Eliminating Inductive Coupling in Small-Loop TEM Through Differential Measurement with Opposing Coils
Abstract
1. Introduction
2. Materials and Methods
2.1. The Principle of Opposing Coil
2.2. The Method of Inductance Elimination in Opposing Coil Differential Measurement
2.3. Calculation of Full-Field Apparent Resistivity of Opposing Coil TEM Field
3. Results
3.1. Instrument Introduction and Measurement Parameters
3.2. Field Experiment with a High-Resistivity Corrugated Pipe
3.3. Field Test on Low-Resistance Gas Pipelines
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meju, M.; Fenning, P.; Hawkins, T. Evaluation of small-loop transient electromagnetic soundings to locate the Sherwood Sandstone aquifer and confining formations at well sites in the Vale of York, England. J. Appl. Geophys. 2000, 44, 217–236. [Google Scholar] [CrossRef]
- Ma, Y.; Hu, J.; Chang, Y.; Liu, Z. Study on the Coincident-Loop Transient Electromagnetic Method in Seafloor Exploration—Taking Jiaodong Polymetallic Mine as a Model. J. Earth Sci. 2021, 32, 25–41. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Z.; Tang, J. Research on full space transient electromagnetism technique for detecting aqueousstructures in coalmines. J. China Univ. Min. Technol. 2007, 17, 58–62. (In Chinese) [Google Scholar] [CrossRef]
- Qiao, Y.; Zhang, Z. The application of Transient Electromagnetic Method in detection of coal mine goaf. In Proceedings of the 2011 IEEE International Conference on Spatial Data Mining and Geographical Knowledge Services, Fuzhou, China, 9 June–1 July 2011; pp. 574–576. [Google Scholar] [CrossRef]
- Kolaj, M.; Smith, R.S. A multiple transmitter and receiver electromagnetic system for improved target detection. Geophysics 2015, 80, E247–E255. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, L.; Liu, S.; Yue, J. Surface-to-Underground Transient Electromagnetic Detection of Water-Bearing Goaves. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5303–5318. [Google Scholar] [CrossRef]
- Yu, C.; Fu, Z.; Wu, G.; Zhou, L.; Zhu, X.; Bao, M. Configuration Detection of Substation Grounding Grid Using Transient Electromagnetic Method. IEEE Trans. Ind. Electron. 2017, 64, 6475–6483. [Google Scholar] [CrossRef]
- Feng, G.; Wei, H.; Qi, T.; Pei, X.; Wang, H. A transient electromagnetic signal denoising method based on an improved variational mode decomposition algorithm. Measurement 2021, 184, 109815. [Google Scholar] [CrossRef]
- Christensen, N.B.; Halkjær, M. Mapping pollution and coastal hydrogeology with helicopterborne transient electromagnetic measurements. Explor. Geophys. 2014, 45, 243–254. [Google Scholar] [CrossRef]
- Asten, M.W.; Duncan, A.C. The quantitative advantages of using B-field sensors in time-domain EM measurement for mineral exploration and unexploded ordnance search. Geophysics 2012, 77, WB137–WB148. [Google Scholar] [CrossRef]
- Abu Rajab, J.S.; El-Naqa, A.R. Mapping groundwater salinization using transient electromagnetic and direct current resistivity methods in Azraq Basin, Jordan. Geophysics 2013, 78, B89–B101. [Google Scholar] [CrossRef]
- Frenkel, M.; Yakovlev, A. Land hydrocarbon exploration using novel time-domain electromagnetic technology. In Proceedings of the 83rd Annual International Meeting, SEG, Expanded Abstracts, Houston, TX, USA, 22–27 September 2013; pp. 780–784. [Google Scholar]
- Kukita, S.; Mizunaga, H. UXO detection using small loop TEM method. In Proceedings of the 11th SEGJ International Symposium, Yokohama, Japan, 18–21 November 2013; pp. 94–97. [Google Scholar]
- Fu, Z.; Wang, H.; Wang, Y.; Fu, N.; Tai, H.-M.; Qin, S. Elimination of mutual inductance effect for small-loop transient electromagnetic devices. Geophysics 2019, 84, E143–E154. [Google Scholar] [CrossRef]
- McNeill, J.D. PROTEM-47 Transient electromagnetic system manual. 1991. Available online: https://www.geonics.com/ (accessed on 20 December 2024).
