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Abstract: Immune evasion is a common reason causing the failure of anticancer immune therapy.
Small interfering RNA (siRNA), which can activate the innate and adaptive immune system responses
by silencing immune-relevant genes, have been demonstrated to be a powerful tool for preventing or
reversing immune evasion. However, siRNAs show poor stability in biological fluids and cannot
efficiently cross cell membranes. Nanotechnology has shown great potential for intracellular siRNA
delivery in recent years. Nano-immunotherapy can efficiently penetrate the tumor microenvironment
(TME) and deliver multiple immunomodulatory agents simultaneously, which appears to be a
promising method for combination therapy. Therefore, it provides a new perspective for siRNA
delivery in immunomodulation and cancer immunotherapy. The current advances and challenges in
nanotechnology-based siRNA delivery strategies for overcoming immune evasion will be discussed
in this review. In addition, we also offer insights into therapeutic options, which may expand its
applications in clinical cancer treatment.

Keywords: small interfering RNA; immune evasion; nanoparticles; tumor microenvironment;
immunotherapy

1. Introduction

Cancer ranks as a one of the leading causes of death, with a substantial barrier to
extend life expectancy worldwide [1]. In the past 30 years, despite the significant progress
has been made for the mainstream cancer treatment methods including surgery, chemother-
apy, radiotherapy, or their combinations, increasingly empirical consensus has shown
that the failure of these standard treatments is largely attributable to inborn or acquired
therapeutic resistance [2]. Targeted therapy, gene therapy, and immunotherapy are newly
established treatment techniques that have expanded cancer treatment options and enabled
individualized medicine [3,4].

Unlike the targeted therapy or gene therapy, the effect of immunotherapy is achieved
by strengthening an anticancer immune response [5]. Although cancer immunotherapies
have demonstrated promise in several preclinical models, a limited proportion of patients
react to therapy [6]. The growth and progression of cancer are governed by immune
cells [7]. However, connections between immune system components and tumor cells in
TME frequently result in immune evasion, which enables cancer cells to evade killing by
immune cells [8]. Selecting tumor variants resistant to immune effectors and the continual
formation of an immunologically suppressive milieu within the tumor contribute to im-
mune evasion [9]. Indeed, it has been demonstrated that the recruitment and expansion of
immunosuppressive cells, such as regulatory T cells (Tregs), tumor-associated macrophages
(TAMs), and myeloid-derived suppressor cells (MDSCs), are related to tumor aggressive-
ness and poor prognosis [10]. For effective tumor control, therapeutic treatments focus on
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modifying the TME and/or reducing immunosuppression, as well as counteracting insuffi-
cient tumor immunogenicity and antigenicity [11]. Immunomodulatory substances such
as cytokines, adjuvants, and monoclonal antibodies are utilized to modify the TME and
enhance antitumor immunity [12]. Despite the preliminary success of immunotherapeutic
agents, some patients do not benefit from them. In addition, a substantial number of people
have been reported to suffer serious side effects, such as gastrointestinal, hematologic, and
endocrine illnesses, arthritis, dermatitis, neuropathy, and acute renal injury [13,14].

SiRNA is essential for efficiently suppressing multi-drug-resistance-related protein,
inhibiting tumorigenesis protein/suppressor mutations, and activating tumor-associated
immune cells [15,16]. Applying siRNA methodology in cancer treatment, particularly
beyond liver targets, has been intensively researched. However, as a significant draw-
back, unmodified siRNA is unstable in the bloodstream and is prone to immunogenicity.
Therefore, it cannot readily enter cells for crossing membranes [17]. The lack of unharmful
and convenient transport systems is a fundamental obstacle to realize the vast potential of
siRNA-based therapies [18]. As shown in Figure 1, chemical modifications and delivery
systems have been established to safely transport siRNA to its location of action [19]. At
present, the nanoparticles that are used as loading systems for antitumor drugs usually have
a size of 1–100 nm, including nano-liposomes, nano-polymers, nano-gene carriers, nano-
inorganic materials, and other drug carriers [20,21]. The active targeting can be achieved
by the targeted transportation modes of antitumor drug nanocarriers, including passive
transportation, active transportation, and physical and chemical transportation [22,23]. The
tumor microenvironment (TME) comprises a range of stimuli, such as enzymes, mildly
acidic pH, hypoxia, and GSH, which can help with the development of stimuli-responsive
nanoscale drug delivery systems (SRNDs). Because these SRNDs preserve their stealth
characteristics in the normal physiological environment, they are sensitive and release
their contents when homing in on particular lesions [24,25]. Therefore, in comparison to
conventional medications, nanotechnology-based siRNA delivery systems can alter the
immunosuppressive environment by targeting primary components in the TME, hence
enhancing the efficiency of cancer immunotherapy [15]. Furthermore, nano-siRNA may
increase retention time and enable targeted delivery, thus minimizing toxicity. The appli-
cation of nano-siRNA as a drug delivery strategy has been extensively explored [18]. In
general, nanotechnology-based siRNA delivery systems have predominantly evolved as
novel techniques for modifying the immune system in two ways [26]: initially, targeting
and/or removing immunosuppressive cells or pathways that implicated in tumor immune
evasion; secondly, activating cytotoxic T lymphocytes (CLTs) to generate immunogenic cell
death (ICD).

In this review, we summarize the immune evasion mechanisms that lead to the
failure of cancer treatment modalities. In addition, we also highlight the current ad-
vances and challenges in nanotechnology-based siRNA delivery strategies for overcoming
immune evasion.
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Figure 1. The mechanism of nanotechnology-based siRNA delivery systems. Utilizing delivery
materials, siRNA can be delivered directly into the cell. The siRNA is integrated into the RNA-
induced silencing complex (RISC) and the sense (passenger) strand is degraded by the RISC protein
Argo-2. The remaining antisense strand acts as a guide for recognizing the complementary messenger
RNA. The activated RISC–siRNA complex binds to and degrades the target mRNA, leading to the
silence of the target gene.

