Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (74)

Search Parameters:
Keywords = slurry pumps

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5537 KiB  
Article
Predictive Study on the Cutting Energy Efficiency of Dredgers Based on Specific Cutting Energy
by Junlang Yuan, Ke Yang, Taiwei Yang, Haoran Xu, Ting Xiong and Shidong Fan
J. Mar. Sci. Eng. 2025, 13(3), 598; https://doi.org/10.3390/jmse13030598 - 18 Mar 2025
Viewed by 581
Abstract
The suction-lifting system of cutter suction dredgers consumes a large amount of energy. Optimizing their performance is of great significance for enhancing the overall efficiency of dredgers. This study proposes the effective specific cutting energy, a new indicator suitable for evaluating the energy [...] Read more.
The suction-lifting system of cutter suction dredgers consumes a large amount of energy. Optimizing their performance is of great significance for enhancing the overall efficiency of dredgers. This study proposes the effective specific cutting energy, a new indicator suitable for evaluating the energy consumption of the cutting system of cutter suction dredgers. It reflects the cooperation state between the cutter system and the pump-pipe system and has important reference value for improving construction efficiency. The calculation method of the effective specific cutting energy is given, which is calculated by the cutter motor power, slurry concentration, and slurry flow rate. Based on the machine learning framework, a model framework for predicting the specific cutting energy according to the relevant parameters of the suction-lifting system is constructed. Real ship data from the cutter suction dredger “Changshi 12” are used for experiments. First, eigenvalue screening is carried out based on the dredging knowledge and mechanism, then outliers are removed, and finally data processing is performed using Spearman correlation coefficient and PCA dimensionality reduction techniques. Subsequently, five machine learning algorithms, such as RF and XGBoost, are used in combination with a grid search to find the optimal hyperparameters, and Lasso is used as the meta-learner to integrate the prediction results. The experimental results show that the Random Forest and Stacking models have high prediction accuracy for slurry concentration, cutter motor power, and slurry flow rate, verifying the feasibility of this method. Full article
(This article belongs to the Special Issue Intelligent Systems for Marine Transportation)
Show Figures

Figure 1

15 pages, 8890 KiB  
Article
Application of Magnetic-Assisted Polishing Using Metal-Bonded Grinding Wheels for Machining Silicon Nitride Ball Bearings
by Su-Yeon Han, Seung-Min Lee, Ha-Neul Kim, Jae-Woong Ko and Tae-Soo Kwak
Materials 2025, 18(3), 677; https://doi.org/10.3390/ma18030677 - 3 Feb 2025
Viewed by 948
Abstract
Silicon nitride (Si3N4) is used for high-speed rotating bearings in machine tools, aircraft, and turbo pumps due to its excellent material properties such as high-temperature strength, hardness, and fracture toughness. Grinding with fixed abrasives enables high shape accuracy and [...] Read more.
Silicon nitride (Si3N4) is used for high-speed rotating bearings in machine tools, aircraft, and turbo pumps due to its excellent material properties such as high-temperature strength, hardness, and fracture toughness. Grinding with fixed abrasives enables high shape accuracy and high efficiency in machining brittle materials. However, it is difficult to completely remove surface damage, which limits its use in products requiring a nano surface. These defects also result in reduced reliability and shortened lifespan. Magnetic-assisted polishing (MAP) is a technology that can achieve a fine surface by using a mixture of iron powder and abrasives, but it requires a lot of time due to the low material removal rate (MRR). Therefore, this study developed a hybrid processing technology using a metal-bonded grinding wheel and a slurry with hard abrasives for the high precision of silicon nitride ceramic ball bearings. Experiments were conducted in order to compare and analyze the surface roughness and material removal rate. Through MAP, using a grinding wheel with low grit (#325), high-efficiency machining performance was confirmed with a maximum material removal rate of 1.193 mg/min. In MAP, using a grinding wheel with high grit (#2000), a nano-level surface roughness of 6.5 nm Ra was achieved. Full article
Show Figures

