Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = small-diameter pipe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6883 KiB  
Article
Autonomous, Collaborative, and Confined Infrastructure Assessment with Purpose-Built Mega-Joey Robots
by Hitesh Bhardwaj, Nabil Shaukat, Andrew Barber, Andy Blight, George Jackson-Mills, Andrew Pickering, Manman Yang, Muhammad Azam Mohd Sharif, Linyan Han, Songyan Xin and Robert Richardson
Robotics 2025, 14(6), 80; https://doi.org/10.3390/robotics14060080 - 10 Jun 2025
Viewed by 826
Abstract
The inspection of sewer pipes in the UK is costly, and if not inspected regularly, they are costly and disruptive to repair. This paper presents the Mega-Joey, a novel miniature, tether-less robot platform that is capable of autonomously navigating and assessing confined spaces, [...] Read more.
The inspection of sewer pipes in the UK is costly, and if not inspected regularly, they are costly and disruptive to repair. This paper presents the Mega-Joey, a novel miniature, tether-less robot platform that is capable of autonomously navigating and assessing confined spaces, such as small-diameter underground pipelines. This paper also discusses a novel decentralized event-based-broadcasting autonomous exploration algorithm designed for exploring such pipe networks collaboratively. The designed robot is able to operate in pipes with an inclination of up to 20 degrees in dry and up to 10 degrees in wet conditions. A team of Mega-Joeys was used to explore a test network using the proposed algorithm. The experimental results show that the team of robots was able to explore a 3850 mm long test network within a faster period (36% faster) and in a more energy-efficient manner (approximately 54% more efficient) than a single robot could achieve. Full article
(This article belongs to the Section Intelligent Robots and Mechatronics)
Show Figures

Figure 1

14 pages, 4293 KiB  
Article
Experimental Study on Fire-Resistance Performance Depending on the Applied Volume of Firestop Material in Metallic and Nonmetallic Penetration Systems
by Hong-Beom Choi, A-Yeong Jeong, Jin-O Park, Seung-Yong Hyun and Hyung-Do Lee
Appl. Sci. 2025, 15(11), 6259; https://doi.org/10.3390/app15116259 - 2 Jun 2025
Viewed by 473
Abstract
This study aims to improve firestop application standards by experimentally analyzing changes in fire-resistance performance due to variations in opening size, penetrant diameter, and firestop material volume. Fire-resistance tests were conducted for 120 min in accordance with KS F ISO 10295-1, using eight [...] Read more.
This study aims to improve firestop application standards by experimentally analyzing changes in fire-resistance performance due to variations in opening size, penetrant diameter, and firestop material volume. Fire-resistance tests were conducted for 120 min in accordance with KS F ISO 10295-1, using eight specimens with systematically varied cross-sectional areas of openings and penetrants. For nonmetallic pipes, which soften or melt at elevated temperatures, the results show that the completeness of the opening seal and the amount of firestop material are the primary factors governing fire resistance. When the firestop-to-opening area ratio decreased from 95–91%, the maximum temperature on the unexposed surface was, on average, 15–30 °C lower, confirming that modest reductions in firestop material volume for small openings do not compromise performance. In contrast, metallic pipes retained structural integrity and acted as direct heat-transfer paths; fire-resistance performance was more strongly influenced by penetrant diameter and cross-sectional area than by opening size. These findings provide quantitative evidence to support flexible design criteria for firestop systems and offer a practical basis for transitioning toward performance-based approval standards. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

