Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = small unilamellar vesicles (SUVs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2011 KiB  
Article
High-Efficiency Drug Loading in Lipid Vesicles by MEMS-Driven Gigahertz Acoustic Streaming
by Bingxuan Li, Haopu Wang, Zhen Wang, Huikai Xie and Yao Lu
Micromachines 2025, 16(5), 562; https://doi.org/10.3390/mi16050562 - 7 May 2025
Viewed by 811
Abstract
Drug carriers hold significant promise for precision medicine but face persistent challenges in balancing high encapsulation efficiency with structural preservation during active loading. In this study, we present a microelectromechanical system (MEMS)-driven platform that can generate gigahertz (GHz)-frequency acoustic streaming (1.55 GHz) to [...] Read more.
Drug carriers hold significant promise for precision medicine but face persistent challenges in balancing high encapsulation efficiency with structural preservation during active loading. In this study, we present a microelectromechanical system (MEMS)-driven platform that can generate gigahertz (GHz)-frequency acoustic streaming (1.55 GHz) to enable nondestructive, power-tunable drug encapsulation in lipid vesicles. Utilizing DSPE-PEG-modified bilayers with hydrodynamic shear forces, our method achieves transient membrane permeability that preserves membrane integrity while permitting controlled doxorubicin (DOX) influx. We developed the GHz acoustic MEMS platform and applied it to systematically investigate two drug loading strategies: (1) loading DOX into giant unilamellar vesicles (GUVs, >10 μm in diameter) prior to extrusion into small unilamellar vesicles (SUVs, 100 nm) versus (2) direct acoustic loading into pre-formed SUVs. The GUV-first approach demonstrated better performance, achieving 60.04% ± 1.55% encapsulation efficiency (EE%) at 250 mW acoustic power—a 5.93% enhancement over direct SUV loading (54.11% ± 0.72%). Structural analysis via TEM confirmed intact SUV morphology post-loading, while power-dependent EE% analysis showed a linear trend. This work bridges gaps in nanocarrier engineering by optimizing drug loading strategies, aiming to offer a potential drug carrier platform for drug delivery in biomedical treatment in future. Full article
Show Figures

Figure 1

14 pages, 2738 KiB  
Article
Farnesol Inhibits PI3 Kinase Signaling and Inflammatory Gene Expression in Primary Human Renal Epithelial Cells
by Aline Müller, Maria Lozoya, Xiaoying Chen, Volkmar Weissig and Mahtab Nourbakhsh
Biomedicines 2023, 11(12), 3322; https://doi.org/10.3390/biomedicines11123322 - 15 Dec 2023
Cited by 3 | Viewed by 2039
Abstract
Chronic inflammation and elevated cytokine levels are closely associated with the progression of chronic kidney disease (CKD), which is responsible for the manifestation of numerous complications and mortality. In addition to conventional CKD therapies, the possibility of using natural compounds with anti-inflammatory potential [...] Read more.
Chronic inflammation and elevated cytokine levels are closely associated with the progression of chronic kidney disease (CKD), which is responsible for the manifestation of numerous complications and mortality. In addition to conventional CKD therapies, the possibility of using natural compounds with anti-inflammatory potential has attracted widespread attention in scientific research. This study aimed to study the potential anti-inflammatory effects of a natural oil compound, farnesol, in primary human renal proximal tubule epithelial cell (RPTEC) culture. Farnesol was encapsulated in lipid-based small unilamellar vesicles (SUVs) to overcome its insolubility in cell culture medium. The cell attachment of empty vesicles (SUVs) and farnesol-loaded vesicles (farnesol-SUVs) was examined using BODIPY, a fluorescent dye with hydrophobic properties. Next, we used multiple protein, RNA, and protein phosphorylation arrays to investigate the impact of farnesol on inflammatory signaling in RPTECs. The results indicated that farnesol inhibits TNF-α/IL-1β-induced phosphorylation of the PI3 kinase p85 subunit and subsequent transcriptional activation of the inflammatory genes TNFRSF9, CD27, TNFRSF8, DR6, FAS, IL-7, and CCL2. Therefore, farnesol may be a promising natural compound for treating CKD. Full article
(This article belongs to the Special Issue Signaling of Protein Kinases in Development and Disease)
Show Figures

