Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = small interfering RNA (siRNA), nanotechnology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2537 KiB  
Review
Topical Therapy in Psoriasis: Clinical Benefits, Advances in Novel Drug Delivery Strategies, and Gene Therapy Regimen
by Ying Zhu, Yong Zhou, Xiaonan Ma, Zhenduo Duan, Hong Xu, Yuanyuan Li, Yunfan Kong, Lei Yang and Xiaofei Xin
Pharmaceutics 2025, 17(3), 283; https://doi.org/10.3390/pharmaceutics17030283 - 20 Feb 2025
Cited by 3 | Viewed by 2001
Abstract
Psoriasis is a chronic inflammatory disease with a complex pathogenesis, influenced by various factors involving environment, genes, and immunity. The main symptoms of psoriasis include erythema, scales, itching, etc. At present, therapeutic drugs for psoriasis are continually evolving towards enhancing treatment efficacy and [...] Read more.
Psoriasis is a chronic inflammatory disease with a complex pathogenesis, influenced by various factors involving environment, genes, and immunity. The main symptoms of psoriasis include erythema, scales, itching, etc. At present, therapeutic drugs for psoriasis are continually evolving towards enhancing treatment efficacy and reducing side effects. Firstly, the pathogenesis and characteristics of psoriasis were summarized. Then, the types and benefits of topical therapy were introduced, such as the aspects of avoiding systemic toxic effects, first pass effect, and gastrointestinal reactions with accelerating the onset time of the drugs and improving its efficacy, and were compared to systemic drugs. In the case of methotrexate, cyclosporin A, Janus kinase (JAK) inhibitors, and phosphodiesterase-4 (PDE-4) inhibitors, this review had a further discussion on the improvement and translation of these molecules from systemic therapy to topical therapy in clinical practice. To further augment the limitation of skin permeability, nanotechnology and novel topical drug delivery system including nanomedicines, hydrogels, ionic liquids, and microneedles were elaborated for psoriasis management. Also, exploration of topical targeting pathogenic genes through small interfering RNA (siRNA) using nanoparticles and ionic liquids (ILs) is of great significance for long-term treatment in psoriasis. Taken together, the development of numerous topical delivery platforms is expected to achieve enhanced penetration, and precise and efficient delivery of small molecule and RNA interference (RNAi) therapeutics in psoriasis with clinical translation prospects. Full article
Show Figures

Graphical abstract

20 pages, 4245 KiB  
Article
Development of an Alcohol Dilution–Lyophilization Method for the Preparation of mRNA-LNPs with Improved Storage Stability
by Daiki Shirane, Hiroki Tanaka, Yu Sakurai, Sakura Taneichi, Yuta Nakai, Kota Tange, Itsuko Ishii and Hidetaka Akita
Pharmaceutics 2023, 15(7), 1819; https://doi.org/10.3390/pharmaceutics15071819 - 26 Jun 2023
Cited by 11 | Viewed by 5619
Abstract
The lipid nanoparticle (LNP) is one of the promising nanotechnologies for the delivery of RNA molecules, such as small interfering RNA (siRNA) and messenger RNA (mRNA). A series of LNPs that contain an mRNA encoding the antigen protein of SARS-CoV-2 were already approved [...] Read more.
The lipid nanoparticle (LNP) is one of the promising nanotechnologies for the delivery of RNA molecules, such as small interfering RNA (siRNA) and messenger RNA (mRNA). A series of LNPs that contain an mRNA encoding the antigen protein of SARS-CoV-2 were already approved as RNA vaccines against this infectious disease. Since LNP formulations are generally metastable, their physicochemical properties are expected to shift toward a more stable state during the long-time storage of suspensions. The current mRNA vaccines are supplied in the form of frozen formulations with a cryoprotectant for preventing deterioration. They must be stored in a freezer at temperatures from −80 °C to −15 °C. It is thought that therapeutic applications of this mRNA-LNP technology could be accelerated if a new formulation that permits mRNA-LNPs to be stored under milder conditions were available. We previously reported on a one-pot method for producing siRNA-encapsulated LNPs by combining freeze-drying technology with the conventional alcohol dilution method (referred to herein as the “alcohol dilution–lyophilization method”). In this study, this method was applied to the preparation of mRNA-LNPs to provide a freeze-dried formulation of mRNA LNPs. The resulting formulation can be stored at 4 °C for at least 4 months. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Graphical abstract