2. Immune Evasion Mechanisms in Tumor

Cancer immune surveillance is a crucial process that enables the immune system to
monitor, identify, and eliminate tumor cells during the early stages of carcinogenesis [27].
This process has three fundamental steps called elimination, balance, and escape [28].
Several investigations have revealed that the immune system has the potential to identify
and eliminate tumor cells via the recruitment of innate and adaptive effectors [29]. In the
context of antitumor responses, innate immunity promotes fast and non-specific responses,
while adaptive immunity is more specific [30]. The first line of protection is the innate
immune system, which detects microbes and endogenous danger signals by recognizing
damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns
(PAMPs) through host pattern recognition receptors (PRRs), such as Toll-like receptors
(TLRs) and nuclear receptors [31]. It has been reported that immune cells including NK
cells, monocytes/macrophages, and neutrophils can contribute to the elimination of tumor
cells through indirect or direct mechanisms, such as the generation of antitumor chemicals
or antibody-dependent cellular cytotoxicity (ADCC) [32]. Professional antigen-presenting
cells (APCs), such as dendritic cells (DCs), act as bridges between innate and adaptive
immunity, which connect activating T cells (CTL or helper T cells) and B cells [33]. DCs
move to neighboring lymph nodes (LN) during maturation, where they present tumor
antigens and activate tumor-specific CD4+ and CD8+ T cells [34]. Then, these tumor-specific
T lymphocytes will migrate to the tumor location and aid in its elimination.

Growing tumors can defy immune responses by excluding or hiding from immune
cells through intrinsic pathways [35] and extrinsic pathways [36], resulting in the formation
of a favorable environment for tumor development.

2.1. Intrinsic Mechanisms Mediating Immune Evasion

Tumor cells have evolved a variety of mechanisms to evade immune responses. Indeed,
these escape mechanisms are selected by the cancer cells after a period of engagement with
the immune system [37]. Multiple tumor cells exhibit reduced levels of MHC class I, down-
modulation of tumor antigens, and weak immunogenicity, which are highly associated
with tumor immune evasion (Figure 2).
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and the weak immunogenicity of tumor antigens may be owing to incorrect or non-expression of 
costimulatory molecules on tumor cells. (C) Downregulation of MHC-I expression: By evading 
immune identification by tumor cells, the ability of tumor-associated antigen (TAA)-specific CTLs 
to kill cancer cells is compromised. 
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preferentially [46]. Additionally, studies indicate that the lack of immunogenicity may be 
attributable to the improper expression or absence of costimulatory molecules on tumor 
cells [47]. 

Downregulation of MHC-I on tumor cells, a widely used tactic by tumor cells to 
evade specific immune responses, may be linked to coordinated silencing of antigen-
presenting machinery genes [48–50]. Direct or indirect mutations in genes encoding 
antigen processing or presentation components, such as proteasome subunits and 
endoplasmic reticulum peptide transporters, can inhibit the expression of MHC-I in 
malignant cells [50,51]. Evading immune recognition by tumor cells through 
downregulating the expression of MHC-I compromises the ability of tumor associated 

Figure 2. Tumor cells have evolved various strategies for evading immune responses. (A) Downregu-
lation of tumor antigens: Certain malignancies lack pre-existing tumor T cell infiltration, allowing
them to escape immunosurveillance due to low tumor antigen expression levels, resulting in inade-
quate APC recruitment and activation. (B) Weak immunogenicity: Immune selection permits tumors
with weak immunogenicity to avoid immune surveillance and grow preferentially, and the weak
immunogenicity of tumor antigens may be owing to incorrect or non-expression of costimulatory
molecules on tumor cells. (C) Downregulation of MHC-I expression: By evading immune identifica-
tion by tumor cells, the ability of tumor-associated antigen (TAA)-specific CTLs to kill cancer cells
is compromised.

To elicit an efficient antitumor response, antigen presentation requires two indepen-
dent steps. First, cancer antigens must be picked up by DCs and cross-presented to CD8+ T
cells for priming. Second, the tumor needs to directly deliver the antigens for detection and
killing by primed CD8+ T cells. Tumors employ a variety of mechanisms to avoid detection
by the immune system during both stages [38]. For example, tumor-specific CD8+ T cells
recognize and activate tumor antigens, and the particular killing of tumor cells is depen-
dent on the T cell receptors (TCR) specifically recognizing and attaching to MHC-I-peptide
complexes [39]. To successfully evade immune identification, tumor cells can change in the
interaction between MHC molecules and antigenic peptides, which have an effect on the
TCR recognition of MHC–antigenic peptide complexes [40,41]. Additionally, certain tumors
lack pre-existing tumor T cell infiltration, allowing them to elude immunosurveillance as a
result of low tumor antigen expression levels [41,42] The low expression levels of tumor
antigen result in poor APC recruitment and activation, hence impeding the beginning of an
efficient immunological response [43].

Immune surveillance can detect and kill tumor cells at the early stages of cellular
transformation [44]. However, since tumor cells vary in their immunogenicity, tumor cells
with strong immunogenicity can induce an effective antitumor immune response and
are easily eliminated, whereas tumor cells with weak immunogenicity can corrupt the
host’s antitumor immune response and arise, survive, and grow [45]. Immune selection
enables tumors cells with low immunogenicity to evade immune monitoring and proliferate



Pharmaceutics 2022, 14, 1344 5 of 18

preferentially [46]. Additionally, studies indicate that the lack of immunogenicity may be
attributable to the improper expression or absence of costimulatory molecules on tumor
cells [47].