Figure 1

17 pages, 4441 KiB  
Article
The Transport of Charged Molecules across Three Lipid Membranes Investigated with Second Harmonic Generation
by Baomei Xu, Jianhui Li, Shuai Zhang, Johar Zeb, Shunli Chen, Qunhui Yuan and Wei Gan
Molecules 2023, 28(11), 4330; https://doi.org/10.3390/molecules28114330 - 25 May 2023
Cited by 5 | Viewed by 2606
Abstract
Subtle variations in the structure and composition of lipid membranes can have a profound impact on their transport of functional molecules and relevant cell functions. Here, we present a comparison of the permeability of bilayers composed of three lipids: cardiolipin, DOPG (1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol), and [...] Read more.
Subtle variations in the structure and composition of lipid membranes can have a profound impact on their transport of functional molecules and relevant cell functions. Here, we present a comparison of the permeability of bilayers composed of three lipids: cardiolipin, DOPG (1,2-dioleoyl-sn-glycero-3-phospho-(1′-rac-glycerol), and POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol)). The adsorption and cross-membrane transport of a charged molecule, D289 (4-(4-diethylaminostyry)-1-methyl-pyridinium iodide), on vesicles composed of the three lipids were monitored by second harmonic generation (SHG) scattering from the vesicle surface. It is revealed that structural mismatching between the saturated and unsaturated alkane chains in POPG leads to relatively loose packing structure in the lipid bilayers, thus providing better permeability compared to unsaturated lipid bilayers (DOPG). This mismatching also weakens the efficiency of cholesterol in rigidifying the lipid bilayers. It is also revealed that the bilayer structure is somewhat disturbed by the surface curvature in small unilamellar vesicles (SUVs) composed of POPG and the conical structured cardiolipin. Such subtle information on the relationship between the lipid structure and the molecular transport capability of the bilayers may provide clues for drug development and other medical and biological studies. Full article
(This article belongs to the Topic Insight into Liquid/Fluid Interfaces)
Show Figures

Figure 1

21 pages, 5993 KiB  
Article
Bioinspired Nanoplatforms Based on Graphene Oxide and Neurotrophin-Mimicking Peptides
by Luigi Redigolo, Vanessa Sanfilippo, Diego La Mendola, Giuseppe Forte and Cristina Satriano
Membranes 2023, 13(5), 489; https://doi.org/10.3390/membranes13050489 - 30 Apr 2023
Cited by 5 | Viewed by 2753
Abstract
Neurotrophins (NTs), which are crucial for the functioning of the nervous system, are also known to regulate vascularization. Graphene-based materials may drive neural growth and differentiation, and, thus, have great potential in regenerative medicine. In this work, we scrutinized the nano–biointerface between the [...] Read more.
Neurotrophins (NTs), which are crucial for the functioning of the nervous system, are also known to regulate vascularization. Graphene-based materials may drive neural growth and differentiation, and, thus, have great potential in regenerative medicine. In this work, we scrutinized the nano–biointerface between the cell membrane and hybrids made of neurotrophin-mimicking peptides and graphene oxide (GO) assemblies (pep−GO), to exploit their potential in theranostics (i.e., therapy and imaging/diagnostics) for targeting neurodegenerative diseases (ND) as well as angiogenesis. The pep−GO systems were assembled via spontaneous physisorption onto GO nanosheets of the peptide sequences BDNF(1-12), NT3(1-13), and NGF(1-14), mimicking the brain-derived neurotrophic factor (BDNF), the neurotrophin 3 (NT3), and the nerve growth factor (NGF), respectively. The interaction of pep−GO nanoplatforms at the biointerface with artificial cell membranes was scrutinized both in 3D and 2D by utilizing model phospholipids self-assembled as small unilamellar vesicles (SUVs) or planar-supported lipid bilayers (SLBs), respectively. The experimental studies were paralleled via molecular dynamics (MD) computational analyses. Proof-of-work in vitro cellular experiments with undifferentiated neuroblastoma (SH-SY5Y), neuron-like, differentiated neuroblastoma (dSH-SY5Y), and human umbilical vein endothelial cells (HUVECs) were carried out to shed light on the capability of the pep−GO nanoplatforms to stimulate the neurite outgrowth as well as tubulogenesis and cell migration. Full article
(This article belongs to the Special Issue Nanotechnologies and Nanoparticles Interaction with Bio-Membranes)
Show Figures