26 pages, 5412 KiB  
Article
Macrophage Reprogramming via the Modulation of Unfolded Protein Response with siRNA-Loaded Magnetic Nanoparticles in a TAM-like Experimental Model
by Annarita D’Urso, Francesca Oltolina, Chiara Borsotti, Maria Prat, Donato Colangelo and Antonia Follenzi
Pharmaceutics 2023, 15(6), 1711; https://doi.org/10.3390/pharmaceutics15061711 - 12 Jun 2023
Cited by 10 | Viewed by 2458
Abstract
New therapeutic strategies are required in cancer therapy. Considering the prominent role of tumor-associated macrophages (TAMs) in the development and progression of cancer, the re-education of TAMs in the tumor microenvironment (TME) could represent a potential approach for cancer immunotherapy. TAMs display an [...] Read more.
New therapeutic strategies are required in cancer therapy. Considering the prominent role of tumor-associated macrophages (TAMs) in the development and progression of cancer, the re-education of TAMs in the tumor microenvironment (TME) could represent a potential approach for cancer immunotherapy. TAMs display an irregular unfolded protein response (UPR) in their endoplasmic reticulum (ER) to endure environmental stress and ensure anti-cancer immunity. Therefore, nanotechnology could be an attractive tool to modulate the UPR in TAMs, providing an alternative strategy for TAM-targeted repolarization therapy. Herein, we developed and tested polydopamine-coupled magnetite nanoparticles (PDA-MNPs) functionalized with small interfering RNAs (siRNA) to downregulate the protein kinase R (PKR)-like ER kinase (PERK) expression in TAM-like macrophages derived from murine peritoneal exudate (PEMs). After the evaluation of the cytocompatibility, the cellular uptake, and the gene silencing efficiency of PDA-MNPs/siPERK in PEMs, we analyzed their ability to re-polarize in vitro these macrophages from M2 to the M1 inflammatory anti-tumor phenotype. Our results indicate that PDA-MNPs, with their magnetic and immunomodulator features, are cytocompatible and able to re-educate TAMs toward the M1 phenotype by PERK inhibition, a UPR effector contributing to TAM metabolic adaptation. These findings can provide a novel strategy for the development of new tumor immunotherapies in vivo. Full article
(This article belongs to the Special Issue Magnetic Nanoparticles for Bone Regeneration and Cancer Therapy)
Show Figures