15 pages, 10319 KiB  
Article
Residual Stresses of Small-Bore Butt-Welded Piping Measured by Quantum Beam Hybrid Method
by Kenji Suzuki, Yasufumi Miura, Hidenori Toyokawa, Ayumi Shiro, Takahisa Shobu, Satoshi Morooka and Yuki Shibayama
Quantum Beam Sci. 2025, 9(2), 15; https://doi.org/10.3390/qubs9020015 - 2 May 2025
Viewed by 944
Abstract
Cracks due to stress corrosion cracking in stainless steels are becoming a problem not only in boiling water reactors but also in pressurized water reactor nuclear plants. Stress improvement measures have been implemented mainly for large-bore welded piping, but in the case of [...] Read more.
Cracks due to stress corrosion cracking in stainless steels are becoming a problem not only in boiling water reactors but also in pressurized water reactor nuclear plants. Stress improvement measures have been implemented mainly for large-bore welded piping, but in the case of small-bore welded piping, post-welding stress improvement measures are often not possible due to dimensional restrictions, etc. Therefore, knowing the actual welding residual stresses of small-bore welded piping regardless of reactor type is essential for the safe and stable operation of nuclear power stations, but there are only a limited number of examples of measuring the residual stresses. In this study, austenitic stainless steel pipes with an outer diameter of 100 mm and a wall thickness of 11.1 mm were butt-welded. The residual stresses were measured by the strain scanning method using neutrons. Furthermore, to obtain detailed residual stresses near the penetration bead where the maximum stress is generated, the residual stresses near the inner surface of the weld were measured using the double-exposure method (DEM) with hard X-rays of synchrotron radiation. A method using a cross-correlation algorithm was proposed to determine the accurate diffraction angle from the complex diffraction patterns from the coarse grains, dendritic structures, and plastic zones. A quantum beam hybrid method (QBHM) was proposed that uses the circumferential residual stresses obtained by neutrons and the residual stresses obtained by the double-exposure method in a complementary use. The residual stress map of welded piping measured using the QBHM showed an area where the axial tensile residual stress exists from the neighborhood of the penetration bead toward the inside of the welded metal. This result could explain the occurrence of stress corrosion cracking in the butt-welded piping. A finite element analysis of the same butt-welded piping was performed and its results were compared. There is also a difference between the simulation results of residual stress using the finite element method and the measurement results using the QBHM. This difference is because the measured residual stress map also includes the effect of the stress of each crystal grain based on elastic anisotropy, that is, residual micro-stress. Full article
(This article belongs to the Section Engineering and Structural Materials)
Show Figures

Figure 1

18 pages, 2721 KiB  
Article
AI for Smart Water Solutions in Developing Areas: Case Study in Khelvachauri (Georgia)
by Josep Francesc Pons-Ausina, Seyed Nima Hosseini and Javier Soriano Olivares
Water 2025, 17(8), 1119; https://doi.org/10.3390/w17081119 - 9 Apr 2025
Viewed by 1913
Abstract
Small and mid-sized water utilities face persistent challenges due to limited technical expertise and financial resources, impeding effective management and decision making. This study presents an enhanced version of the MACS Water Smart application, which integrates artificial intelligence and EPANET-based hydraulic modelling with [...] Read more.
Small and mid-sized water utilities face persistent challenges due to limited technical expertise and financial resources, impeding effective management and decision making. This study presents an enhanced version of the MACS Water Smart application, which integrates artificial intelligence and EPANET-based hydraulic modelling with GIS (geographical information system) functionalities to optimize water supply networks. The methodology was applied to the potable water system of Khelvachauri, Georgia, which experiences significant pressure deficits, particularly in its southern area during peak consumption time. By employing machine learning algorithms, the WS tool automates tasks such as pipe diameter optimization and pressure recovery, gradually eliminating the total need for expert intervention. The AI-powered optimization achieved pressure increases above 25 m, reduced flow velocities below 1.5 m/s, improved pumping efficiency by 15%, and lowered leakage rates by 8%. Additionally, computational time was reduced by 35% compared with traditional methods. These findings validate the performance of AI-based hydraulic simulation and its ability to replicate engineering decisions. Furthermore, the tool provides a scalable solution for planning future network expansions. This work highlights the practicality of combining AI and hydraulic modelling for sustainable water management in resource-constrained settings, emphasizing its cost-effectiveness and potential for widespread adoption in small and mid-sized utilities. Full article
Show Figures