Figure 1

18 pages, 3043 KiB  
Article
Interactions between DMPC Model Membranes, the Drug Naproxen, and the Saponin β-Aescin
by Pia Hägerbäumer, Friederike Gräbitz-Bräuer, Marco Annegarn, Carina Dargel, Tim Julian Stank, Thomas Bizien and Thomas Hellweg
Pharmaceutics 2023, 15(2), 379; https://doi.org/10.3390/pharmaceutics15020379 - 22 Jan 2023
Cited by 1 | Viewed by 2969
Abstract
In this study, the interplay among the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as a model membrane, the nonsteroidal anti-inflammatory drug naproxen, and the saponin β-aescin are investigated. The naproxen amount was fixed to 10 mol%, and the saponin amount varies from 0.0 [...] Read more.
In this study, the interplay among the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as a model membrane, the nonsteroidal anti-inflammatory drug naproxen, and the saponin β-aescin are investigated. The naproxen amount was fixed to 10 mol%, and the saponin amount varies from 0.0 to 1.0 mol%. Both substances are common ingredients in pharmaceutics; therefore, it is important to obtain deeper knowledge of their impact on lipid membranes. The size and properties of the DMPC model membrane upon naproxen and aescin addition were characterized with differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SAXS, WAXS), and photon correlation spectroscopy (PCS) in a temperature-dependent study. The interaction of all substances was dependent on the lipid phase state, which itself depends on the lipid’s main phase transition temperature Tm. The incorporation of naproxen and aescin distorted the lipid membrane structure and lowers Tm. Below Tm, the DMPC–naproxen–aescin mixtures showed a vesicle structure, and the insertion of naproxen and aescin influenced neither the lipid chain–chain correlation distance nor the membrane thickness. Above Tm, the insertion of both molecules instead induced the formation of correlated bilayers and a decrease in the chain–chain correlation distance. The presented data clearly confirm the interaction of naproxen and aescin with DMPC model membranes. Moreover, the incorporation of both additives into the model membranes is evidenced. Full article
Show Figures

Graphical abstract

13 pages, 2027 KiB  
Article
Farnesol-Loaded Nanoliposomes Inhibit Inflammatory Gene Expression in Primary Human Skeletal Myoblasts
by Eva Mückter, Maria Lozoya, Aline Müller, Volkmar Weissig and Mahtab Nourbakhsh
Biology 2022, 11(5), 701; https://doi.org/10.3390/biology11050701 - 2 May 2022
Cited by 4 | Viewed by 2662
Abstract
There is a substantial unmet need for the treatment of skeletal muscle mass loss that is associated with aging and obesity-related increases in FFA. Unsaturated FFAs stimulate the inflammatory gene expression in human skeletal myoblasts (SkMs). Farnesol is a hydrophobic acyclic sesquiterpene alcohol [...] Read more.
There is a substantial unmet need for the treatment of skeletal muscle mass loss that is associated with aging and obesity-related increases in FFA. Unsaturated FFAs stimulate the inflammatory gene expression in human skeletal myoblasts (SkMs). Farnesol is a hydrophobic acyclic sesquiterpene alcohol with potential anti-inflammatory effects. Here, we created farnesol-loaded small unilamellar (SUVs) or multilamellar lipid-based vesicles (MLVs), and investigated their effects on inflammatory gene expression in primary human skeletal myoblasts. The attachment of SUVs or MLVs to SkMs was tracked using BODIPY, a fluorescent lipid dye. The data showed that farnesol-loaded SUVs reduced FFA-induced IL6 and LIF expression by 77% and 70% in SkMs, respectively. Farnesol-loaded MLVs were less potent in inhibiting FFA-induced IL6 and LIF expression. In all experiments, equal concentrations of free farnesol did not exert significant effects on SkMs. This report suggests that farnesol, if efficiently directed into myoblasts through liposomes, may curb FFA-induced inflammation in human skeletal muscle. Full article
Show Figures

