how these technologies address specific rural challenges, and evaluates their benefits, implementation barriers, and future prospects for sustainable rural development. A qualitative content analysis method was applied using purposive sampling to analyze 79 peer-reviewed articles from EBSCO and Elsevier databases (2000–2024). A deductive approach employed predefined categories to systematically classify ICT applications across rural public service domains, with data coded according to technology scope, problems addressed, and implementation challenges. The analysis identified 15 ICT application domains (agriculture, healthcare, education, governance, energy, transport, etc.) and 42 key technology categories (Internet of Things, artificial intelligence, blockchain, cloud computing, digital platforms, mobile applications, etc.). These technologies address four fundamental rural challenges: limited service accessibility, inefficient resource management, demographic pressures, and social exclusion. This study provides the first comprehensive systematic categorization of ICT applications in smart villages, establishing a theoretical framework connecting technology deployment with sustainable development dimensions. Findings demonstrate that successful ICT implementation requires integrated urban–rural cooperation, community-centered approaches, and balanced attention to economic, social, and environmental sustainability. The research identifies persistent challenges, including inadequate infrastructure, limited digital competencies, and high implementation costs, providing actionable insights for policymakers and practitioners developing ICT-enabled rural development strategies. Full article
Show Figures

Figure 1

25 pages, 16941 KiB  
Article
KAN-Sense: Keypad Input Recognition via CSI Feature Clustering and KAN-Based Classifier
by Minseok Koo and Jaesung Park
Electronics 2025, 14(15), 2965; https://doi.org/10.3390/electronics14152965 - 24 Jul 2025
Viewed by 283
Abstract
Wi-Fi sensing leverages variations in CSI (channel state information) to infer human activities in a contactless and low-cost manner, with growing applications in smart homes, healthcare, and security. While deep learning has advanced macro-motion sensing tasks, micro-motion sensing such as keypad stroke recognition [...] Read more.
Wi-Fi sensing leverages variations in CSI (channel state information) to infer human activities in a contactless and low-cost manner, with growing applications in smart homes, healthcare, and security. While deep learning has advanced macro-motion sensing tasks, micro-motion sensing such as keypad stroke recognition remains underexplored due to subtle inter-class CSI variations and significant intra-class variance. These challenges make it difficult for existing deep learning models typically relying on fully connected MLPs to accurately recognize keypad inputs. To address the issue, we propose a novel approach that combines a discriminative feature extractor with a Kolmogorov–Arnold Network (KAN)-based classifier. The combined model is trained to reduce intra-class variability by clustering features around class-specific centers. The KAN classifier learns nonlinear spline functions to efficiently delineate the complex decision boundaries between different keypad inputs with fewer parameters. To validate our method, we collect a CSI dataset with low-cost Wi-Fi devices (ESP8266 and Raspberry Pi 4) in a real-world keypad sensing environment. Experimental results verify the effectiveness and practicality of our method for keypad input sensing applications in that it outperforms existing approaches in sensing accuracy while requiring fewer parameters. Full article
Show Figures

Figure 1

37 pages, 2573 KiB  
Article
Assessing Blockchain Health Devices: A Multi-Framework Method for Integrating Usability and User Acceptance
by Polina Bobrova and Paolo Perego
Computers 2025, 14(8), 300; https://doi.org/10.3390/computers14080300 - 23 Jul 2025
Viewed by 176
Abstract
Integrating blockchain into healthcare devices offers the potential for improved data control but faces significant usability and acceptance challenges. This study addresses this gap by evaluating CipherPal, an improved blockchain-enabled Smart Fidget Toy prototype, using a multi-framework approach to understand the interplay between [...] Read more.
Integrating blockchain into healthcare devices offers the potential for improved data control but faces significant usability and acceptance challenges. This study addresses this gap by evaluating CipherPal, an improved blockchain-enabled Smart Fidget Toy prototype, using a multi-framework approach to understand the interplay between technology, design, and user experience. We synthesized insights from three complementary frameworks: an expert review assessing adherence to Web3 Design Guidelines, a User Acceptance Toolkit assessment with professionals based on UTAUT2, and an extended three-day user testing study. The findings revealed that users valued CipherPal’s satisfying tactile interaction and perceived benefits for well-being, such as stress relief. However, significant usability barriers emerged, primarily related to challenging device–application connectivity and data synchronization. The multi-framework approach proved valuable in revealing these core tensions. While the device was conceptually accepted, the blockchain integration added significant interaction friction that overshadowed its potential benefits during the study. This research underscores the critical need for user-centered design in health-related blockchain applications, emphasizing that seamless usability and abstracting technical complexity are paramount for adoption. Full article
(This article belongs to the Special Issue When Blockchain Meets IoT: Challenges and Potentials)
Show Figures