Downregulation of MHC-I on tumor cells, a widely used tactic by tumor cells to evade
specific immune responses, may be linked to coordinated silencing of antigen-presenting
machinery genes [48–50]. Direct or indirect mutations in genes encoding antigen processing
or presentation components, such as proteasome subunits and endoplasmic reticulum pep-
tide transporters, can inhibit the expression of MHC-I in malignant cells [50,51]. Evading
immune recognition by tumor cells through downregulating the expression of MHC-I
compromises the ability of tumor associated antigen (TAA)-specific CTLs to kill cancer
cells but boosts recognition and killing by NK cells when total MHC I levels fall below a
threshold [52].

2.2. Extrinsic Mechanisms Mediating Immune Evasion

Immune cells, fibroblasts, endothelial cells, inflammatory cells, and lymphocytes make
up the TME, along with extracellular matrix (ECM), vasculature, and chemokines [53,54].
Immune cells are involved in innate and adaptive immune responses. The adaptive immune
system is capable of destroying tumor cells precisely and is perceived as the most efficient
means of removing malignancies [55]. The TME is distinguished by an atypical tumor
vasculature that appears and functions abnormally, resulting in a hypoxic condition [56]. In
addition, hypoxia in the TME can alter abilities of the normal microenvironment, increase
the growth of the tumor, and limit the therapeutic effects [57]. Thus, connections between
tumor cells and components of the TME influence tumor growth, metastasis, and clinical
outcome. TME has shown a significant effect on medication penetration and function,
as well as being connected with drug resistance and low response rates [58]. Effective
cancer remission is mediated by immunotherapy that induces sufficient immune responses.
Unfortunately, the interaction between the immune system and tumor cells leads to in-
creased immunosuppression in the TME and reduced immunogenicity of tumor cells,
allowing tumor cells to resist immune elimination [59,60]. Malignant cells secrete a variety
of chemokines and cytokines that encourage immune cells such as Tregs, TAMs, and MD-
SCs to infiltrate into the tumor [61]. Due to the regional production of immunosuppressive
cytokines, chemokines, and growth factors, as well as their interaction with TME compo-
nents, these immune cells are recognized as cancer immune suppressors (Figure 3) [62]. To
this end, researchers interested in cancer immunotherapy have placed a premium on TME
modulation.
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immunosuppressive factors in the TME and encourage tumor progression [63]. 
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Figure 3. Schematic view of the TME. Tregs exert immunosuppressive effects via the release of IL10,
IL-35, PFN, and GzmB. The preponderance of M2-like TAMs in the TME promotes tumor immune
evasion. TAMs suppress the immune system in a variety of ways, including the release of IL-10 and
TGF-β, activation of the IDO, and overexpression of the PD-L1 checkpoints. MDSCs limit CD8+ T
cell and natural killer cell responses via arginine, NO, ROS, and TGF-β.



Pharmaceutics 2022, 14, 1344 6 of 18

Tregs are a T cell subset with regulatory immunological capabilities that act as im-
munosuppressive factors in the TME and encourage tumor progression [63]. Chemokines
in the TME have been demonstrated to attract naturally existing Tregs from the thymus,
bone marrow, lymph nodes, and periphery via the Treg receptor CCR4, hence weakening
immunity [64].

Tregs largely contribute to the immune evasion of tumor cells by inhibiting effector
T cells and DCs via many mechanisms [65]. First, Tregs can secrete perforin (PFN) and
granzyme B (GzmB), which directly act on effector cells to promote apoptosis [66]. In
addition, Tregs could secrete immunosuppressive cytokines such as TGF-β, IL-10, and IL-35,
which attach to immunological cells and inhibit the immune system [67,68]. Furthermore,
numerous surface receptors, incorporating cytotoxic T lymphocyte-associated antigen-4
(CTLA-4) [68], programmed cell death protein 1 (PD-1), lymphocyte-activation gene 3
(LAG-3), T cell immunoglobulin, and mucin-containing molecule 3 (TIM-3) [69,70], as well
as upregulation of indoleamine 2,3-dioxygenase 1 (IDO) and activation of CD28 family-
induced costimulatory molecules (ICOS), contribute to the immunosuppressive function
of Tregs which promotes the secretion of inhibitory cytokines [71]. As a corollary, it is
envisaged that eliminating Tregs or inhibiting their immunosuppressive actions will restore
the antitumor effects of immunotherapies [72].

TAMs, which are myeloid-derived and tissue-resident macrophages prominent in
the microenvironment of solid tumors, become immunosuppressive when they interact
with tumor cells [73]. They have been shown to be critical ingredients of the TME and to
encourage tumor growth. TAMs seem to be synonymous with M2 macrophages due to that
they share M2 phenotypic traits, including boosting angiogenesis, reducing inflammation,
and matrix remolding [74].

TAMs are classified into two subtypes based on their cellular context: tumor-suppressive
M1 macrophages and tumor-promoting M2 macrophages [75]. Preclinical and clinical
research has revealed that TAMs are largely M2 phenotype, which participate in the tumori-
genesis and cancer progression [76]. M1 macrophages have microbicidal and anticancer
capabilities [77]. In comparison, anti-inflammatory cytokines IL-4, IL-10, and IL-13 are
secreted by M2 macrophages, as well as a reduction in reactive oxygen species (ROS), NO,
and TNF production, which are responsible for the anti-inflammatory effect [74,78].

The predominance of M2-like TAMs in the TME contributes to tumor immune evasion
and chemoresistance. Through the secretion of soluble substances such as IL6 and PGE2,
tumor cells directly stimulate the M2 polarization of macrophages [78,79]. M2-macrophages
induce a Th2-type response, which inhibits proinflammatory stimuli. TAMs exert their
immunosuppressive activity in a variety of ways, including the release of IL-10 and TGF-β,
activation of IDO, generation of prostaglandins, and upregulation of the programmed
death-ligand 1(PD-L1), programmed death-ligand 2 (PD-L2), and VISTA checkpoints [74].