Figure 1

16 pages, 1703 KiB  
Review
Deciphering the Assembly of Enveloped Viruses Using Model Lipid Membranes
by Erwan Brémaud, Cyril Favard and Delphine Muriaux
Membranes 2022, 12(5), 441; https://doi.org/10.3390/membranes12050441 - 19 Apr 2022
Cited by 14 | Viewed by 6773
Abstract
The cell plasma membrane is mainly composed of phospholipids, cholesterol and embedded proteins, presenting a complex interface with the environment. It maintains a barrier to control matter fluxes between the cell cytosol and its outer environment. Enveloped viruses are also surrounded by a [...] Read more.
The cell plasma membrane is mainly composed of phospholipids, cholesterol and embedded proteins, presenting a complex interface with the environment. It maintains a barrier to control matter fluxes between the cell cytosol and its outer environment. Enveloped viruses are also surrounded by a lipidic membrane derived from the host-cell membrane and acquired while exiting the host cell during the assembly and budding steps of their viral cycle. Thus, model membranes composed of selected lipid mixtures mimicking plasma membrane properties are the tools of choice and were used to decipher the first step in the assembly of enveloped viruses. Amongst these viruses, we choose to report the three most frequently studied viruses responsible for lethal human diseases, i.e., Human Immunodeficiency Type 1 (HIV-1), Influenza A Virus (IAV) and Ebola Virus (EBOV), which assemble at the host-cell plasma membrane. Here, we review how model membranes such as Langmuir monolayers, bicelles, large and small unilamellar vesicles (LUVs and SUVs), supported lipid bilayers (SLBs), tethered-bilayer lipid membranes (tBLM) and giant unilamellar vesicles (GUVs) contribute to the understanding of viral assembly mechanisms and dynamics using biophysical approaches. Full article
(This article belongs to the Special Issue Model Lipid Membrane)
Show Figures

Figure 1

15 pages, 4785 KiB  
Article
Acetylcholinesterase Activity Influenced by Lipid Membrane Area and Surface Acoustic Waves
by Lukas G. Schnitzler, Kathrin Baumgartner, Anna Kolb, Benedikt Braun and Christoph Westerhausen
Micromachines 2022, 13(2), 287; https://doi.org/10.3390/mi13020287 - 11 Feb 2022
Cited by 4 | Viewed by 2271
Abstract
According to the current model of nerve propagation, the function of acetylcholinesterase (AChE) is to terminate synaptic transmission of nerve signals by hydrolyzing the neurotransmitter acetylcholine (ACh) in the synaptic cleft to acetic acid (acetate) and choline. However, extra-synaptic roles, which are known [...] Read more.
According to the current model of nerve propagation, the function of acetylcholinesterase (AChE) is to terminate synaptic transmission of nerve signals by hydrolyzing the neurotransmitter acetylcholine (ACh) in the synaptic cleft to acetic acid (acetate) and choline. However, extra-synaptic roles, which are known as ‘non-classical’ roles, have not been fully elucidated. Here, we measured AChE activity with the enzyme bound to lipid membranes of varying area per enzyme in vitro using the Ellman assay. We found that the activity was not affected by density fluctuations in a supported lipid bilayer (SLB) induced by standing surface acoustic waves. Nevertheless, we found twice as high activity in the presence of small unilamellar vesicles (SUV) compared to lipid-free samples. We also showed that the increase in activity scaled with the available membrane area per enzyme. Full article
(This article belongs to the Special Issue Lipid Bilayers on Chip, Volume II)
Show Figures