Figure 1

20 pages, 3321 KiB  
Article
Potential of siRNA-Bearing Subtilosomes in the Treatment of Diethylnitrosamine-Induced Hepatocellular Carcinoma
by Fauzia Jamal, Ghufran Ahmed, Mohammad Farazuddin, Ishrat Altaf, Saba Farheen, Qamar Zia, Asim Azhar, Hira Ahmad, Aijaz Ahmed Khan, Satyanarayana Somavarapu, Anshu Agrawal and Mohammad Owais
Molecules 2023, 28(5), 2191; https://doi.org/10.3390/molecules28052191 - 27 Feb 2023
Cited by 4 | Viewed by 2480
Abstract
Therapeutics, based on small interfering RNA (siRNA), have demonstrated tremendous potential for treating cancer. However, issues such as non-specific targeting, premature degradation, and the intrinsic toxicity of the siRNA, have to be solved before they are ready for use in translational medicines. To [...] Read more.
Therapeutics, based on small interfering RNA (siRNA), have demonstrated tremendous potential for treating cancer. However, issues such as non-specific targeting, premature degradation, and the intrinsic toxicity of the siRNA, have to be solved before they are ready for use in translational medicines. To address these challenges, nanotechnology-based tools might help to shield siRNA and ensure its specific delivery to the target site. Besides playing a crucial role in prostaglandin synthesis, the cyclo-oxygenase-2 (COX-2) enzyme has been reported to mediate carcinogenesis in various types of cancer, including hepatocellular carcinoma (HCC). We encapsulated COX-2-specific siRNA in Bacillus subtilis membrane lipid-based liposomes (subtilosomes) and evaluated their potential in the treatment of diethylnitrosamine (DEN)-induced hepatocellular carcinoma. Our findings suggested that the subtilosome-based formulation was stable, releasing COX-2 siRNA in a sustained manner, and has the potential to abruptly release encapsulated material at acidic pH. The fusogenic property of subtilosomes was revealed by FRET, fluorescence dequenching, content-mixing assay, etc. The subtilosome-based siRNA formulation was successful in inhibiting TNF-α expression in the experimental animals. The apoptosis study indicated that the subtilosomized siRNA inhibits DEN-induced carcinogenesis more effectively than free siRNA. The as-developed formulation also suppressed COX-2 expression, which in turn up-regulated the expression of wild-type p53 and Bax on one hand and down-regulated Bcl-2 expression on the other. The survival data established the increased efficacy of subtilosome-encapsulated COX-2 siRNA against hepatocellular carcinoma. Full article
Show Figures

Figure 1

28 pages, 2738 KiB  
Review
Targeted Nanocarrier Delivery of RNA Therapeutics to Control HIV Infection
by Esinam E. Agbosu, Scott Ledger, Anthony D. Kelleher, Jing Wen and Chantelle L. Ahlenstiel
Pharmaceutics 2022, 14(7), 1352; https://doi.org/10.3390/pharmaceutics14071352 - 26 Jun 2022
Cited by 3 | Viewed by 3679
Abstract
Our understanding of HIV infection has greatly advanced since the discovery of the virus in 1983. Treatment options have improved the quality of life of people living with HIV/AIDS, turning it from a fatal disease into a chronic, manageable infection. Despite all this [...] Read more.
Our understanding of HIV infection has greatly advanced since the discovery of the virus in 1983. Treatment options have improved the quality of life of people living with HIV/AIDS, turning it from a fatal disease into a chronic, manageable infection. Despite all this progress, a cure remains elusive. A major barrier to attaining an HIV cure is the presence of the latent viral reservoir, which is established early in infection and persists for the lifetime of the host, even during prolonged anti-viral therapy. Different cure strategies are currently being explored to eliminate or suppress this reservoir. Several studies have shown that a functional cure may be achieved by preventing infection and also inhibiting reactivation of the virus from the latent reservoir. Here, we briefly describe the main HIV cure strategies, focussing on the use of RNA therapeutics, including small interfering RNA (siRNA) to maintain HIV permanently in a state of super latency, and CRISPR gRNA to excise the latent reservoir. A challenge with progressing RNA therapeutics to the clinic is achieving effective delivery into the host cell. This review covers recent nanotechnological strategies for siRNA delivery using liposomes, N-acetylgalactosamine conjugation, inorganic nanoparticles and polymer-based nanocapsules. We further discuss the opportunities and challenges of those strategies for HIV treatment. Full article
(This article belongs to the Special Issue Non-viral Gene Delivery Systems, 2nd Edition)
Show Figures