MDSCs, as a heterogeneous population of immature myeloid cells, have a high level
of anti-T cell activity [80]. MDSCs accumulate in different kinds of tumors tissue, where
they enhance tumor invasion, angiogenesis, and metastasis while inhibiting antitumor
immunity [81]. Thus, MDSCs provide a vital function in helping tumor cells to evade
immune monitoring, thereby promoting tumor proliferation and progression [81]. The
accumulation of MDSCs in TME is primarily determined by two modulation schemes. To
begin, tumor cells induce MDSCs generation and recruitment via the secretion of stem
cell factor (SCF), granulocyte macrophage colony-stimulating factor (GM-CSF), granulo-
cyte colony-stimulating factor (G-CSF), vascular endothelial growth factor (VEGF), and
macrophage colony-stimulating factor (MCSF) [82–84]. The second class of signals consists
of cytokines and chemokines such as IL-4, IL-6, IL-1, and CXCL1, that are mostly produced
by the tumor stroma, which induce the suppressive activity of MDSCs via NF-κB, STAT1,
and STAT6 [83–85]. Intra-tumoral MDSCs can impair antitumor responses by upregulating
pathways involved in the production of arginine, ROS, and nitric oxide (NO), as well as
by secreting TGF-β, which can dampen effector T cells directly or indirectly to promote
immune evasion [86].
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3. Targeting Immunosuppressive Cells in the TME with Nanotechnology-Based
siRNA Delivery Systems

Strategies for TME regulation have received considerable attention in cancer im-
munotherapy. Unlike conventional treatment, nanocarriers with distinct physical prop-
erties and complex structures can successfully penetrate TME and distribute to specific
components [87]. At the same time, nanoparticles can increase the retention duration and
distribute drugs more precisely, thereby lowering toxicity [88]. Additionally, nanoparticles
have the potential to alter the immunosuppressive milieu within TME by targeting the
key components [89]. The deformed blood vessels and rapid development of tumor cause
hypoxia, which result in immunosuppression in TME through the accumulating immuno-
suppressive cells such as Tregs and MDSCs and secreting immunosuppressive factors such
as VEGF and TGF-β. This substitute impairs the functions of DCs, converting macrophages
to the tumor-promoting M2 phenotype, and resulting in immune evasion [90]. Nanoparti-
cles can target certain components in the TME and convert them to an immune supporting
state, hence increasing the efficacy of cancer immunotherapy [91]. Nanotechnology-based
siRNA delivery systems have been extensively investigated as potential novel therapy
modalities for a variety of cancers over the last few decades [92]. When modified with
various ligands, nanoparticles function as efficient drug delivery systems that can selec-
tively target TME components such as Tregs, macrophages, MDSCs, fibroblasts, tumor
vasculature, tdLNs, and the hypoxic state. By encapsulating siRNA in nanoparticles,
we can preserve siRNA from degradation and efficiently distribute it to tumor cells [93].
Nanotechnology-based siRNA delivery systems have been utilized extensively for in vivo
gene silencing and tumor therapy [94]. Here, we will discuss the specific siRNA delivery
systems used to target important immunosuppressive cell populations or pathways.

3.1. Targeted Delivery of siRNA to Tregs

Depletion of Tregs or inhibiting their immunosuppressive actions could restore the
antitumor activity of CTLs, hence preventing the development of tumors (Figure 4) [95].
Unfortunately, clinical implementation of Treg-depleting methods remains unsatisfied due
to the paucity of Treg cell-specific markers and small molecules that specifically target
Treg functions [96]. It has been reported that covalently linking siRNA to an aptamer (apt)
that specifically binds cytotoxic T lymphocyte-associated antigen 4 CTLA4 (apt) enables
gene silencing, as well as CTLA4-expressing malignant T cells. CTLA4 (apt) link to a
STAT3-targeting siRNA (CTLA4 (apt)-STAT3 siRNA), resulting in STAT3 suppression and
the activation of tumor antigen-specific T cells. Additionally, CTLA4(apt)-STAT3 siRNA
demonstrated a substantial inhibiting impact on tumor development and metastasis in a
variety of mouse tumor models [97]. Recent improvements in nanoparticles have facilitated
the creation of novel Treg-depleting strategies. For example, Wang et al. constructed
nanoparticles to deliver CTLA-4-siRNA (NPsiCTLA-4), which are used to transfer specific
siRNAs to T cells, therefore promoting the activation and proliferation of T cells. They
created siCTLA-4-encapsulated nanoparticles using a biocompatible and biodegradable
poly (ethylene glycol)-block-poly (D, L-lactide) (PEG5 k-PLA11 k) copolymer and N-bis(2-
hydroxyethyl)-N-methyl-N-(2-cholesteryloxycarbonyl aminoethyl) ammonium bromide
(BHEM-Chol). The findings confirmed that the nanocarrier delivery system could deliver
CTLA-4-siRNA to CD4+ and CD8+ T cell subsets at tumor sites, while decreasing the
proportion of suppressor Tregs among tumor-infiltrating lymphocytes (TILs), thereby
increasing the antitumor immune response of tumor-infiltrating T cells [98]. To investigate
the antitumor effects of various combined strategies, Zhang et al. created several spherical
nucleotide nanoparticles (SNPs) that were loaded with CTLA-4-siRNA aptamer (cSNPs),
PD-1 siRNA (pSNPs) or both (hybrid SNPs, or hSNPs). The findings showed that hSNPs
could promote considerably higher antitumor immune responses than a combination of
pSNPs and cSNPs (pSNPs and cSNPs),through regulating the immune suppressive function
of both Tregs and TIM3+ exhausted-like CD8 T cells [99]. Overall, utilizing nano-siRNA
delivery systems to achieve Tregs depletion may be a realistic strategy.
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3.2. Targeted Delivery of siRNA to TAMs