Figure 1

17 pages, 992 KiB  
Article
Improving Vulnerability Management for Security-by-Design of Medical Devices
by Emanuele Raso, Francesca Nanni, Francesco Lestini, Lorenzo Bracciale, Giorgia Panico, Giuseppe Bianchi, Giancarlo Orengo, Gaetano Marrocco and Pierpaolo Loreti
Sensors 2025, 25(14), 4418; https://doi.org/10.3390/s25144418 - 16 Jul 2025
Viewed by 516
Abstract
The healthcare industry is witnessing a rapid rise in the adoption of wearable and implantable medical devices, including advanced electrochemical sensors and other smart diagnostic technologies. These devices are increasingly used to enable real-time monitoring of physiological parameters, allowing for faster diagnosis and [...] Read more.
The healthcare industry is witnessing a rapid rise in the adoption of wearable and implantable medical devices, including advanced electrochemical sensors and other smart diagnostic technologies. These devices are increasingly used to enable real-time monitoring of physiological parameters, allowing for faster diagnosis and more personalized care plans. Their growing presence reflects a broader shift toward smart connected healthcare systems aimed at delivering immediate and actionable insights to both patients and medical professionals. At the same time, the healthcare industry is increasingly targeted by cyberattacks, primarily due to the high value of medical information; in addition, the growing integration of ICT technologies into medical devices has introduced new vulnerabilities that were previously absent in this sector. To mitigate these risks, new international guidelines advocate the adoption of best practices for secure software development, emphasizing a security-by-design approach in the design and implementation of such devices. However, the vast and fragmented nature of the information required to effectively support these development processes poses a challenge for the numerous stakeholders involved. In this paper, we demonstrate how key features of the Malware Information Sharing Platform (MISP) can be leveraged to systematically collect and structure vulnerability-related information for medical devices. We propose tailored structures, objects, and taxonomies specific to medical devices, facilitating a standardized data representation that enhances the security-by-design development of these devices. Full article
(This article belongs to the Special Issue Wearable and Implantable Electrochemical Sensors)
Show Figures

Figure 1

27 pages, 1098 KiB  
Article
Enhancing Healthcare for People with Disabilities Through Artificial Intelligence: Evidence from Saudi Arabia
by Adel Saber Alanazi, Abdullah Salah Alanazi and Houcine Benlaria
Healthcare 2025, 13(13), 1616; https://doi.org/10.3390/healthcare13131616 - 6 Jul 2025
Viewed by 603
Abstract
Background/Objectives: Artificial intelligence (AI) offers opportunities to enhance healthcare accessibility for people with disabilities (PwDs). However, their application in Saudi Arabia remains limited. This study explores PwDs’ experiences with AI technologies within the Kingdom’s Vision 2030 digital health framework to inform inclusive healthcare [...] Read more.
Background/Objectives: Artificial intelligence (AI) offers opportunities to enhance healthcare accessibility for people with disabilities (PwDs). However, their application in Saudi Arabia remains limited. This study explores PwDs’ experiences with AI technologies within the Kingdom’s Vision 2030 digital health framework to inform inclusive healthcare innovation strategies. Methods: Semi-structured interviews were conducted with nine PwDs across Riyadh, Al-Jouf, and the Northern Border region between January and February 2025. Participants used various AI-enabled technologies, including smart home assistants, mobile health applications, communication aids, and automated scheduling systems. Thematic analysis following Braun and Clarke’s six-phase framework was employed to identify key themes and patterns. Results: Four major themes emerged: (1) accessibility and usability challenges, including voice recognition difficulties and interface barriers; (2) personalization and autonomy through AI-assisted daily living tasks and medication management; (3) technological barriers such as connectivity issues and maintenance gaps; and (4) psychological acceptance influenced by family support and cultural integration. Participants noted infrastructure gaps in rural areas, financial constraints, limited disability-specific design, and digital literacy barriers while expressing optimism regarding AI’s potential to enhance independence and health outcomes. Conclusions: Realizing the benefits of AI for disability healthcare in Saudi Arabia requires culturally adapted designs, improved infrastructure investment in rural regions, inclusive policymaking, and targeted digital literacy programs. These findings support inclusive healthcare innovation aligned with Saudi Vision 2030 goals and provide evidence-based recommendations for implementing AI healthcare technologies for PwDs in similar cultural contexts. Full article
Show Figures