Figure 1

18 pages, 2299 KiB  
Review
Nanotechnology-Based siRNA Delivery Systems to Overcome Tumor Immune Evasion in Cancer Immunotherapy
by Kaili Deng, Dongxue Yang and Yuping Zhou
Pharmaceutics 2022, 14(7), 1344; https://doi.org/10.3390/pharmaceutics14071344 - 25 Jun 2022
Cited by 20 | Viewed by 3939
Abstract
Immune evasion is a common reason causing the failure of anticancer immune therapy. Small interfering RNA (siRNA), which can activate the innate and adaptive immune system responses by silencing immune-relevant genes, have been demonstrated to be a powerful tool for preventing or reversing [...] Read more.
Immune evasion is a common reason causing the failure of anticancer immune therapy. Small interfering RNA (siRNA), which can activate the innate and adaptive immune system responses by silencing immune-relevant genes, have been demonstrated to be a powerful tool for preventing or reversing immune evasion. However, siRNAs show poor stability in biological fluids and cannot efficiently cross cell membranes. Nanotechnology has shown great potential for intracellular siRNA delivery in recent years. Nano-immunotherapy can efficiently penetrate the tumor microenvironment (TME) and deliver multiple immunomodulatory agents simultaneously, which appears to be a promising method for combination therapy. Therefore, it provides a new perspective for siRNA delivery in immunomodulation and cancer immunotherapy. The current advances and challenges in nanotechnology-based siRNA delivery strategies for overcoming immune evasion will be discussed in this review. In addition, we also offer insights into therapeutic options, which may expand its applications in clinical cancer treatment. Full article
(This article belongs to the Special Issue Functional Nanocarrier Technology to Deliver siRNA for Cancer Therapy)
Show Figures

Figure 1

25 pages, 3074 KiB  
Review
Novel Perspectives towards RNA-Based Nano-Theranostic Approaches for Cancer Management
by Rabia Arshad, Iqra Fatima, Saman Sargazi, Abbas Rahdar, Milad Karamzadeh-Jahromi, Sadanand Pandey, Ana M. Díez-Pascual and Muhammad Bilal
Nanomaterials 2021, 11(12), 3330; https://doi.org/10.3390/nano11123330 - 8 Dec 2021
Cited by 38 | Viewed by 5299
Abstract
In the fight against cancer, early diagnosis is critical for effective treatment. Traditional cancer diagnostic technologies, on the other hand, have limitations that make early detection difficult. Therefore, multi-functionalized nanoparticles (NPs) and nano-biosensors have revolutionized the era of cancer diagnosis and treatment for [...] Read more.
In the fight against cancer, early diagnosis is critical for effective treatment. Traditional cancer diagnostic technologies, on the other hand, have limitations that make early detection difficult. Therefore, multi-functionalized nanoparticles (NPs) and nano-biosensors have revolutionized the era of cancer diagnosis and treatment for targeted action via attaching specified and biocompatible ligands to target the tissues, which are highly over-expressed in certain types of cancers. Advancements in multi-functionalized NPs can be achieved via modifying molecular genetics to develop personalized and targeted treatments based on RNA interference. Modification in RNA therapies utilized small RNA subunits in the form of small interfering RNAs (siRNA) for overexpressing the specific genes of, most commonly, breast, colon, gastric, cervical, and hepatocellular cancer. RNA-conjugated nanomaterials appear to be the gold standard for preventing various malignant tumors through focused diagnosis and delivering to a specific tissue, resulting in cancer cells going into programmed death. The latest advances in RNA nanotechnology applications for cancer diagnosis and treatment are summarized in this review. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Delivery and Cancer Therapy)
Show Figures