Figure 1

26 pages, 20258 KiB  
Article
Toward Urban Micro-Renewal: Integrating “BMP-Plan” and “LID-Design” for Enhanced Stormwater Control—A Case Study
by Zhenxing Huang, Yiyuan Sun, Yanting Fan, Ruofei Guan, Hao Zhang, Lianhai Zhao and Bin Zhang
Water 2025, 17(7), 992; https://doi.org/10.3390/w17070992 - 28 Mar 2025
Viewed by 507
Abstract
This study addresses the growing inadequacies of traditional architectural concepts and techniques in stormwater management amid the increasing frequency of extreme weather events, particularly in densely built urban micro-spaces. To tackle these challenges, we propose an integrated theoretical and practical framework applied to [...] Read more.
This study addresses the growing inadequacies of traditional architectural concepts and techniques in stormwater management amid the increasing frequency of extreme weather events, particularly in densely built urban micro-spaces. To tackle these challenges, we propose an integrated theoretical and practical framework applied to a case study of a small-scale urban public space in Chang’an District, Shijiazhuang City, Hebei Province, covering an area of about 2.15 hectares in North China. The framework combines Best Management Practices Planning (BMP-P) with Low Impact Development Design (LID-D). The framework optimizes sub-catchment delineation, strategically locates drainage outlets, and configures network layouts to reduce runoff path lengths, thereby reducing total runoff volume, enhancing drainage capacity, and alleviating surface water accumulation, which, in turn, informs the parametric design of LID facilities. In the BMP-P phase, four source-control measures were developed based on runoff control and stormwater retention: adjusting terrain slopes, adding or removing curbs and facilities, redistributing infiltration areas, and adjusting drainage outlet and piping layouts. By shortening runoff paths and reducing potential waterlogging areas, these measures effectively reduced total runoff volume (Trv) by 31.5% to 35.7% and peak runoff volume (Prv) by 19.4% to 32.4%. Moreover, by remodeling the stormwater network with a different layout, larger pipe diameters, and substantially increased network capacity, the total discharge (Tdv) increased by 1.8% to 50.2%, and the peak discharge rate (Pdr) increased by 100% to 550%, thus minimizing surface flooding. In the LID-D phase, we developed a Grasshopper-based parametric design program for the layout and design of LID facilities. This approach significantly reduces interdisciplinary communication costs and enhances urban planning efficiency. By integrating BMP and LID strategies, the proposed framework offers a flexible, rapid, and efficient solution for achieving resilient stormwater management in the context of urban micro-renewal. Full article
(This article belongs to the Special Issue Urban Drainage Systems and Stormwater Management)
Show Figures

Figure 1

17 pages, 10639 KiB  
Article
TinyML-Based In-Pipe Feature Detection for Miniature Robots
by Manman Yang, Andrew Blight, Hitesh Bhardwaj, Nabil Shaukat, Linyan Han, Robert Richardson, Andrew Pickering, George Jackson-Mills and Andrew Barber
Sensors 2025, 25(6), 1782; https://doi.org/10.3390/s25061782 - 13 Mar 2025
Cited by 1 | Viewed by 884
Abstract
Miniature robots in small-diameter pipelines require efficient and reliable environmental perception for autonomous navigation. In this paper, a tiny machine learning (TinyML)-based resource-efficient pipe feature recognition method is proposed for miniature robots to identify key pipeline features such as elbows, joints, and turns. [...] Read more.
Miniature robots in small-diameter pipelines require efficient and reliable environmental perception for autonomous navigation. In this paper, a tiny machine learning (TinyML)-based resource-efficient pipe feature recognition method is proposed for miniature robots to identify key pipeline features such as elbows, joints, and turns. The method leverages a custom five-layer convolutional neural network (CNN) optimized for deployment on a robot with limited computational and memory resources. Trained on a custom dataset of 4629 images collected under diverse conditions, the model achieved an accuracy of 97.1%. With a peak RAM usage of 195.1 kB, flash usage of 427.9 kB, and an inference time of 1693 ms, the method demonstrates high computational efficiency while ensuring stable performance under challenging conditions through a sliding window smoothing strategy. These results highlight the feasibility of deploying advanced machine learning models on resource-constrained devices, providing a cost-effective solution for autonomous in-pipe exploration and inspection. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