Figure 1

39 pages, 1839 KiB  
Review
The Integration of the Internet of Things (IoT) Applications into 5G Networks: A Review and Analysis
by Aymen I. Zreikat, Zakwan AlArnaout, Ahmad Abadleh, Ersin Elbasi and Nour Mostafa
Computers 2025, 14(7), 250; https://doi.org/10.3390/computers14070250 - 25 Jun 2025
Cited by 1 | Viewed by 1742
Abstract
The incorporation of Internet of Things (IoT) applications into 5G networks marks a significant step towards realizing the full potential of connected systems. 5G networks, with their ultra-low latency, high data speeds, and huge interconnection, provide a perfect foundation for IoT ecosystems to [...] Read more.
The incorporation of Internet of Things (IoT) applications into 5G networks marks a significant step towards realizing the full potential of connected systems. 5G networks, with their ultra-low latency, high data speeds, and huge interconnection, provide a perfect foundation for IoT ecosystems to thrive. This connectivity offers a diverse set of applications, including smart cities, self-driving cars, industrial automation, healthcare monitoring, and agricultural solutions. IoT devices can improve their reliability, real-time communication, and scalability by exploiting 5G’s advanced capabilities such as network slicing, edge computing, and enhanced mobile broadband. Furthermore, the convergence of IoT with 5G fosters interoperability, allowing for smooth communication across diverse devices and networks. This study examines the fundamental technical applications, obstacles, and future perspectives for integrating IoT applications with 5G networks, emphasizing the potential benefits while also addressing essential concerns such as security, energy efficiency, and network management. The results of this review and analysis will act as a valuable resource for researchers, industry experts, and policymakers involved in the progression of 5G technologies and their incorporation with IT solutions. Full article
Show Figures

Figure 1

31 pages, 1240 KiB  
Article
An Adaptive PSO Approach with Modified Position Equation for Optimizing Critical Node Detection in Large-Scale Networks: Application to Wireless Sensor Networks
by Abdelmoujib Megzari, Walid Osamy, Bader Alwasel and Ahmed M. Khedr
J. Sens. Actuator Netw. 2025, 14(3), 62; https://doi.org/10.3390/jsan14030062 - 16 Jun 2025
Viewed by 862
Abstract
In recent years, wireless sensor networks (WSNs) have been employed across various domains, including military services, healthcare, disaster response, industrial automation, and smart infrastructure. Due to the absence of fixed communication infrastructure, WSNs rely on ad hoc connections between sensor nodes to transmit [...] Read more.
In recent years, wireless sensor networks (WSNs) have been employed across various domains, including military services, healthcare, disaster response, industrial automation, and smart infrastructure. Due to the absence of fixed communication infrastructure, WSNs rely on ad hoc connections between sensor nodes to transmit sensed data to target nodes. Within a WSN, a sensor node whose failure partitions the network into disconnected segments is referred to as a critical node or cut vertex. Identifying such nodes is a fundamental step toward ensuring the reliability of WSNs. The critical node detection problem (CNDP) focuses on determining the set of nodes whose removal most significantly affects the network’s connectivity, stability, functionality, robustness, and resilience. CNDP is a significant challenge in network analysis that involves identifying the nodes that have a significant influence on connectivity or centrality measures within a network. However, achieving an optimal solution for the CNDP is often hindered by its time-consuming and computationally intensive nature, especially when dealing with large-scale networks. In response to this challenge, we present a method based on particle swarm optimization (PSO) for the detection of critical nodes. We employ discrete PSO (DPSO) along with the modified position equation (MPE) to effectively solve the CNDP, making it applicable to various k-vertex variations of the problem. We examine the impact of population size on both execution time and result quality. Experimental analysisusing different neighborhood topologies—namely, the star topology and the dynamic topology—was conducted to analyze their impact on solution effectiveness and adaptability to diverse network configurations. We consistently observed better result quality with the dynamic topology compared to the star topology for the same population size, while the star topology exhibited better execution time. Our findings reveal the promising efficacy of the proposed solution in addressing the CNDP, achieving high-quality solutions compared to existing methods. Full article
Show Figures