Figure 1

20 pages, 1683 KiB  
Review
Advances in Nanomaterials Used in Co-Delivery of siRNA and Small Molecule Drugs for Cancer Treatment
by Shei Li Chung, Maxine Swee-Li Yee, Ling-Wei Hii, Wei-Meng Lim, Mui Yen Ho, Poi Sim Khiew and Chee-Onn Leong
Nanomaterials 2021, 11(10), 2467; https://doi.org/10.3390/nano11102467 - 22 Sep 2021
Cited by 20 | Viewed by 4197
Abstract
Recent advancements in nanotechnology have improved our understanding of cancer treatment and allowed the opportunity to develop novel delivery systems for cancer therapy. The biological complexities of cancer and tumour micro-environments have been shown to be highly challenging when treated with a single [...] Read more.
Recent advancements in nanotechnology have improved our understanding of cancer treatment and allowed the opportunity to develop novel delivery systems for cancer therapy. The biological complexities of cancer and tumour micro-environments have been shown to be highly challenging when treated with a single therapeutic approach. Current co-delivery systems which involve delivering small molecule drugs and short-interfering RNA (siRNA) have demonstrated the potential of effective suppression of tumour growth. It is worth noting that a considerable number of studies have demonstrated the synergistic effect of co-delivery systems combining siRNA and small molecule drugs, with promising results when compared to single-drug approaches. This review focuses on the recent advances in co-delivery of siRNA and small molecule drugs. The co-delivery systems are categorized based on the material classes of drug carriers. We discuss the critical properties of materials that enable co-delivery of two distinct anti-tumour agents with different properties. Key examples of co-delivery of drug/siRNA from the recent literature are highlighted and discussed. We summarize the current and emerging issues in this rapidly changing field of research in biomaterials for cancer treatments. Full article
(This article belongs to the Special Issue Nanomaterials for Drug Delivery and Cancer Therapy)
Show Figures

Graphical abstract

36 pages, 2575 KiB  
Review
Recent Biomedical Approaches for Chitosan Based Materials as Drug Delivery Nanocarriers
by Andreea Teodora Iacob, Florentina Geanina Lupascu, Maria Apotrosoaei, Ioana Mirela Vasincu, Roxana Georgiana Tauser, Dan Lupascu, Simona Eliza Giusca, Irina-Draga Caruntu and Lenuta Profire
Pharmaceutics 2021, 13(4), 587; https://doi.org/10.3390/pharmaceutics13040587 - 20 Apr 2021
Cited by 97 | Viewed by 10171
Abstract
In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan [...] Read more.
In recent decades, drug delivery systems (DDSs) based on nanotechnology have been attracting substantial interest in the pharmaceutical field, especially those developed based on natural polymers such as chitosan, cellulose, starch, collagen, gelatin, alginate and elastin. Nanomaterials based on chitosan (CS) or chitosan derivatives are broadly investigated as promising nanocarriers due to their biodegradability, good biocompatibility, non-toxicity, low immunogenicity, great versatility and beneficial biological effects. CS, either alone or as composites, are suitable substrates in the fabrication of different types of products like hydrogels, membranes, beads, porous foams, nanoparticles, in-situ gel, microparticles, sponges and nanofibers/scaffolds. Currently, the CS based nanocarriers are intensely studied as controlled and targeted drug release systems for different drugs (anti-inflammatory, antibiotic, anticancer etc.) as well as for proteins/peptides, growth factors, vaccines, small DNA (DNAs) and short interfering RNA (siRNA). This review targets the latest biomedical approaches for CS based nanocarriers such as nanoparticles (NPs) nanofibers (NFs), nanogels (NGs) and chitosan coated liposomes (LPs) and their potential applications for medical and pharmaceutical fields. The advantages and challenges of reviewed CS based nanocarriers for different routes of administration (oral, transmucosal, pulmonary and transdermal) with reference to classical formulations are also emphasized. Full article
(This article belongs to the Special Issue Advanced Nanoscience of Biomaterials for Biomedical Applications)
Show Figures

Figure 1

28 pages, 9048 KiB  
Review
A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): “Lactosome” Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy
by Melissa Siaw Han Lim, Takashi Ohtsuki, Fumiaki Takenaka, Kazuko Kobayashi, Masaru Akehi, Hirotaka Uji, Hirotsugu Kobuchi, Takanori Sasaki, Eiichi Ozeki and Eiji Matsuura
Life 2021, 11(2), 158; https://doi.org/10.3390/life11020158 - 18 Feb 2021
Cited by 10 | Viewed by 5093
Abstract
“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” [...] Read more.
“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform. Full article
(This article belongs to the Special Issue Theranostics: Current and Future Perspectives)
Show Figures