Repolarizing or eradicating regulatory TAMs is a strategy that may be plausible for
TAMs-targeted cancer immunotherapy (Figure 5) [100]. TAMs are an attractive population
cell for such endeavors due to their plasticity, which allows them to transition into M1-like
phenotype from M2-like phenotype. Additionally, macrophages readily internalize parti-
cles due to their natural phagocyte status, significantly increasing uptake efficiency [73].
Therefore, modifying the polarization of TAMs may impact their function, which has gar-
nered much attention [101]. Nanoparticles are capable of delivering medications specifically
to TAMs and modulating their polarized states, providing a promising strategy for cancer
immunotherapy [102]. Thus, inhibiting macrophage infiltration, preventing the formation
of M2-like TAMs, repolarizing majority M2-like TAMs to M1-like TAMs, or epigenetically
suppressing the release of M2-like TAM-induced factors in the TME may all be plausible
for TAMs-targeted cancer immunotherapy [103]. Toll-like receptor (TLR) agonists, such as
CpG oligodeoxynucleotides (CpG ODNs), can activate antitumor macrophages, but their
in vivo efficacy is limited due to the lack of effective delivery methods [104]. Naked CpG
ODNs cannot permeate cell membranes and are rapidly removed by nucleases, posing
a risk of an inflammatory reaction in the serum when given systemically [105,106]. It
has been demonstrated that nanoparticles can deliver TLR agonists to TAMs, selectively
concentrating in tumors and macrophages, eventually triggering TLR signaling and M1
polarization [107]. Therefore, a self-assembled nucleic acid system was used to construct
an efficient siRNA and CpG ODNs delivery system (CpG-siRNA-tFNA). The combination
of CpG-siRNA-tFNA efficiently polarized TAMs toward the M1 phenotype, which resulted
in an enhanced production of proinflammatory cytokine and activation of the NF-κB sig-
naling pathway, therefore eliciting robust anticancer immune responses. Furthermore, the
combination of CpG-siRNA-tFNA increased antitumor activity without causing systemic
toxicity in a mouse model of breast cancer xenograft [108].

Apart from altering the polarization of TAMs, another tactic is to impair their sur-
vival and function [109]. A recent study [110] used dual-targeting nanoparticles to deliver
siRNA to M2-like TAMs to develop a molecular-targeted cancer immunotherapy strategy.
A biocompatible fusion peptide-functionalized lipid nanoparticle with a dual-targeting
entity for specific M2-like TAM binding, a sub-30 nm size for efficient solid tumor pen-
etration [111], and stable loaded siRNA for systemic transport is the main component
of this method [112] Qian et al. developed a new M2-like TAM-targeting core–shell flu-
orescent lipid nanoparticle (M2 NP), whose structure and function were controlled by
α-peptide (a scavenger receptor B type 1 (SR-B1) targeting peptide) linked with M2 pep
(an M2 macrophage binding peptide) [110]. This nanocomplex, which is encoded with
anti-colony-stimulating factor-1 receptor siRNA on the M2 NP, is more selective and has
a higher affinity for TAMs than other macrophages. Compared to control groups, M2
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NP-based siRNA administration significantly reduced M2-like TAMs (52%), limited tumor
size, and prolonged survival. Additionally, this molecularly targeted method decreased
the production of immunosuppressive IL-10 and TGF-β, and enhanced the expression
immunostimulatory cytokines and infiltration of CD8+ T cells in the TEM. Furthermore, the
siRNA-carrying M2 NPs decreased the expression of PD-1 and Tim-3 on invading CD8+ T
cells and increased the production of IFN-γ, showing that T cell immunological activity has
been restored [110]. Thus, impairing the survival of TAMs with delivery of siRNA provides
a potential strategy for clinical application of molecular-targeted cancer immunotherapy.
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3.3. Targeted Delivery of siRNA to MDSCs

MDSCs are the primary facilitators of tumor survival and antitumor immune suppres-
sion, as evidenced by the secretion of Th2-type cytokines that lead to the development of
an immunosuppressive TME [113]. MDSCs are involved in tumor immune evasion [114].
Hence, the concept of reprogramming or reducing MDSCs as a therapeutic strategy is evolv-
ing as a unique method for the continual improvement of existing cancer immunotherapies
(Figure 5) [115]. Granulocytic MDSCs develop in patients with prostate cancer as the
disease progresses. Hossain et al. [116] established the feasibility of targeting MDSCs using
STAT3 siRNA to ameliorate arginase-dependent inhibition of T cells. The team developed
an innovative technique for precisely silencing genes in Toll-like Receptor-9 (TLR9) posi-
tive myeloid cells utilizing CpG-siRNA conjugates. Human granulocytic MDSCs express
TLR9 and rapidly internalize naked CpG-STAT3 siRNA, effectively suppressing the ex-
pression of STAT3. The inhibition of STAT3 abolishes the immunosuppressive effects of
MDSCs generated from patients’ effector CD8+ T cells. These results demonstrate the
viability of employing TLR9-targeted STAT3 siRNA delivery to reduce MDSC-mediated
immunosuppression [116].

With the goal of achieving potent antitumor immunity, an immunochemotherapy regi-
men based on a redox-responsive nano-assembly (R-mPDV/PDV/DOX/siL) was designed.
R-mPDV/PDV/DOX/siL was self-assembled by three synthesized amphiphilic polymers,
including mPEG-DA-PVL (mPDV), RGD-mal-PEG-DA-PVL (R-mPDV), and PAMAM-DA-
PVL (PDV), along with DOX encapsulated in core and LDHA siRNA (siL) compressed
by PAMAM. These redox-responsive carrier materials were synthesized by conjugating
hydrophobic polyester material PVL with hydrophilic mPEG or G2 PAMAM using 3,
3′-dithiodipropionic acid (DA) as the GSH-responsive linkage. This redox-responsive nano-
assembly combined the strategies of inhibiting cytokine-mediated MDSC recruitment via
LDHA silencing and enhancing tumor immunogenicity via anthracycline (DOX)-induced
ICD effects. After egressing from endosomes/lysosomes, R-mPDV/PDV/DOX/siL is
disintegrated by GSH-induced DA cleavage, enabling rapid drug release and very effec-
tive LDHA silencing. Reduced LDHA expression inhibits the production of G-CSF and
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GM-CSF cytokines, leading to inhibited MDSC recruitment and strengthened antitumor
immunity [117].