20 pages, 7507 KiB  
Article
Experimental Validation of Exact Burst Pressure Solutions for Thick-Walled Cylindrical Pressure Vessels
by Xian-Kui Zhu
Appl. Mech. 2025, 6(1), 20; https://doi.org/10.3390/applmech6010020 - 5 Mar 2025
Cited by 1 | Viewed by 1099
Abstract
Burst pressure is one of the critical strength parameters used in the design and operation of pressure vessels because it represents the maximum pressure that a vessel can withstand before failing. Historically, the Barlow formula was used as a design base for estimating [...] Read more.
Burst pressure is one of the critical strength parameters used in the design and operation of pressure vessels because it represents the maximum pressure that a vessel can withstand before failing. Historically, the Barlow formula was used as a design base for estimating burst pressure. However, it does not consider the plastic flow response for ductile steels and is applicable only to thin-walled cylinders (i.e., the diameter to thickness ratio D/t ≥ 20). A new multiaxial plastic yield theory was developed to consider the plastic flow response, and the associated theoretical (i.e., Zhu–Leis) solution of burst pressure was obtained and has gained extensive applications in the pipeline industry because it was validated by different full-scale burst test datasets for large-diameter, thin-walled pipelines in a variety of steel grades from Grade B to X120. The Zhu–Leis flow theory of plasticity was recently extended to thick-walled pressure vessels, and the associated exact flow solution of burst pressure was obtained and is applicable to both thin and thick-walled cylindrical shells. Many full-scale burst tests are available for thin-walled line pipes in the pipeline industry, but limited pressure burst tests exist for thick-walled vessels. To validate the newly developed exact solutions of burst pressure for thick-walled cylinders, this paper conducts a series of burst pressure tests on small-diameter, thick-walled pipes. In particular, six burst tests are carried out for three thick-walled pipes in Grade B carbon steel. These pipes have a nominal diameter of 2.375 inches (60.33 mm) and three nominal wall thicknesses of 0.154, 0.218, and 0.344 inches (3.91, 5.54, and 8.74 mm), leading to D/t = 15.4, 10.9, and 6.9, respectively. With the burst test data, comparisons show that the Zhu–Leis flow solution of burst pressure matches well the burst test data for thick-walled pipes. Thus, these burst tests validate the accuracy of the Zhu–Leis flow solution of burst pressure for thick-walled cylindrical vessels. Full article
(This article belongs to the Collection Fracture, Fatigue, and Wear)
Show Figures