Figure 1

19 pages, 8477 KiB  
Article
Wideband Dual-Polarized PRGW Antenna Array with High Isolation for Millimeter-Wave IoT Applications
by Zahra Mousavirazi, Mohamed Mamdouh M. Ali, Abdel R. Sebak and Tayeb A. Denidni
Sensors 2025, 25(11), 3387; https://doi.org/10.3390/s25113387 - 28 May 2025
Viewed by 663
Abstract
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance [...] Read more.
This work presents a novel dual-polarized antenna array tailored for Internet of Things (IoT) applications, specifically designed to operate in the millimeter-wave (mm-wave) spectrum within the frequency range of 30–60 GHz. Leveraging printed ridge gap waveguide (PRGW) technology, the antenna ensures robust performance by eliminating parasitic radiation from the feed network, thus significantly enhancing the reliability and efficiency required by IoT communication systems, particularly for smart cities, autonomous vehicles, and high-speed sensor networks. The proposed antenna achieves superior radiation characteristics through a cross-shaped magneto-electric (ME) dipole backed by an artificial magnetic conductor (AMC) cavity and electromagnetic bandgap (EBG) structures. These features suppress surface waves, reduce edge diffraction, and minimize back-lobe emissions, enabling stable, high-quality IoT connectivity. The antenna demonstrates a wide impedance bandwidth of 24% centered at 30 GHz and exceptional isolation exceeding 40 dB, ensuring interference-free dual-polarized operation crucial for densely populated IoT environments. Fabrication and testing validate the design, consistently achieving a gain of approximately 13.88 dBi across the operational bandwidth. The antenna’s performance effectively addresses the critical requirements of emerging IoT systems, including ultra-high data throughput, reduced latency, and robust wireless connectivity, essential for real-time applications such as healthcare monitoring, vehicular communication, and smart infrastructure. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

38 pages, 4395 KiB  
Article
Exploring Bio-Impedance Sensing for Intelligent Wearable Devices
by Nafise Arabsalmani, Arman Ghouchani, Shahin Jafarabadi Ashtiani and Milad Zamani
Bioengineering 2025, 12(5), 521; https://doi.org/10.3390/bioengineering12050521 - 14 May 2025
Viewed by 1325
Abstract
The rapid growth of wearable technology has opened new possibilities for smart health-monitoring systems. Among various sensing methods, bio-impedance sensing has stood out as a powerful, non-invasive, and energy-efficient way to track physiological changes and gather important health information. This review looks at [...] Read more.
The rapid growth of wearable technology has opened new possibilities for smart health-monitoring systems. Among various sensing methods, bio-impedance sensing has stood out as a powerful, non-invasive, and energy-efficient way to track physiological changes and gather important health information. This review looks at the basic principles behind bio-impedance sensing, how it is being built into wearable devices, and its use in healthcare and everyday wellness tracking. We examine recent progress in sensor design, signal processing, and machine learning, and show how these developments are making real-time health monitoring more effective. While bio-impedance systems offer many advantages, they also face challenges, particularly when it comes to making devices smaller, reducing power use, and improving the accuracy of collected data. One key issue is that analyzing bio-impedance signals often relies on complex digital signal processing, which can be both computationally heavy and energy-hungry. To address this, researchers are exploring the use of neuromorphic processors—hardware inspired by the way the human brain works. These processors use spiking neural networks (SNNs) and event-driven designs to process signals more efficiently, allowing bio-impedance sensors to pick up subtle physiological changes while using far less power. This not only extends battery life but also brings us closer to practical, long-lasting health-monitoring solutions. In this paper, we aim to connect recent engineering advances with real-world applications, highlighting how bio-impedance sensing could shape the next generation of intelligent wearable devices. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