Graphical abstract

17 pages, 8231 KiB  
Article
Stable DOPG/Glycyrrhizin Vesicles with a Wide Range of Mixing Ratios: Structure and Stability as Seen by Scattering Experiments and Cryo-TEM
by Carina Dargel, Friederike Gräbitz-Bräuer, Ramsia Geisler, Pascal Fandrich, Yvonne Hannappel, Lionel Porcar and Thomas Hellweg
Molecules 2021, 26(16), 4959; https://doi.org/10.3390/molecules26164959 - 16 Aug 2021
Cited by 7 | Viewed by 3522
Abstract
Phosphatidylglycerols represent a large share of the lipids in the plasmamembrane of procaryotes. Therefore, this study investigates the role of charged lipids in the plasma membrane with respect to the interaction of the antiviral saponin glycyrrhizin with such membranes. Glycyrrhizin is a natural [...] Read more.
Phosphatidylglycerols represent a large share of the lipids in the plasmamembrane of procaryotes. Therefore, this study investigates the role of charged lipids in the plasma membrane with respect to the interaction of the antiviral saponin glycyrrhizin with such membranes. Glycyrrhizin is a natural triterpenic-based surfactant found in licorice. Vesicles made of 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1’-glycerol) (DOPG)/glycyrrhizin are characterized by small-angle scattering with neutrons and X-rays (SANS and SAXS). Small-angle scattering data are first evaluated by the model-independent modified Kratky–Porod method and afterwards fitted by a model describing the shape of small unilamellar vesicles (SUV) with an internal head-tail contrast. Complete miscibility of DOPG and glycyrrhizin was revealed even at a ratio of lipid:saponin of 1:1. Additional information about the chain-chain correlation distance of the lipid/saponin mixtures in the SUV structures is obtained from wide-angle X-ray scattering (WAXS). Full article
(This article belongs to the Special Issue Saponin-Rich Plant Extracts: Properties and Application)
Show Figures

Graphical abstract

12 pages, 2368 KiB  
Article
Effect of Shiga Toxin on Inhomogeneous Biological Membrane Structure Determined by Small-Angle Scattering
by Shuyang Tu, Haijiao Zhang, Yawen Li, Yongchao Zhang, Qiang Tian, László Almásy, Xianhui Xu, Rongguang Zhang, Aihua Zou and Na Li
Appl. Sci. 2021, 11(15), 6965; https://doi.org/10.3390/app11156965 - 28 Jul 2021
Cited by 1 | Viewed by 2123
Abstract
Inhomogeneous structure occurring in biological membranes being rich in glycosphingolipids (GSL) has been proposed as an important phenomenon involved in the cellular endocytosis process. However, little is known about the correlation between the formation of microdomains and the GSL-dependent biogenesis for tubular endocytic [...] Read more.
Inhomogeneous structure occurring in biological membranes being rich in glycosphingolipids (GSL) has been proposed as an important phenomenon involved in the cellular endocytosis process. However, little is known about the correlation between the formation of microdomains and the GSL-dependent biogenesis for tubular endocytic pits occurred on the surface of the cellular membrane. In the present work, the interaction between the bacterial Shiga toxin from Escherichia coli (STxB) and its cellular receptor GSL globotriaosylceramide (Gb3) were studied using small unilamellar vesicle (SUV). The model membrane invagination induced by STxB was determined by the contrast variation small-angle neutron scattering (SANS) and the synchrotron radiation facility based small-angle X-ray scattering (SR-SAXS). The results revealed that Gb3 molecules provided the binding sites for STxB, inducing increased membrane fluctuation. The formation of protein–lipid complex (STxB-Gb3) apparently induced the thinning of model membrane with the thickness decreased from 3.10 nm to 2.50 nm. It is the first time to successfully characterize the mesoscopic change on membrane thickness upon GSL-dependent endocytic process using a small-angle scattering technique. Overall, this paper provided a practical method to quantify the inhomogeneous biological membrane structures, which is important to understand the cellular endocytosis process. Full article
(This article belongs to the Special Issue Biological Small Angle Scattering Techniques and Applications)
Show Figures