Overall, these investigations suggest that targeted MDSCs reduction with siRNA
delivery systems may be used as monotherapies or in conjunction with T cell-boosting
drugs to enhance therapeutic efficacy.

4. Targeted Delivery of siRNA to Checkpoint Inhibitors

Immune checkpoint blockade therapies have been developed as effective treatment
methods for a range of tumor types in recent years [118]. Checkpoint inhibitors inhibit the
expression of specialized proteins on the surfaces of tumor cells and immune cells that are
involved in immune evasion via the activation of certain signaling pathways [119]. PD-L1
is a type of cell membrane protein that is associated with tumor growth. By inhibiting the
ligand–receptor interaction of PD-1/PD-L1, it is possible to prevent the activation of the
PD-1/PD-L1 signaling pathway, reversing T cell fatigue and preventing immunological
responses in the tumor microenvironment (Figure 6) [120]. Therefore, monoclonal anti-
bodies against PD-1/PD-L1 have been the subject of numerous preclinical and clinical
studies [121,122].
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Since overexpression of PD-L1 on the surface of tumor cells contributes to immune
evasion, limiting PD-L1 expression has been proven to be an efficient method for facilitat-
ing immune system activation and inhibiting tumor development. Immune checkpoint
inhibition has been accomplished in this manner by preloading nanocarriers with siRNA
directed against specific checkpoint inhibitory pathways. Li et al. proposed using hy-
brid nanoparticles composed of polyethylene glycol-polylactic acid (PEG-PLA) and the
cationic lipid BHEM-Chol to deliver anti-CTLA-4 siRNA in a recent study [98]. Anti-
CTLA-4 siRNA-loaded nanoparticles were efficiently internalized by TILs (4–6%) after
systemic distribution, resulting in tumor growth reduction and longer survival in B16 F10
melanoma-bearing mice. Teo and colleagues constructed folic acid (FA)-functionalized
polyethyleneimine (PEI)-based nanoparticles to facilitate CTL-mediated killing of cancer
epithelial cells (SKOV-3) through the release of siRNA that targets the PD1/PD-L1 path-
way [123]. These findings reveal that siRNA-targeted silencing of PD-L1 can sensitize
cancer cells to T cell-mediated death. Likewise, Roeven et al. used a lipoplex vector
made up of SAINT-RED:DOPE liposomes precomplexed with anti-PD-L1 siRNA to achieve
efficient and long-term PD-L1 silencing without compromising DC maturation or viabil-
ity [124]. Together with other previously reported strategies for checkpoint inhibition,
the PD-L1-siRNA loaded lipoplexes represent an innovative approach for improving the
efficacy of antigen-specific immunotherapy, such as vaccines and ICD-inducing therapies,
without risking treatment safety and tolerability. A recent work referred to as NPs@apt
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developed a tailored siRNA delivery system for transfecting PD-L1 siRNA into A549 cells
to inhibit tumor immune evasion. The result revealed that PD-L1 siRNA was administered
precisely to A549 cells, resulting in PD-L1 gene silencing, T cell activation, and reduction of
tumor cell proliferation [125]. Additionally, this work developed an innovative method for
targeted siRNA transfection to enhance antitumor immunity. These studies have shown
that encapsulating siRNA in a nanoparticle can improve its stability and targetability,
potentially addressing the issue of undesirable toxic effects associated with checkpoint
blockade therapy.

5. Targeting Tumor Cells with Nano-siRNA: ICD-Inducing Strategies

Recent research suggests that traditional cancer therapies can be curative not only
through directly killing malignant cells, but also through the induction of innate and
adaptive antitumor responses, leading to the establishment of a new class of antitumor
treatments known as ICD-inducing strategies [126]. ICD-inducing therapies are character-
ized by their capacity to enhance APC activation, priming of tumor-specific CD8+ T cells,
and recruiting immune cells via the production of tumor antigens PAMPs and/or DAMPs,
including calreticulin (CRT), heat shock proteins (HSPs) 70 and 90, and high-mobility
group box 1 (HMGB1) (Figure 7) [127,128]. ICD has recently received considerable interest
since it can be triggered by a variety of stimuli and anticancer treatment techniques, such
as chemotherapy, radiotherapy, UVC irradiation, oncolytic viruses, and photodynamic
therapy (PDT) [127,129–131]. ICD might differ in terms of DAMP profile in response to
diverse stimulus and has also been associated with various cell death modalities, including
apoptosis, necroptosis [132,133], and ferroptosis [134].
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Figure 7. Diagrammatic illustration of the ICD mechanism. ICD-inducing strategies promote APC
activation and priming of tumor-specific CD8+ T cells through the release of tumor antigens, PAMPs,
and DAMPs, such as CRT, HSP70, HSP90, and HMG1.

Using siRNA-based nanocarriers to activate ICD is appearing as an attractive fresh
approach for producing a strong antigen-specific immune response, with potential to im-
prove the efficiency and reliability of traditional ICD treatments, such as chemotherapies
and PDT [135]. Several studies have demonstrated that the immunogenicity of these ICD-
inducing monotherapies can be further enhanced by combining ICD-inducing monothera-
pies with other TME-targeting immunotherapies, [136]. For instance, an exosome-based
dual-delivery biosystem has been demonstrated to enhance pancreatic ductal adenocar-
cinoma (PDAC) immunotherapy [136]. The delivery system is composed of exosomes
derived from bone marrow mesenchymal stem cells, electroporation-loaded galectin-9
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siRNA, and OXA prodrug used as an ICD inducer. Bone marrow mesenchymal stem
cells (BM-MSCs) exosomes dramatically enhance tumor targeting efficacy, resulting in
increased drug accumulation at the tumor location. The combination therapy (iEXO-OXA)
induces antitumor immunity via tumor-suppressive macrophage polarization, recruitment
of cytotoxic T cells, and downregulation of Tregs, and achieves considerable therapeutic
efficacy in PDAC treatment [137].