50 pages, 7835 KiB  
Article
Enhancing Connected Health Ecosystems Through IoT-Enabled Monitoring Technologies: A Case Study of the Monit4Healthy System
by Marilena Ianculescu, Victor-Ștefan Constantin, Andreea-Maria Gușatu, Mihail-Cristian Petrache, Alina-Georgiana Mihăescu, Ovidiu Bica and Adriana Alexandru
Sensors 2025, 25(7), 2292; https://doi.org/10.3390/s25072292 - 4 Apr 2025
Cited by 5 | Viewed by 1280
Abstract
The Monit4Healthy system is an IoT-enabled health monitoring solution designed to address critical challenges in real-time biomedical signal processing, energy efficiency, and data transmission. The system’s modular design merges wireless communication components alongside a number of physiological sensors, including galvanic skin response, electromyography, [...] Read more.
The Monit4Healthy system is an IoT-enabled health monitoring solution designed to address critical challenges in real-time biomedical signal processing, energy efficiency, and data transmission. The system’s modular design merges wireless communication components alongside a number of physiological sensors, including galvanic skin response, electromyography, photoplethysmography, and EKG, to allow for the remote gathering and evaluation of health information. In order to decrease network load and enable the quick identification of abnormalities, edge computing is used for real-time signal filtering and feature extraction. Flexible data transmission based on context and available bandwidth is provided through a hybrid communication approach that includes Bluetooth Low Energy and Wi-Fi. Under typical monitoring scenarios, laboratory testing shows reliable wireless connectivity and ongoing battery-powered operation. The Monit4Healthy system is appropriate for scalable deployment in connected health ecosystems and portable health monitoring due to its responsive power management approaches and structured data transmission, which improve the resiliency of the system. The system ensures the reliability of signals whilst lowering latency and data volume in comparison to conventional cloud-only systems. Limitations include the requirement for energy profiling, distinctive hardware miniaturizing, and sustained real-world validation. By integrating context-aware processing, flexible design, and effective communication, the Monit4Healthy system complements existing IoT health solutions and promotes better integration in clinical and smart city healthcare environments. Full article
Show Figures

Figure 1

29 pages, 5780 KiB  
Article
Zero Trust Strategies for Cyber-Physical Systems in 6G Networks
by Abdulrahman K. Alnaim and Ahmed M. Alwakeel
Mathematics 2025, 13(7), 1108; https://doi.org/10.3390/math13071108 - 27 Mar 2025
Cited by 2 | Viewed by 1113
Abstract
This study proposes a Zero Trust security framework for 6G-enabled Cyber-Physical Systems (CPS), integrating Adaptive Access Control (AAC), end-to-end encryption, and blockchain to enhance security, scalability, and real-time threat detection. As 6G networks facilitate massive device connectivity and low-latency communication, traditional perimeter-based security [...] Read more.
This study proposes a Zero Trust security framework for 6G-enabled Cyber-Physical Systems (CPS), integrating Adaptive Access Control (AAC), end-to-end encryption, and blockchain to enhance security, scalability, and real-time threat detection. As 6G networks facilitate massive device connectivity and low-latency communication, traditional perimeter-based security models are inadequate against evolving cyber threats such as Man-in-the-Middle (MITM) attacks, Distributed Denial-of-Service (DDoS), and data breaches. Zero Trust security eliminates implicit trust by enforcing continuous authentication, strict access control, and real-time anomaly detection to mitigate potential threats dynamically. The proposed framework leverages blockchain technology to ensure tamper-proof data integrity and decentralized authentication, preventing unauthorized modifications to CPS data. Additionally, AI-driven anomaly detection identifies suspicious behavior in real time, optimizing security response mechanisms and reducing false positives. Experimental evaluations demonstrate a 40% reduction in MITM attack success rates, 5.8% improvement in authentication efficiency, and 63.5% lower latency compared to traditional security methods. The framework also achieves high scalability and energy efficiency, maintaining consistent throughput and response times across large-scale CPS deployments. These findings underscore the transformative potential of Zero Trust security in 6G-enabled CPS, particularly in mission-critical applications such as healthcare, smart infrastructure, and industrial automation. By integrating blockchain-based authentication, AI-powered threat detection, and adaptive access control, this research presents a scalable and resource-efficient solution for securing next-generation CPS architectures. Future work will explore quantum-safe cryptography and federated learning to further enhance security, ensuring long-term resilience in highly dynamic network environments. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Decision Making)
Show Figures