Figure 1

19 pages, 9368 KiB  
Article
On the Effect of Gas Content in Centrifugal Pump Operations with Non-Newtonian Slurries
by Nicola Zanini, Alessio Suman, Mattia Piovan and Michele Pinelli
Fluids 2025, 10(1), 12; https://doi.org/10.3390/fluids10010012 - 8 Jan 2025
Viewed by 966
Abstract
Non-Newtonian fluids are widespread in industry, e.g., biomedical, food, and oil and gas, and their rheology plays a fundamental role in choosing the processing parameters. Centrifugal pumps are widely employed to ensure the displacement of a huge amount of fluids due to their [...] Read more.
Non-Newtonian fluids are widespread in industry, e.g., biomedical, food, and oil and gas, and their rheology plays a fundamental role in choosing the processing parameters. Centrifugal pumps are widely employed to ensure the displacement of a huge amount of fluids due to their robustness and reliability. Since the pump performance is usually provided by manufacturers only for water, the selection of a proper pump to handle non-Newtonian fluids may prove very tricky. On-field experiences in pump operations with non-Newtonian slurries report severe head and efficiency drops, especially in part-load operations, whose causes are still not fully understood. Several models are found in the literature to predict the performance of centrifugal pumps with this type of fluids, but a lack of reliability and generality emerges. In this work, an extensive experimental campaign is carried out with an on-purpose test bench to investigate the effect of non-Newtonian shear-thinning fluids on the performance of a small commercial centrifugal pump. A dedicated experimental campaign is conducted to study the causes of performance drops. The results allow to establish a relationship between head and efficiency drops with solid content in the mixture. Sudden performance drops and unstable operating points are detected in part-load operations and the most severe drops are detected with the higher kaolin content in the mixture. Performance drop investigation allows to ascribe performance drop to gas-locking phenomena. Finally, a critical analysis is proposed to relate the resulting performance with both fluids’ rheology and the gas fraction trapped in the fluid. The results here presented can be useful for future numerical validation and predicting performance models. Full article
(This article belongs to the Special Issue Advances in Computational Mechanics of Non-Newtonian Fluids)
Show Figures

Figure 1

19 pages, 19600 KiB  
Article
Impacts of Remedial Techniques on Contamination Transport in Groundwater
by Walid M. A. Khalifa, Belkacem Achour, Tayyab Butt, Cyrus Raza Mirza, Heba Salah and Sherif M. El-Didy
Water 2024, 16(22), 3277; https://doi.org/10.3390/w16223277 - 14 Nov 2024
Viewed by 808
Abstract
The significance of groundwater is largely shaped by the quality of wastewater from industrial, agricultural, and municipal sources. Understanding the controlling factors is essential to prevent the spread of contamination in groundwater. These factors could be divided into physical defenses, such as grouting [...] Read more.
The significance of groundwater is largely shaped by the quality of wastewater from industrial, agricultural, and municipal sources. Understanding the controlling factors is essential to prevent the spread of contamination in groundwater. These factors could be divided into physical defenses, such as grouting and slurry walls, and hydrodynamic factors, such as injection and pumping wells. In this study, the groundwater transport model (MT3D) and the flow model (MODFLOW) were used to simulate four scenarios for groundwater protection. The first and second scenarios involve grouting and constructing slurry walls to change their depth, permeability, and thickness. The third and fourth scenarios involve injection and pumping wells changing the rate of flow, screen length, and the number of wells. The results show that increasing the thickness of the grouted soil and increasing the grouting depth help to control the level of contamination. Furthermore, multi-slurry walls upstream or downstream of the contamination source are sufficient for preventing the spread of contaminants. The results also reveal that rising rates of injection or pumping wells allow for minimal contamination propagation. The growing number of wells provided greater control over the injection rather than pumping wells. The variation in the screen length of pumping wells is effective for preventing the propagation of contamination. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

31 pages, 5958 KiB  
Article
Biogas Production from a Solar-Heated Temperature-Controlled Biogas Digester
by Francis Makamure, Patrick Mukumba and Golden Makaka
Sustainability 2024, 16(22), 9894; https://doi.org/10.3390/su16229894 - 13 Nov 2024
Cited by 3 | Viewed by 4495
Abstract
This research paper explores biogas production in an underground temperature-controlled fixed dome digester and compares it with a similar uncontrolled digester. Two underground fixed-dome digesters, one fitted with a solar heating system and a stirrer and the other one with an identical stirrer [...] Read more.
This research paper explores biogas production in an underground temperature-controlled fixed dome digester and compares it with a similar uncontrolled digester. Two underground fixed-dome digesters, one fitted with a solar heating system and a stirrer and the other one with an identical stirrer only, were batch-fed with cow dung slurry collected from the University of Fort Hare farm and mixed with water in a ratio of 1:1. The solar heating system consisted of a solar geyser, pex-al-pex tubing, an electric ball valve, a water circulation pump, an Arduino aided temperature control system, and a heat exchanger located at the centre of the digester. Both the digesters were intermittently stirred for 10 min every 4 h. The digester without a heating system was used as a control. Biogas production in the two digesters was compared to assess the effect of solar heating on biogas production. The total solids, volatile solids, and the chemical oxygen demand of the cow dung used as substrate were determined before and after digestion. These were compared together with the cumulative biogas produced and the methane content for the controlled and uncontrolled digesters. It was observed that the temperature control system kept the slurry temperature in the controlled digester within the required range for 82.76% of the retention period, showing an efficiency of 82.76%. Some maximum temperature gradients of 7.0 °C were observed in both the controlled and uncontrolled digesters, showing that the stirrer speed of 30 rpm was not fast enough to create the needed vortex for a uniform mix in the slurry. It was further observed that the heat from the solar geyser and the ground insulation were sufficient to keep the digester temperature within the required temperature range without any additional heat source even at night. Biogas yield was observed to depend on the pH with a strong coefficient of determination of 0.788 and 0.755 for the controlled and uncontrolled digesters, respectively. The cumulative biogas was 26.77 m3 and 18.05 m3 for controlled and uncontrolled digesters, respectively, which was an increase of 33%. The methane content increased by 14% while carbon dioxide decreased by 10% from the uncontrolled to the controlled scenario. The percentage removal of the TS, VS, and COD was 66.26%, 76.81%, and 74.69%, respectively, compared to 47.01%, 60.37%, and 57.86% for the uncontrolled situation. Thus, the percentage removal of TS, VS, and COD increased by 19.25%, 16.44%, and 16.89%, respectively. Full article
Show Figures