Figure 1

23 pages, 18636 KiB  
Article
Resistance Characteristics of Cemented High-Concentration Backfill in a Bending Pipeline: A Numerical Simulation
by Jinping Guo, Zheng Qiu, Xiaolin Wang, Qinghua Gu, Haiqiang Jiang and Shunman Chen
Minerals 2025, 15(2), 145; https://doi.org/10.3390/min15020145 - 31 Jan 2025
Cited by 1 | Viewed by 601
Abstract
With the advancement of backfill mining technology, cemented high-concentration backfill (CHB), composed of solid particles, such as high-concentration tailings or waste rock mixed with a small amount of binder, has gained widespread applications due to its superior filling performance. Given the complexity of [...] Read more.
With the advancement of backfill mining technology, cemented high-concentration backfill (CHB), composed of solid particles, such as high-concentration tailings or waste rock mixed with a small amount of binder, has gained widespread applications due to its superior filling performance. Given the complexity of the backfill pipeline network, studying the characteristics of pipe transportation is crucial. The local resistance in bending pipes represents an important parameter for CHB pipeline transportation. However, existing research on the local resistance characteristics of bending pipes lacks comprehensiveness and depth. This study proposes a novel definition of the local resistance coefficient as the ratio of pressure loss per unit length of a bend pipe compared to that of a straight pipe. Utilizing the computational fluid dynamics (CFD) method the impact of six different factors on the local resistance coefficient of the bending pipe is investigated: flow velocity, pipe diameter, slurry concentration, binder content, turning radius, and bending angle. The results indicate that the local resistance coefficient positively correlates with the flow velocity and pipe diameter but negatively correlates with the slurry concentration, turning radius, and bending angle. Among these factors, the slurry concentration exerts the most significant influence on the local resistance coefficient. The recommended approach to control the local resistance coefficient in the mine is to use CHB with a 76% solid fraction at a 1.5 m/s flow velocity, along with pipe parameters of a 0.15 m diameter, a 2.5 m turning radius, and bending angles between 90° and 150°. The findings provide a valuable reference for determining the optimal parameters for bend pipes and CHB and facilitate the theoretical calculation of resistance in complex filling pipeline networks. Full article
(This article belongs to the Special Issue Cemented Mine Waste Backfill: Experiment and Modelling: 2nd Edition)
Show Figures

Figure 1

14 pages, 9538 KiB  
Technical Note
Eliminating Inductive Coupling in Small-Loop TEM Through Differential Measurement with Opposing Coils
by Xinghai Chen, Haiyan Yang, Tong Xia, Xiaoping Wu and Shengdong Liu
Remote Sens. 2025, 17(2), 254; https://doi.org/10.3390/rs17020254 - 13 Jan 2025
Viewed by 864
Abstract
The small-loop transient electromagnetic method (TEM) refers to a system in which the coil frame length or diameter is less than 2 m. Due to the inductive effects of the multi-turn coils used for both transmission and reception, the induced electromotive force in [...] Read more.
The small-loop transient electromagnetic method (TEM) refers to a system in which the coil frame length or diameter is less than 2 m. Due to the inductive effects of the multi-turn coils used for both transmission and reception, the induced electromotive force in the measuring coil increases, causing a reduction in the decay rate and an extension of the shutoff time. This results in coupling between the primary and secondary fields in early-time signals, making them difficult to separate and creating a detection blind spot in the shallow subsurface. The opposing coil TEM transmission and reception method can significantly reduce early-time signal distortion caused by coil inductance. However, this approach is constrained by the physical symmetry of the coil dimensions, which makes it challenging to achieve balance in a zero-field space. By performing both forward and reverse measurements at the same location using the opposing coil setup and calculating the difference between the signals, the inductive coupling between coils at the measurement site can theoretically be eliminated. This eliminates the induced potential of the TEM signal, enhancing the induced electromotive force from the formation. As a result, more accurate resistivity values are obtained, detection blind spots are eliminated, and the resolution in shallow TEM exploration is improved. Field experiments were conducted to validate the method on both high-resistivity and low-resistivity anomalies. The results demonstrated that this method effectively identified a high-resistivity corrugated pipe at a depth of 1.2 m and two low-resistivity gas pipelines at a depth of 2 m, thereby essentially eliminating detection blind spots in the shallow subsurface. Full article
Show Figures