Figure 1

16 pages, 5329 KiB  
Article
Synthesis and Nano-Sized Characterization of Bioactive Oregano Essential Oil Molecule-Loaded Small Unilamellar Nanoliposomes with Antifungal Potentialities
by Katya M. Aguilar-Pérez, Dora I. Medina, Jayanthi Narayanan, Roberto Parra-Saldívar and Hafiz M. N. Iqbal
Molecules 2021, 26(10), 2880; https://doi.org/10.3390/molecules26102880 - 13 May 2021
Cited by 29 | Viewed by 4037
Abstract
The development of greener nano-constructs with noteworthy biological activity is of supreme interest, as a robust choice to minimize the extensive use of synthetic drugs. Essential oils (EOs) and their constituents offer medicinal potentialities because of their extensive biological activity, including the inhibition [...] Read more.
The development of greener nano-constructs with noteworthy biological activity is of supreme interest, as a robust choice to minimize the extensive use of synthetic drugs. Essential oils (EOs) and their constituents offer medicinal potentialities because of their extensive biological activity, including the inhibition of fungi species. However, their application as natural antifungal agents are limited due to their volatility, low stability, and restricted administration routes. Nanotechnology is receiving particular attention to overcome the drawbacks of EOs such as volatility, degradation, and high sensitivity to environmental/external factors. For the aforementioned reasons, nanoencapsulation of bioactive compounds, for instance, EOs, facilitates protection and controlled-release attributes. Nanoliposomes are bilayer vesicles, at nanoscale, composed of phospholipids, and can encapsulate hydrophilic and hydrophobic compounds. Considering the above critiques, herein, we report the in-house fabrication and nano-size characterization of bioactive oregano essential oil (Origanum vulgare L.) (OEO) molecules loaded with small unilamellar vesicles (SUV) nanoliposomes. The study was focused on three main points: (1) multi-compositional fabrication nanoliposomes using a thin film hydration–sonication method; (2) nano-size characterization using various analytical and imaging techniques; and (3) antifungal efficacy of as-developed OEO nanoliposomes against Trichophyton rubrum (T. rubrum) by performing the mycelial growth inhibition test (MGI). The mean size of the nanoliposomes was around 77.46 ± 0.66 nm and 110.4 ± 0.98 nm, polydispersity index (PdI) of 0.413 ± 0.015, zeta potential values up to −36.94 ± 0.36 mV were obtained by dynamic light scattering (DLS). and spherical morphology was confirmed by scanning electron microscopy (SEM). The presence of OEO into nanoliposomes was displayed by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Entrapment efficiency values of 79.55 ± 6.9% were achieved for OEO nanoliposomes. In vitro antifungal activity of nanoliposomes tested against T. rubrum strains revealed that OEO nanoliposomes exhibited the highest MGI, 81.66 ± 0.86%, at a concentration of 1.5 µL/mL compared to the rest of the formulations. In summary, this work showed that bioactive OEO molecules with loaded nanoliposomes could be used as natural antifungal agents for therapeutical purposes against T. rubrum. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

15 pages, 2291 KiB  
Article
Comparison of the Efficacy of Two Novel Antitubercular Agents in Free and Liposome-Encapsulated Formulations
by Nikoletta Kósa, Ádám Zolcsák, István Voszka, Gabriella Csík, Kata Horváti, Lilla Horváth, Szilvia Bősze and Levente Herenyi
Int. J. Mol. Sci. 2021, 22(5), 2457; https://doi.org/10.3390/ijms22052457 - 28 Feb 2021
Cited by 11 | Viewed by 2616
Abstract
Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives—TB501 and TB515—were determined, with [...] Read more.
Tuberculosis is one of the top ten causes of death worldwide, and due to the appearance of drug-resistant strains, the development of new antituberculotic agents is a pressing challenge. Employing an in silico docking method, two coumaran (2,3-dihydrobenzofuran) derivatives—TB501 and TB515—were determined, with promising in vitro antimycobacterial activity. To enhance their effectiveness and reduce their cytotoxicity, we used liposomal drug carrier systems. Two types of small unilamellar vesicles (SUV) were prepared: multicomponent pH-sensitive stealth liposome (SUVmixed) and monocomponent conventional liposome. The long-term stability of our vesicles was obtained by the examination of particle size distribution with dynamic light scattering. Encapsulation efficiency (EE) of the two drugs was determined from absorption spectra before and after size exclusion chromatography. Cellular uptake and cytotoxicity were determined on human MonoMac-6 cells by flow cytometry. The antitubercular effect was characterized by the enumeration of colony-forming units on Mycobacterium tuberculosis H37Rv infected MonoMac-6 cultures. We found that SUVmixed + TB515 has the best long-term stability. TB515 has much higher EE in both types of SUVs. Cellular uptake for native TB501 is extremely low, but if it is encapsulated in SUVmixed it appreciably increases; in the case of TB515, quasi total uptake is accessible. It is concluded that SUVmixed + TB501 seems to be the most efficacious antitubercular formulation given the presented experiments; to find the most promising antituberculotic formulation for therapy further in vivo investigations are needed. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