Figure 1

28 pages, 16454 KiB  
Article
Investigation and Improvement of Centrifugal Slurry Pump Wear Characteristics via CFD-DEM Coupling
by Zengqiang Wang, Guangjie Peng, Hao Chang, Shiming Hong and Guangchao Ji
Water 2024, 16(21), 3050; https://doi.org/10.3390/w16213050 - 24 Oct 2024
Cited by 2 | Viewed by 1460
Abstract
Centrifugal slurry pumps are extensively applied in industrial industries such as power metallurgy, petrochemicals, deep-sea mining, and other industrial fields. The primary objective of this research is to assess how conveying settings and particle characteristics influence the 100SHL4147 slurry pump’s collision and erosion [...] Read more.
Centrifugal slurry pumps are extensively applied in industrial industries such as power metallurgy, petrochemicals, deep-sea mining, and other industrial fields. The primary objective of this research is to assess how conveying settings and particle characteristics influence the 100SHL4147 slurry pump’s collision and erosion properties. Firstly, the computational fluid dynamics–discrete element method (CFD-DEM) coupling model fully coupled particle–fluid co-flow numerical simulation interface is built by utilizing the C++ language and the results are proven with tests. Subsequently, the simulation examines the wear properties of different sections through which the flow passes in the 100SHL4147 centrifugal slurry pump. In addition, following theoretical guidance, the slurry pump impeller’s wear resistance performance can be improved by adjusting design factors such as the intake edge location and the blade wrap angle. The results are as follows. It is recommended to replace the impeller promptly due to the findings that indicate that the entire blade’s pressure surface is vulnerable to different degrees of erosion under high-concentration situations. When the particle size increased from 0.4 to 0.8 mm, the wear rate decreased by up to 15%, as fewer particles were transported, lowering the collision frequency. Conversely, smaller particles intensify component wear. Adjusting the blade wrap angle from 66° to 96° reduced impeller and volute wear by an estimated 20%, enhancing the durability but slightly decreasing the delivery capacity. Extending the blade’s leading edge toward the intake improved the flow capacity, although it increased the wear frequency from one-third of the pressure surface to the trailing edge. Full article
(This article belongs to the Special Issue Hydrodynamic Science Experiments and Simulations)
Show Figures

Figure 1

25 pages, 7118 KiB  
Article
A Fault Diagnosis Method for Electric Check Valve Based on ResNet-ELM with Adaptive Focal Loss
by Weijia Xiang, Yunru Wu, Cheng Peng, Kaicheng Cai, Hongbing Ren and Yuming Peng
Electronics 2024, 13(17), 3426; https://doi.org/10.3390/electronics13173426 - 29 Aug 2024
Cited by 2 | Viewed by 828
Abstract
Under the trend of carbon neutrality, the adoption of electric mineral transportation equipment is steadily increasing. Accurate monitoring of the operational status of electric check valves in diaphragm pumps is crucial for ensuring transportation safety. However, accurately identifying the operational characteristics of electric [...] Read more.
Under the trend of carbon neutrality, the adoption of electric mineral transportation equipment is steadily increasing. Accurate monitoring of the operational status of electric check valves in diaphragm pumps is crucial for ensuring transportation safety. However, accurately identifying the operational characteristics of electric check valves under complex excitation and noisy environments remains challenging. This paper proposes a monitoring method for the status of electric check valves based on the integration of Adaptive Focal Loss (AFL) with residual networks and Extreme Learning Machines (AFL-ResNet-ELMs). Firstly, to address the issue of unclear feature representation in one-dimensional vibration signals, grayscale operations are employed to transform the one-dimensional data into grayscale images with more distinct features. Residual networks are then utilized to extract the state features of the check valve, with Extreme Learning Machines serving as the feature classifier. Secondly, to overcome the issue of imbalanced industrial data distribution, a new Adaptive Focal Loss function is designed. This function focuses the training process on difficult-to-classify data samples, balancing the recognition difficulty across different samples. Finally, experimental studies are conducted using industrially measured vibration data of the electric check valve. The results indicate that the proposed method achieves an average accuracy of 99.60% in identifying four health states of the check valve. This method provides a novel approach for the safety monitoring of slurry pipeline transportation processes. Full article
Show Figures