- Hu, X.W.; Zhang, P.S.; Cheng, H.; Wu, R. Quantitative evaluation of bolt interference in down-hole transient electromagnetic advanced detection. J. Rock Mech. Eng. 2013, 32, 3275–3282. (In Chinese) [Google Scholar]
- Hu, X.W. Study on Transient Electromagnetic Response and Detection Technology of Water Body in Front of Roadway; Anhui University of Science and Technology: Huainan, China, 2014. (In Chinese) [Google Scholar]
- Asten, M.W.; Price, D.G. Transient EM sounding by the in/out-loop method. Explor. Geophys. 1985, 16, 165–168. [Google Scholar] [CrossRef]
- Eaton, P.G.; Hohmann, W. An Evaluation of Electromagnetic Methods In the Presence of Geologic Noise. Geology 1986, 52, 1033–1165. [Google Scholar] [CrossRef]
- Fitterman, D.V.; Anderson, W.L. Effect of transmitter turn-off time on transient soundings. Geoexploration 1987, 24, 131–146. [Google Scholar] [CrossRef]
- Smith, R.S.; Balch, S.J. Robust estimation of the band-limited inductive-limit response from impulse-response TEM measurements taken during the transmitter switch-off and the transmitter off-time: Theory and an example from Voisey’s Bay, Labrador, Canada. Geophysics 2000, 65, 476–481. [Google Scholar] [CrossRef]
- Kuzmin, P.V.; Morrison, E.B. Bucking Coil and B-Field Measurement System And Apparatus for Time Domain Electromagnetic Measurements. U.S. Patent 8786286, 23 June 2011. [Google Scholar]
- Shudong, C.; Yujie, W.; Shuang, Z. Bucking Coil Used in Airborne Transient Electromagnetic Survey. In Proceedings of the 2012 International Conference on Industrial Control and Electronics Engineering (ICICEE), Xi’an, China, 23–25 August 2012; pp. 478–481. [Google Scholar]
- Miles, P. Multi-Sensor System for Airborne Geophysical Prospecting and Method. U.S. Patent US2016178782, 20 March 2018. [Google Scholar]
- Li, S.N. Application Research of Mine Tunnel Hole Transient Electromagnetic Method; China University of Mining and Technology: Xuzhou, China, 2016. [Google Scholar] [CrossRef]
- Xi, Z.; Long, X.; Huang, L.; Zhou, S.; Song, G.; Hou, H.; Chen, X.; Wang, L.; Xiao, W.; Qi, Q. Opposing-coils transient electromagnetic method focused near-surface resolution. Geophysics 2016, 81, E279–E285. [Google Scholar] [CrossRef]
- Hu, X.W.; Chen, R.J.; Zhang, P.S. Development and experiment of transient electromagnetic common centerzero-flux coil. J. China Coal Soc. 2023, 48, 918–930. (In Chinese) [Google Scholar]
- Grover, F.W. Inductance Calculations: Working Formulas and Tables; Van Nostrand: New York, NY, USA, 1946. [Google Scholar]
- Raab, P.; Friscchknecht, F. Desktop Computer Processing of Concident and Central Loop Time Domain Electromagnetic Data; U.S.G.S open-File Report; U.S. Geological Survey: Sunrise Valley Drive Reston, VA, USA, 1983; pp. 83–240.
- Bai, D.; A Meju, M.; Lu, J.; Wang, L.; He, Z. Numerical calculation of All-Time Apparent Resistivity for Central Loop Transient Electromagnetic Method. Chin. J. Geophys. 2003, 46, 998–1010. [Google Scholar] [CrossRef]
- Li, W.Y.; Yan, C.W. Bisection Method for Solving Full-Phase Apparent Resistivity of Central-Loop Transient Electromagnetic Method. J. Kunming Univ. Sci. Technol. (Nat. Sci. Ed.) 2013, 38, 26–33. [Google Scholar]
Stratigraphic Name | Depth (m) | Resistivity (Ω·m) |
---|---|---|
Concrete pavement | 0.3 | >500 |
The filling | 0.3~2.0 | 150~200 |
Undisturbed soil | 2.0~12.5 | <100 |
Bedrock (Jurassic red sandstone) | >12.5 | About 200 |
Bellows cavity | 1~1.45 | >1 × 106 (air) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Yang, H.; Xia, T.; Wu, X.; Liu, S. Eliminating Inductive Coupling in Small-Loop TEM Through Differential Measurement with Opposing Coils. Remote Sens. 2025, 17, 254. https://doi.org/10.3390/rs17020254
Chen X, Yang H, Xia T, Wu X, Liu S. Eliminating Inductive Coupling in Small-Loop TEM Through Differential Measurement with Opposing Coils. Remote Sensing. 2025; 17(2):254. https://doi.org/10.3390/rs17020254
Chicago/Turabian StyleChen, Xinghai, Haiyan Yang, Tong Xia, Xiaoping Wu, and Shengdong Liu. 2025. "Eliminating Inductive Coupling in Small-Loop TEM Through Differential Measurement with Opposing Coils" Remote Sensing 17, no. 2: 254. https://doi.org/10.3390/rs17020254
APA StyleChen, X., Yang, H., Xia, T., Wu, X., & Liu, S. (2025). Eliminating Inductive Coupling in Small-Loop TEM Through Differential Measurement with Opposing Coils. Remote Sensing, 17(2), 254. https://doi.org/10.3390/rs17020254