Graphical abstract

23 pages, 12221 KiB  
Article
An Interpretation Method of Gas–Water Two-Phase Production Profile in High-Temperature and High-Pressure Vertical Wells Based on Drift-Flux Model
by Haoxun Liang, Haimin Guo, Yongtuo Sun, Ao Li, Dudu Wang and Yuqing Guo
Processes 2024, 12(12), 2891; https://doi.org/10.3390/pr12122891 - 17 Dec 2024
Viewed by 922
Abstract
With the increasing demand for oil and gas, the depth of some vertical gas wells can reach 6000 m. At this time, the downhole fluid is in a state of high temperature and pressure, and interpretation of the production logging output profile faces [...] Read more.
With the increasing demand for oil and gas, the depth of some vertical gas wells can reach 6000 m. At this time, the downhole fluid is in a state of high temperature and pressure, and interpretation of the production logging output profile faces the problem of inaccurate production calculations and difficulty judging the water-producing layer. The drift-flux model is usually used to calculate the gas–water two-phase flow. The drift-flux model is widely used to describe the two-phase flow in pipelines and wells because of its accuracy and simplicity. The constitutive correlations used in drift-flux models, which specify the relative motion between phases, have been extensively studied. However, most of the correlations are only extended by laboratory data of small pipe diameters at standard temperature and pressure and do not apply to high-temperature and high-pressure large-diameter gas wells. Therefore, we improved the distribution coefficient and drift velocity of drift-flux correlations in this study for high-temperature and high-pressure gas wells with large pipe diameters. Therefore, this study improved the distribution coefficient and drift velocity of the drift-flux correlations for high-temperature and high-pressure gas wells with large pipe diameters. In practical application, the coincidence rates of gas production and water production calculated by the new drift-flux model were 12.68% and 19.39%, respectively. For high-temperature and high-pressure deep wells, the measurement errors of production logging instruments are significant, and surface laboratory pipelines are challenging to configure and equip with actual high-temperature and high-pressure conditions. Therefore, this study used the method of numerical simulation to study the flow characteristics of the two phases of high-temperature and high-pressure gas and water to provide a basis for identifying the water layer. Combined with the proposed drift-flux correlations and the new method of determining the water-producing layer, a new method of production profile interpretation of high-temperature and high-pressure gas wells is obtained. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 7640 KiB  
Article
Mesh Sensitivity Analysis of Axisymmetric Models for Smooth–Turbulent Transient Flows
by Pedro Leite Ferreira and Dídia Isabel Cameira Covas
Fluids 2024, 9(11), 268; https://doi.org/10.3390/fluids9110268 - 19 Nov 2024
Viewed by 1101
Abstract
The current paper focuses on the assessment of radial mesh influence on the description of the transient event obtained by an axisymmetric model. The objective is to reduce computational effort while accurately calculating hydraulic transients in smooth–turbulent pressurized pipes. The analyzed pipe system [...] Read more.
The current paper focuses on the assessment of radial mesh influence on the description of the transient event obtained by an axisymmetric model. The objective is to reduce computational effort while accurately calculating hydraulic transients in smooth–turbulent pressurized pipes. The analyzed pipe system has a reservoir–pipe–valve configuration with an inner diameter of 0.02 m and a total length of 14.96 m, with the initial discharge being equal to 120 × 10−3 L/s (Re = 7638). An extensive study is carried out with 80 geometric sequence meshes by varying the total number of cylinders, the geometric common ratio, and the pipe axial discretization. The benefit of increasing the geometric common ratio is highlighted. A detailed comparison between two meshes is presented, in which the best mesh (i.e., the one with the lowest computational effort) has a three-fold higher value of the geometric common ratio. The two meshes show small differences for the instantaneous valve closure, limited to a time interval immediately after the arrival of the pressure surge and only during the first pressure wave. The dynamic characterization of the transient phenomenon demonstrates the in-depth consistency between the model results and the hydraulic transients’ phenomenon in terms of the piezometric head, the wall shear stress, and the mean velocity time-history, in comparison to the results obtained with the shear stress, lateral velocity, and axial velocity profiles. Full article
(This article belongs to the Special Issue Modelling Flows in Pipes and Channels)
Show Figures