PDT is a new non-invasive light-triggered therapeutic approach that has been clini-
cally authorized and utilized to treat a range of malignancies [138]. PDT has the ability to
increase the immunogenicity of tumors by stimulating the production of tumor antigens
and triggering the release of a variety of DAMPs [139]. Nevertheless, due to tumor hypoxia
and immune evasion, PDT is inefficient, thus reducing their photosensitizing efficiency
and, consequently, the therapeutic effect [140]. Nanoparticles have successfully circum-
vented these constraints by delivering PDT in combination with immunotherapy [141].
Indocyanine green (ICG), which has notable near-infrared (NIR) optical properties within
the optimal biological window for biomedical applications, has been extensively studied for
NIR-fluorescence-guided imaging [142], as well as its great potential in PDT and photother-
mal therapy (PTT) due to deep permeation into tissues [143]. MnO2- and CaCO3-based
nanomaterials have received a lot of attention in recent years for their ability to function as
carriers for targeted medication delivery to regulate the TME inside solid tumors [144,145].
Herein, a nanoplatform of Mn@CaCO3/ICG@siRNA was designed and fabricated. The
walnut-shaped MnO2 nanoparticles were generated by reducing potassium permanganate
with polycyclic-aromatic hydrocarbons (PAH), and then the acquired MnO2 were modi-
fied with a pH-responsive CaCO3 cover layer while ICG was simultaneously entrapped.
PD-L1-targeting siRNA was loaded via electrostatic contact onto the positively charged
Mn@CaCO3/ICG to generate the nanoplatform (Mn@CaCO3/ICG). In vivo studies have
proven that the nanoplatform is capable of delivering the medicine to tumor tissues and
improving tumor hypoxia, hence enhancing the therapeutic efficiency of photodynamic
therapy. Additionally, the combinatorial effects of silencing the checkpoint gene PD-L1,
which mediates immune evasion, lead to a startling therapeutic impact on rousing the
immune system [146]. In summary, recent studies support the hypothesis that PDT is
a highly effective method for producing ICD in cancer immunotherapy. Nevertheless,
while the majority of research has used mouse models, clinical validation of this method is
important. PDT and ICD constitute an exciting field of research with numerous potential
applications in cancer treatment.

6. Conclusions and Future Perspectives

In recent years, immunotherapy has made great advancements in the treatment of
various solid tumor types. However, for the majority of patients, a positive initial reaction
to treatment diminishes over time, resulting in relapse and recurrence of cancer, limiting its
clinical use. A critical component that contributes to the limited response to immunother-
apies is the occurrence of numerous pathways regulating tumor immune suppression.
Understanding the molecular mechanisms underpinning immune evasion could identify
novel therapeutic targets for improving immunotherapy efficacy. Therefore, we reviewed
the immune evasion mechanisms that contribute to the failure of cancer immunotherapy in
this review.

The rapid growth of nanomedicine in recent years has provided fresh insights into
cancer immunotherapy. Due to the development of effective delivery mechanism, the engi-
neering of siRNA carriers has generated considerable interest, being capable of delivering
siRNA into tumor tissues and tumor cell cytoplasm. siRNA has shown the ability to target
any cancer-related genes, therefore establishing a new class of cancer therapies. The ideal
nanocarrier device would shield the RNAi therapeutic drug from the vascular environ-
ment and deliver it to tumor cells efficiently. We believe that nano-siRNA medications
have significant therapeutic potential in cancer treatment, and the significant progress in
siRNA-based formulation will continue to expand our understanding of their therapeutic
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potential. However, various obstacles must be overcome before they can become trustwor-
thy delivery systems. In part, the shortcomings of nano-siRNA in cancer immunotherapy
are partially due to our limited insufficient understanding of the immune network during
carcinogenesis. In light of the fact that innate and adaptive immunity comprise a complex
network, the effect of depleting or suppressing a particular component on the network
as a whole is still unknown. In the context of targeted drugs, suppression of one or more
components may be compensated by the overexpression of other processes. Second, it is
important to enhance modification of siRNA by nanocarriers to protect it from nuclease-
based degradation. Additionally, nanoparticle toxicity assays are underdeveloped at the
moment. Given the potential of nanoparticles’ physicochemical qualities to alter when
they combine with various biological molecules in the body, their final forms should be
carefully assessed. As a result, significant work is still required to improve the size, shape,
ligands, and other features of nanoparticles, as well as to identify possible dangers, before
they can be transferred into clinical practice. Endosomal escape strategies, cell and tissue
targeting, and the creation of novel biomaterials are critical for the translation of siRNA
from laboratory to clinical.