16 pages, 4082 KiB  
Article
Development of Injectable PEGylated Liposome Encapsulating Disulfiram for Colorectal Cancer Treatment
by Mohammad Najlah, Ammar Said Suliman, Ibrahim Tolaymat, Sathishkumar Kurusamy, Vinodh Kannappan, Abdelbary M. A. Elhissi and Weiguang Wang
Pharmaceutics 2019, 11(11), 610; https://doi.org/10.3390/pharmaceutics11110610 - 14 Nov 2019
Cited by 71 | Viewed by 8104
Abstract
Disulfiram (DS), an anti-alcoholism medicine, shows strong anti-cancer activity in the laboratory, but the application in clinics for anti-cancer therapy has been limited by its prompt metabolism. Conventional liposomes have shown limited ability to protect DS. Therefore, the aim of this study is [...] Read more.
Disulfiram (DS), an anti-alcoholism medicine, shows strong anti-cancer activity in the laboratory, but the application in clinics for anti-cancer therapy has been limited by its prompt metabolism. Conventional liposomes have shown limited ability to protect DS. Therefore, the aim of this study is to develop PEGylated liposomes of DS for enhanced bio-stability and prolonged circulation. PEGylated liposomes were prepared using ethanol-based proliposome methods. Various ratios of phospholipids, namely: hydrogenated soya phosphatidylcholine (HSPC) or dipalmitoyl phosphatidylcholine (DPPC) and N-(Carbonyl-methoxypolyethylenglycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG2000) with cholesterol were used. DS was dissolved in the alcoholic solution in different lipid mol% ratios. The size of the resulting multilamellar liposomes was reduced by high-pressure homogenization. Liposomal formulations were characterized by size analysis, zeta potential, drug loading efficiency and stability in horse serum. Small unilamellar vesicles (SUVs; nanoliposomes) were generated with a size of approximately 80 to 120 nm with a polydispersity index (PDI) in the range of 0.1 to 0.3. Zeta potential values of all vesicles were negative, and the negative surface charge intensity tended to increase by PEGylation. PEGylated liposomes had a smaller size (80–90 nm) and a significantly lower PDI. All liposomes showed similar loading efficiencies regardless of lipid type (HSPC or DPPC) or PEGylations. PEGylated liposomes provided the highest drug biostability amongst all formulations in horse serum. PEGylated DPPC liposomes had t1/2 =77.3 ± 9.6 min compared to 9.7 ± 2.3 min for free DS. In vitro cytotoxicity on wild type and resistant colorectal cancer cell lines was evaluated by MTT assay. All liposomal formulations of DS were cytotoxic to both the wild type and resistant colorectal cancer cell lines and were able to reverse chemoresistance at low nanomolar concentrations. In conclusion, PEGylated liposomes have a greater potential to be used as an anticancer carrier for disulfiram. Full article
Show Figures