Figure 1

15 pages, 13544 KiB  
Article
Mechanical and Numerical Assessment of Localized Soil Voids Under PCCP Joints
by Haizhen Li, Xin Feng and Ankui Hu
Buildings 2024, 14(11), 3624; https://doi.org/10.3390/buildings14113624 - 14 Nov 2024
Cited by 1 | Viewed by 851
Abstract
Uniform support from the surrounding soil is important for maintaining the stable operation of buried pipelines. For segmented prestressed concrete cylinder pipe (PCCP), localized soil voids around the joint due to leakage or engineering activities make the pipe unsupported partially and threaten its [...] Read more.
Uniform support from the surrounding soil is important for maintaining the stable operation of buried pipelines. For segmented prestressed concrete cylinder pipe (PCCP), localized soil voids around the joint due to leakage or engineering activities make the pipe unsupported partially and threaten its integrity and strength. In this paper, the impact of a localized soil void on a pipe joint is qualitatively assessed using a beam-on-elastic-spring approximation model. It further provides quantitative analysis through a nonlinear finite element (FE) model of PCCPs and the surrounding soil. The derived algebraic solutions indicate that a unilateral local void induces shear force and rotation at the joint, whereas shear force becomes negligible when the void spans the joint, leading to increased rotation. Moreover, the rotation angle shows a positive correlation with soil load and a negative correlation with pipe diameter. Numerical analysis reveals that void elongation along the pipe length has a more pronounced effect on structural response than void depth and angle. When the void length reaches 2.5 m, the maximum principal stress on the mortar layer of the PCCP increases approximately eight-fold compared to the scenario without voids. Due to the rigidity and safety factor of the PCCP, small voids in the bedding typically do not cause immediate pipe damage or joint leakage; however, they can significantly alter the stress distribution within both the pipe and surrounding soil. As the void develops, the soil may collapse and compromise support, leading to additional secondary disaster risks and potential threats to pipeline safety. This research emphasizes the importance of effective pipe-soil interactions and provides theoretical insights for developing repair strategies for PCCP. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

14 pages, 3465 KiB  
Article
Revised Friction Groups for Evaluating Hydraulic Parameters: Pressure Drop, Flow, and Diameter Estimation
by Dejan Brkić
J. Mar. Sci. Eng. 2024, 12(9), 1663; https://doi.org/10.3390/jmse12091663 - 17 Sep 2024
Cited by 2 | Viewed by 2178
Abstract
Suitable friction groups are provided for solving three typical hydraulic problems. While the friction group based on viscous forces is used for calculating the pressure drop or head loss in pipes and open channels, commonly referred to as the Type 1 problem in [...] Read more.
Suitable friction groups are provided for solving three typical hydraulic problems. While the friction group based on viscous forces is used for calculating the pressure drop or head loss in pipes and open channels, commonly referred to as the Type 1 problem in hydraulic engineering, additional friction groups with similar behaviors are introduced for calculating steady flow discharge as the Type 2 problem and, for estimating hydraulic diameter as the Type 3 problem. Contrary to the viscous friction group, the traditional Darcy–Weisbach friction factor demonstrates a negative correlation with the Reynolds number. This results in curves that slope downward from small to large Reynolds numbers on the well-known Moody chart. In contrast, the friction group used here, based on viscous forces, establishes a more appropriate relationship. In this case, the friction and Reynolds number are positively correlated, meaning that both increase or decrease simultaneously. Here, rearranged diagrams for all three mentioned problems show similar behaviors. This paper compares the Moody diagram with the diagram for the viscous force friction group. The turbulent parts of both diagrams are based on the Colebrook equation, with the newly reformulated version using the viscous force friction group. As the Colebrook equation is implicit with respect to friction, requiring an iterative solution, an explicit solution using the Lambert W-function for the reformulated version is offered. Examples are provided for both pipes and open channel flow. Full article
(This article belongs to the Topic Advances in Environmental Hydraulics)
Show Figures