Author Contributions: Conceptualization, Y.Z.; writing: original draft preparation, K.D.; writing:
review and editing, K.D. and D.Y.; supervision, Y.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by Zhejiang Provincial Natural Science Foundation of China
under Grant No. Q22 H031268.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
[PubMed]

2. Ramos, A.; Sadeghi, S.; Tabatabaeian, H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int. J.
Mol. Sci. 2021, 22, 9451. [CrossRef] [PubMed]

3. Gotwals, P.; Cameron, S.; Cipolletta, D.; Cremasco, V.; Crystal, A.; Hewes, B.; Mueller, B.; Quaratino, S.; Sabatos-Peyton, C.;
Petruzzelli, L.; et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer
2017, 17, 286–301. [CrossRef] [PubMed]

4. Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat.
Rev. Immunol. 2020, 20, 651–668. [CrossRef] [PubMed]

5. Li, X.; Shao, C.; Shi, Y.; Han, W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J. Hematol.
Oncol. 2018, 11, 31. [CrossRef]

6. Wolchok, J.D.; Kluger, H.; Callahan, M.K.; Postow, M.A.; Rizvi, N.A.; Lesokhin, A.M.; Segal, N.H.; Ariyan, C.E.; Gordon, R.-A.;
Reed, K.; et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 2013, 369, 122–133. [CrossRef]

7. Hinshaw, D.C.; Shevde, L.A. The Tumor Microenvironment Innately Modulates Cancer Progression. Cancer Res. 2019,
79, 4557–4566. [CrossRef]

8. Vinay, D.S.; Ryan, E.P.; Pawelec, G.; Talib, W.H.; Stagg, J.; Elkord, E.; Lichtor, T.; Decker, W.K.; Whelan, R.L.; Kumara, H.M.C.S.;
et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin. Cancer Biol. 2015, 35, S185–S198. [CrossRef]

9. Passarelli, A.; Mannavola, F.; Stucci, L.S.; Tucci, M.; Silvestris, F. Immune system and melanoma biology: A balance between
immunosurveillance and immune escape. Oncotarget 2017, 8, 106132–106142. [CrossRef]

10. Tuccitto, A.; Shahaj, E.; Vergani, E.; Ferro, S.; Huber, V.; Rodolfo, M.; Castelli, C.; Rivoltini, L.; Vallacchi, V. Immunosuppressive
circuits in tumor microenvironment and their influence on cancer treatment efficacy. Virchows Arch. 2019, 474, 407–420. [CrossRef]

11. Allegrezza, M.J.; Conejo-Garcia, J.R. Targeted Therapy and Immunosuppression in the Tumor Microenvironment. Trends Cancer
2017, 3, 19–27. [CrossRef] [PubMed]

12. Goldberg, M.S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 2019, 19, 587–602. [CrossRef]
[PubMed]

http://doi.org/10.3322/caac.21660
http://www.ncbi.nlm.nih.gov/pubmed/33538338
http://doi.org/10.3390/ijms22179451
http://www.ncbi.nlm.nih.gov/pubmed/34502361
http://doi.org/10.1038/nrc.2017.17
http://www.ncbi.nlm.nih.gov/pubmed/28338065
http://doi.org/10.1038/s41577-020-0306-5
http://www.ncbi.nlm.nih.gov/pubmed/32433532
http://doi.org/10.1186/s13045-018-0578-4
http://doi.org/10.1056/NEJMoa1302369
http://doi.org/10.1158/0008-5472.CAN-18-3962
http://doi.org/10.1016/j.semcancer.2015.03.004
http://doi.org/10.18632/oncotarget.22190
http://doi.org/10.1007/s00428-018-2477-z
http://doi.org/10.1016/j.trecan.2016.11.009
http://www.ncbi.nlm.nih.gov/pubmed/28718424
http://doi.org/10.1038/s41568-019-0186-9
http://www.ncbi.nlm.nih.gov/pubmed/31492927


Pharmaceutics 2022, 14, 1344 14 of 18

13. Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al.
PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [CrossRef]

14. Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al.
Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [CrossRef] [PubMed]

15. Singh, A.; Trivedi, P.; Jain, N.K. Advances in siRNA delivery in cancer therapy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 274–283.
[CrossRef]

16. Ahlquist, P. RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 2002, 296, 1270–1273. [CrossRef]
17. Whitehead, K.A.; Langer, R.; Anderson, D.G. Knocking down barriers: Advances in siRNA delivery. Nat. Rev. Drug Discov. 2009,

8, 129–138. [CrossRef]
18. Charbe, N.B.; Amnerkar, N.D.; Ramesh, B.; Tambuwala, M.M.; Bakshi, H.A.; Aljabali, A.A.A.; Khadse, S.C.; Satheeshkumar, R.;

Satija, S.; Metha, M.; et al. Small interfering RNA for cancer treatment: Overcoming hurdles in delivery. Acta Pharm. Sin. B 2020,
10, 2075–2109. [CrossRef]

19. Aghamiri, S.; Jafarpour, A.; Malekshahi, Z.V.; Mahmoudi Gomari, M.; Negahdari, B. Targeting siRNA in colorectal cancer therapy:
Nanotechnology comes into view. J. Cell. Physiol. 2019, 234, 14818–14827. [CrossRef]

20. Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled drug delivery vehicles for cancer treatment and their performance.
Signal Transduct. Target. Ther. 2018, 3, 7. [CrossRef]

21. Steichen, S.D.; Caldorera-Moore, M.; Peppas, N.A. A review of current nanoparticle and targeting moieties for the delivery of
cancer therapeutics. Eur. J. Pharm. Sci. 2013, 48, 416–427. [CrossRef] [PubMed]

22. Thambi, T.; Park, J.H.; Lee, D.S.J.C.C. Hypoxia-responsive nanocarriers for cancer imaging and therapy: Recent approaches and
future perspectives. Chem. Commun. 2016, 52, 8492–8500. [CrossRef] [PubMed]

23. Zhang, Y.J.; Gallis, B.; Taya, M.; Wang, S.; Ho, R.J.Y.; Sasaki, T. pH-responsive artemisinin derivatives and lipid nanoparticle
formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members. PLoS ONE 2013,
8, e59086. [CrossRef]

24. Zhang, J.; Lin, Y.; Lin, Z.; Wei, Q.; Qian, J.; Ruan, R.; Jiang, X.; Hou, L.; Song, J.; Ding, J.; et al. Stimuli-Responsive Nanoparticles
for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. Adv. Sci. 2022, 9, e2103444. [CrossRef] [PubMed]
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