Figure 1

25 pages, 1600 KiB  
Article
Compliant and Seamless Hybrid (Star and Mesh) Network Topology Coexistence for LoRaWAN: A Proof of Concept
by Laura García, Carlos Cancimance, Rafael Asorey-Cacheda, Claudia-Liliana Zúñiga-Cañón, Antonio-Javier Garcia-Sanchez and Joan Garcia-Haro
Appl. Sci. 2025, 15(7), 3487; https://doi.org/10.3390/app15073487 - 22 Mar 2025
Cited by 1 | Viewed by 1405
Abstract
Long-range wireless area networks (LoRaWAN) typically use a simple star topology. However, some nodes may experience connectivity issues with the gateway due to signal degradation or limited coverage, often resulting from challenging environments in sectors such as agriculture, industry, smart cities, smart grids, [...] Read more.
Long-range wireless area networks (LoRaWAN) typically use a simple star topology. However, some nodes may experience connectivity issues with the gateway due to signal degradation or limited coverage, often resulting from challenging environments in sectors such as agriculture, industry, smart cities, smart grids, and healthcare, where LoRaWAN-based IoT solutions have expanded. The main contribution of this paper is the implementation of a hybrid topology for LoRaWAN networks that remains fully transparent to current spec LoRaWAN servers and IoT applications. It enables the coexistence of mesh (multi-hop) and star (single-hop) communication schemes, dynamically adapting a node’s transmission mode based on physical link quality metrics. Additionally, the user interface allows for customizing network topology and parameters. Experimental proof-of-concept tests were conducted on a campus-wide testbed. Results showed that all devices successfully switched topology mode in 100% of the instances, enabling data transmission across all three scenarios under test. Network performance metrics were evaluated, with latencies ranging from 0.5 to 3.2 s for both single-hop and multi-hop transmissions. Additionally, improvements in RSSI and SNR were observed, validating the efficiency of the proposed solution. These results demonstrate the feasibility and effectiveness of our approach in extending network connectivity to areas beyond the gateway’s coverage. Full article
Show Figures

Figure 1

37 pages, 2939 KiB  
Review
Smart Healthcare Network Management: A Comprehensive Review
by Farag M. Sallabi, Heba M. Khater, Asadullah Tariq, Mohammad Hayajneh, Khaled Shuaib and Ezedin S. Barka
Mathematics 2025, 13(6), 988; https://doi.org/10.3390/math13060988 - 17 Mar 2025
Cited by 2 | Viewed by 2213
Abstract
Recent developments in sensors, wireless communications, and data processing technologies are the main drivers for adopting the Internet of Things (IoT) in healthcare systems. IoT-based healthcare systems can enhance the quality of life significantly and help prevent the occurrence of health problems and [...] Read more.
Recent developments in sensors, wireless communications, and data processing technologies are the main drivers for adopting the Internet of Things (IoT) in healthcare systems. IoT-based healthcare systems can enhance the quality of life significantly and help prevent the occurrence of health problems and epidemics. Deploying IoT-based healthcare on a massive scale raises several issues and challenges. One of the main challenges is the management of the end-to-end network connections of the IoT-based healthcare system. This paper presents a comprehensive survey of smart network management protocols that improve IoT-based healthcare efficiency, ensuring real-time monitoring, secure data transmission, and effective device management. Moreover, a reference architecture has been proposed for the network management of IoT-based smart healthcare systems to ensure the sustainability of service delivery to patients and caregivers. The architecture avoids health-related risks and anomalies by incorporating proper network management techniques and operational requirements pertaining to smart healthcare systems. This paper also discusses architectural implementation insights supported by new technologies such as software-defined networking (SDN) and deep learning (DL). Finally, this paper explores emerging paradigms to advance next-generation network management protocols for future smart healthcare systems. Full article
Show Figures

Figure 1

Back to TopTop