Figure 1

12 pages, 3083 KiB  
Article
The Influence of Grain Size on Microstructure Evolution in CeO2 under Xenon Ion Irradiation
by Penghui Lei, Xiaoyu Ji, Jie Qiu, Jiaxuan Si, Tao Peng, Changqing Teng and Lu Wu
Nanomaterials 2024, 14(18), 1498; https://doi.org/10.3390/nano14181498 - 15 Sep 2024
Cited by 2 | Viewed by 1222
Abstract
Large-grained UO2 is considered a potential accident-tolerant fuel (ATF) due to its superior fission gas retention capabilities. Irradiation experiments for cerium dioxide (CeO2), used as a surrogate fuel, is a common approach for evaluating the performance of UO2. [...] Read more.
Large-grained UO2 is considered a potential accident-tolerant fuel (ATF) due to its superior fission gas retention capabilities. Irradiation experiments for cerium dioxide (CeO2), used as a surrogate fuel, is a common approach for evaluating the performance of UO2. In this work, spark plasma sintered CeO2 pellets with varying grain sizes (145 nm, 353 nm, and 101 μm) and a relative density greater than 93.83% were irradiated with 4 MeV Xe ions at a fluence of 2 × 1015 ions/cm2 at room temperature, followed by annealing at 600 °C for 3 h. Microstructure, including dislocation loops and bubble morphology of the irradiated samples, has been characterized. The average size of dislocation loops increases with increasing grain size. Large-sized dislocation loops are absent near the grain boundary because the boundary absorbs surrounding defects and prevents the dislocation loops from coalescing and expanding. The distribution of bubbles within the grain is uniform, whereas the large-sized and irregularly shaped xenon bubbles observed in the small grain exhibit pipe diffusion along the grain boundaries. The bubble diameter in the large-grained pellet is the smallest. As the grain size increases, the volumetric swelling of the irradiated pellets decreases while the areal density of Xe bubbles increases. Elemental segregation, which tends to occur at dislocation loops and grain boundaries, has been analyzed. Large-grained CeO2 pellet with lower-density grain boundaries exhibits better resistance to volumetric swelling and elemental segregation, suggesting that large-grained UO2 pellets could serve as a potential ATF. Full article
Show Figures

Figure 1

14 pages, 5505 KiB  
Article
Study on the Influence of Thickness on the Pre-Bending Process of the JCOE Forming Plate Edge of Nickel-Based Alloy N08810
by Tuo Li, Chuanchuan Ma, Chun Xue, Hailian Gui, Meirong Shuai and Zhibing Chu
Metals 2024, 14(9), 1032; https://doi.org/10.3390/met14091032 - 11 Sep 2024
Viewed by 1056
Abstract
JCOE is a progressively advanced forming process that encompasses J-forming, C-forming, O-forming, and expansion technology. This methodology constitutes an efficacious means of producing high-strength pipes. In recent years, this process has been utilized in the manufacturing of small-diameter, thick-walled welded pipes using nickel-based [...] Read more.
JCOE is a progressively advanced forming process that encompasses J-forming, C-forming, O-forming, and expansion technology. This methodology constitutes an efficacious means of producing high-strength pipes. In recent years, this process has been utilized in the manufacturing of small-diameter, thick-walled welded pipes using nickel-based alloy N08810 plates. This study establishes a mathematical model for key parameters in the pre-bending process, rooted in JCOE forming and plastic bending theory, and introduces a process optimization approach. Initially, by refining the mold configuration and executing simulation analyses, we comprehensively delineate the stress–strain distribution and metal flow dynamics during pre-bending. Furthermore, we unravel the influence of varying plate thicknesses on both the pre-bending force and springback bending angle. Ultimately, the veracity of our theoretical model and simulation protocol is substantiated through rigorous experimentation. The findings indicate that the optimized mold configuration yields superior pre-bending forces and springback bending angles compared to conventional methods, thereby furnishing a solid theoretical foundation for industrial applications. Full article
Show Figures

Figure 1

Back to TopTop