Graphical abstract

15 pages, 39497 KiB  
Article
Encapsulation of Curcumin-Loaded Liposomes for Colonic Drug Delivery in a pH-Responsive Polymer Cluster Using a pH-Driven and Organic Solvent-Free Process
by Vincenzo De Leo, Francesco Milano, Erminia Mancini, Roberto Comparelli, Livia Giotta, Angelo Nacci, Francesco Longobardi, Antonella Garbetta, Angela Agostiano and Lucia Catucci
Molecules 2018, 23(4), 739; https://doi.org/10.3390/molecules23040739 - 23 Mar 2018
Cited by 102 | Viewed by 8985
Abstract
The present study aimed to develop and optimize liposome formulation for the colonic delivery of biologically active compounds. A strategy to facilitate such targeting is to formulate liposomes with a polymer coating sensitive to the pH shifts in the gastrointestinal tract. To this [...] Read more.
The present study aimed to develop and optimize liposome formulation for the colonic delivery of biologically active compounds. A strategy to facilitate such targeting is to formulate liposomes with a polymer coating sensitive to the pH shifts in the gastrointestinal tract. To this end, liposomes encapsulating curcumin—chosen as the biologically active compound model—and coated with the pH-responsive polymer Eudragit S100 were prepared and characterized. Curcumin was encapsulated into small unilamellar vesicles (SUVs) by the micelle-to-vesicle transition method (MVT) in a simple and organic solvent-free way. Curcumin-loaded liposomes were coated with Eudragit S100 by a fast and easily scalable pH-driven method. The prepared liposomes were evaluated for size, surface morphology, entrapment efficiency, stability, in vitro drug release, and curcumin antioxidant activity. In particular, curcumin-loaded liposomes displayed size lower than 100 nm, encapsulation efficiency of 98%, high stability at both 4 °C and 25 °C, high in vitro antioxidant activity, and a cumulative release that was completed within 200 min. A good Eudragit S100 coating which did not alter the properties of the curcumin-loaded liposomes was obtained. The present work therefore provides a fast and solvent-free method to prepare pH-responsive polymer-coated liposomes for the colonic delivery of biologically active compounds. Full article
(This article belongs to the Special Issue Chemical Transformation of Renewable Material for Green Chemistry)
Show Figures

Figure 1

11 pages, 2351 KiB  
Communication
Topical Ocular Delivery of TGF-β1 to the Back of the Eye: Implications in Age-Related Neurodegenerative Diseases
by Chiara Bianca Maria Platania, Vincenzo Fisichella, Annamaria Fidilio, Federica Geraci, Francesca Lazzara, Gian Marco Leggio, Salvatore Salomone, Filippo Drago, Rosario Pignatello, Filippo Caraci and Claudio Bucolo
Int. J. Mol. Sci. 2017, 18(10), 2076; https://doi.org/10.3390/ijms18102076 - 30 Sep 2017
Cited by 40 | Viewed by 5100
Abstract
Dysregulation of the transforming growth factor-β1 (TGF-β1)/selected small mother against decapentaplegic (SMAD) pathway can be implicated in development of age-related macular degeneration (AMD), and the delivery of TGF-β1 could be beneficial for AMD. We developed a new ophthalmic formulation of TGF-β1 assessing the [...] Read more.
Dysregulation of the transforming growth factor-β1 (TGF-β1)/selected small mother against decapentaplegic (SMAD) pathway can be implicated in development of age-related macular degeneration (AMD), and the delivery of TGF-β1 could be beneficial for AMD. We developed a new ophthalmic formulation of TGF-β1 assessing the ocular pharmacokinetic profile of TGF-β1 in the rabbit eye. Small unilamellar vesicles (SUV) loaded with TGF-β1 were complemented with Annexin V and Ca2+, and the vitreous bioavailability of TGF-β1 was assessed after topical ocular administration by a commercial ELISA kit. We detected high levels of TGF-β1 (Cmax 114.7 ± 12.40 pg/mL) in the vitreous after 60 min (Tmax) from the topical application of the liposomal suspension. Ocular tolerability was also assessed by a modified Draize’s test. The new formulation was well tolerated. In conclusion, we demonstrated that the novel formulation was able to deliver remarkable levels of TGF-β1 into the back of the eye after topical administration. Indeed, this TGF-β1 delivery system may be useful in clinical practice to manage ophthalmic conditions such as age-related macular degeneration, skipping invasive intraocular injections. Full article
(This article belongs to the Special Issue Retinal Diseases: Bridging Basic and Clinical Research)
Show Figures

Graphical abstract

Back to TopTop