Figure 1

24 pages, 1478 KiB  
Review
Bioengineered siRNA-Based Nanoplatforms Targeting Molecular Signaling Pathways for the Treatment of Triple Negative Breast Cancer: Preclinical and Clinical Advancements
by Dima Hattab and Athirah Bakhtiar
Pharmaceutics 2020, 12(10), 929; https://doi.org/10.3390/pharmaceutics12100929 - 29 Sep 2020
Cited by 27 | Viewed by 4913
Abstract
Triple negative breast cancer (TNBC) is one of the most aggressive types of breast cancer. Owing to the absenteeism of hormonal receptors expressed at the cancerous breast cells, hormonal therapies and other medications targeting human epidermal growth factor receptor 2 (HER2) are ineffective [...] Read more.
Triple negative breast cancer (TNBC) is one of the most aggressive types of breast cancer. Owing to the absenteeism of hormonal receptors expressed at the cancerous breast cells, hormonal therapies and other medications targeting human epidermal growth factor receptor 2 (HER2) are ineffective in TNBC patients, making traditional chemotherapeutic agents the only current appropriate regimen. Patients’ predisposition to relapse and metastasis, chemotherapeutics’ cytotoxicity and resistance and poor prognosis of TNBC necessitates researchers to investigate different novel-targeted therapeutics. The role of small interfering RNA (siRNA) in silencing the genes/proteins that are aberrantly overexpressed in carcinoma cells showed great potential as part of TNBC therapeutic regimen. However, targeting specificity, siRNA stability, and delivery efficiency cause challenges in the progression of this application clinically. Nanotechnology was highlighted as a promising approach for encapsulating and transporting siRNA with high efficiency-low toxicity profile. Advances in preclinical and clinical studies utilizing engineered siRNA-loaded nanotherapeutics for treatment of TNBC were discussed. Specific and selective targeting of diverse signaling molecules/pathways at the level of tumor proliferation and cell cycle, tumor invasion and metastasis, angiogenesis and tumor microenvironment, and chemotherapeutics’ resistance demonstrated greater activity via integration of siRNA-complexed nanoparticles. Full article
(This article belongs to the Special Issue Nanocarriers for Drug Delivery and/or Gene Therapy in Cancer)
Show Figures

Graphical abstract

14 pages, 5508 KiB  
Article
Anti-Metastatic Effects on Melanoma via Intravenous Administration of Anti-NF-κB siRNA Complexed with Functional Peptide-Modified Nano-Micelles
by Hisako Ibaraki, Takanori Kanazawa, Minami Owada, Keiko Iwaya, Yuuki Takashima and Yasuo Seta
Pharmaceutics 2020, 12(1), 64; https://doi.org/10.3390/pharmaceutics12010064 - 15 Jan 2020
Cited by 32 | Viewed by 4843
Abstract
Controlling metastasis is an important strategy in cancer treatment. Nanotechnology and nucleic acids with novel modalities are promising regulators of cancer metastasis. We aimed to develop a small interfering RNA (siRNA) systemic delivery and anti-metastasis system using nanotechnology. We previously reported that polyethylene [...] Read more.
Controlling metastasis is an important strategy in cancer treatment. Nanotechnology and nucleic acids with novel modalities are promising regulators of cancer metastasis. We aimed to develop a small interfering RNA (siRNA) systemic delivery and anti-metastasis system using nanotechnology. We previously reported that polyethylene glycol-polycaprolactone (PEG-PCL) and functional peptide CH2R4H2C nano-micelle (MPEG-PCL-CH2R4H2C) has high siRNA silencing effects, indicated by increased drug accumulation in tumor-bearing mice, and has an anti-tumor effect on solid tumors upon systemic injection. In this study, we aimed to apply our micelles to inhibit metastasis and evaluated the inhibitory effect of anti-RelA siRNA (siRelA), which is a subunit of NF-κB conjugated with MPEG-PCL-CH2R4H2C, via systemic administration. We report that siRelA/MPEG-PCL-CH2R4H2C had a high cellular uptake and suppressed the migration/invasion of cells in B16F10 cells without toxicity. In addition, in a lung metastasis mouse model using intravenous administration of B16F10 cells treated with siRelA/MPEG-PCL-CH2R4H2C, the number of lung nodules in lung tissue significantly decreased compared to naked siRelA and siControl/MPEG-PCL-CH2R4H2C micelle treatments. Hence, we show that RelA expression can reduce cancer metastasis, and MPEG-PCL-CH2R4H2C is an effective siRNA carrier for anti-metastasis cancer therapies. Full article
(This article belongs to the Special Issue Non-Viral Gene Delivery Systems)
Show Figures

Graphical abstract

34 pages, 7461 KiB  
Review
Natural Polysaccharides for siRNA Delivery: Nanocarriers Based on Chitosan, Hyaluronic Acid, and Their Derivatives
by Inés Serrano-Sevilla, Álvaro Artiga, Scott G. Mitchell, Laura De Matteis and Jesús M. de la Fuente
Molecules 2019, 24(14), 2570; https://doi.org/10.3390/molecules24142570 - 15 Jul 2019
Cited by 125 | Viewed by 11023
Abstract
Natural polysaccharides are frequently used in the design of drug delivery systems due to their biocompatibility, biodegradability, and low toxicity. Moreover, they are diverse in structure, size, and charge, and their chemical functional groups can be easily modified to match the needs of [...] Read more.
Natural polysaccharides are frequently used in the design of drug delivery systems due to their biocompatibility, biodegradability, and low toxicity. Moreover, they are diverse in structure, size, and charge, and their chemical functional groups can be easily modified to match the needs of the final application and mode of administration. This review focuses on polysaccharidic nanocarriers based on chitosan and hyaluronic acid for small interfering RNA (siRNA) delivery, which are highly positively and negatively charged, respectively. The key properties, strengths, and drawbacks of each polysaccharide are discussed. In addition, their use as efficient nanodelivery systems for gene silencing applications is put into context using the most recent examples from the literature. The latest advances in this field illustrate effectively how chitosan and hyaluronic acid can be modified or associated with other molecules in order to overcome their limitations to produce optimized siRNA delivery systems with promising in vitro and in vivo results. Full article
(This article belongs to the Special Issue Chitosan-Based Nanomaterials for Biomedical Applications)
Show Figures

Graphical abstract

23 pages, 538 KiB  
Review
Nano and Microtechnologies for the Delivery of Oligonucleotides with Gene Silencing Properties
by Giuseppe De Rosa and Maria Immacolata La Rotonda
Molecules 2009, 14(8), 2801-2823; https://doi.org/10.3390/molecules14082801 - 29 Jul 2009
Cited by 37 | Viewed by 17100
Abstract
Oligonucleotides (ONs) are synthetic fragments of nucleic acid designed to modulate the expression of target proteins. DNA-based ONs (antisense, antigene, aptamer or decoy) and more recently a new class of RNA-based ONs, the small interfering RNAs (siRNAs), have gained great attention for the [...] Read more.
Oligonucleotides (ONs) are synthetic fragments of nucleic acid designed to modulate the expression of target proteins. DNA-based ONs (antisense, antigene, aptamer or decoy) and more recently a new class of RNA-based ONs, the small interfering RNAs (siRNAs), have gained great attention for the treatment of different disease states, such as viral infections, inflammation, diabetes, and cancer. However, the development of therapeutic strategies based on ONs is hampered by their low bioavailability, poor intracellular uptake and rapid degradation in biological fluids. The use of a non-viral carrier can be a powerful tool to overcome these drawbacks. Lipid or polymer-based nanotechnologies can improve biological stability and cellular uptake of ONs, with possibility of tissue and/or cellular targeting. The use of polymeric devices can also produce a prolonged release of the ON, thus reducing the need of frequent administrations. This review summarizes advantages and issues related to the main non-viral vectors used for ON delivery. Full article
(This article belongs to the Special Issue Macromolecules Applied to Pharmaceutics)
Back to TopTop