Figure 1

24 pages, 6311 KiB  
Article
Air-Lift Pumping System for Hybrid Mining of Rare-Earth Elements-Rich Mud and Polymetallic Nodules around Minamitorishima Island
by Yoshiyuki Shimizu, Masatoshi Sugihara, Koichiro Fujinaga, Kentaro Nakamura and Yasuhiro Kato
J. Mar. Sci. Eng. 2024, 12(9), 1470; https://doi.org/10.3390/jmse12091470 - 23 Aug 2024
Cited by 2 | Viewed by 1526
Abstract
REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to [...] Read more.
REE-rich mud under the seabed at a 5500–5700 m water depth around Minamitorishima island and polymetallic nodules buried in the deep seabed are very promising and attractive to explore and develop. REEs are critical to develop due to the recent paradigm shift to renewable energies based on green technologies. Numerical analysis using a one-dimensional drift–flux model for gas–liquid–solid three-phase flow and gas–liquid two-phase flow was conducted to examine the characteristics of an air-lift pumping system for mining these mineral resources. Empirical equations of REE-rich mud and the physical properties of polymetallic nodules around Minamitorishima island were utilized in the analysis. As a result, the characteristics, i.e., the performance of the system, were clarified in three cases: REE-rich mud, polymetallic nodules, and both. The time transient, i.e., the unsteady characteristics of the system, was also shown, such as the start-up and feeding slurry with REE-rich mud and polymetallic nodules. The findings from the unsteady characteristics will be useful in considering the operation of a real project or a commercial system in the future. Full article
(This article belongs to the Special Issue Deep-Sea Mining Technologies: Recent Developments and Challenges)
Show Figures

Figure 1

16 pages, 17219 KiB  
Article
Experimental Investigation on the Impact of Sand Particle Size on the Jet Pump Wall Surface Erosion
by Heng Qian, Jian Liu, Maosen Xu, Chuanhao Fan and Zhenhua Duan
J. Mar. Sci. Eng. 2024, 12(8), 1390; https://doi.org/10.3390/jmse12081390 - 14 Aug 2024
Cited by 2 | Viewed by 1235
Abstract
Silt removal is crucial for maintaining navigable waterways in harbors. Jet pumps, without moving parts, are highly suitable for underwater operations such as channel dredging in port environments. Despite their structural advantages in slurry handling, the prolonged transport of solid–liquid two-phase flows can [...] Read more.
Silt removal is crucial for maintaining navigable waterways in harbors. Jet pumps, without moving parts, are highly suitable for underwater operations such as channel dredging in port environments. Despite their structural advantages in slurry handling, the prolonged transport of solid–liquid two-phase flows can lead to wear on the wall materials, resulting in decreased efficiency and potential pump failure. The wear characteristics of the jet pump walls due to sand particles of varying grain sizes were experimentally investigated. The characteristic of the sands having a higher distribution above the axis as they enter the jet pump was captured by a high-speed camera. The experiment recorded the variations in mass loss at different sections of the jet pump over a period of 120 h, identifying that backflow within the throat region is a significant contributor to wall wear. Scanning electron microscopy was employed to examine the microstructure of the abraded pump surfaces. It was found that there are noticeable differences in the surface wear microstructure across various pump areas, and that particles of different grain sizes result in distinct wear patterns on the pump surfaces. The underlying causes of this phenomenon were discussed from the perspective of particle motion. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

49 pages, 19789 KiB  
Review
Research Progress of Advanced Design Method, Numerical Simulation, and Experimental Technology of Pumps in Deep-Sea Resource Exploitation
by Leilei Ji, Xinrui He, Wei Li, Fei Tian, Weidong Shi, Ling Zhou, Zhenbo Liu, Yang Yang, Cui Xiao and Ramesh Agarwal
Water 2024, 16(13), 1881; https://doi.org/10.3390/w16131881 - 30 Jun 2024
Cited by 5 | Viewed by 4708
Abstract
Amid the escalating global demand for raw materials, the gradual exhaustion of terrestrial mineral resources, and the rise in extraction costs and energy consumption, the development of deep-sea mineral resources has become a focal point of international interest. The pipeline lifting mining system, [...] Read more.
Amid the escalating global demand for raw materials, the gradual exhaustion of terrestrial mineral resources, and the rise in extraction costs and energy consumption, the development of deep-sea mineral resources has become a focal point of international interest. The pipeline lifting mining system, distinguished by its superior mining efficiency and minimized environmental impact, now accounts for over 50% of the total energy consumption in mining operations. Serving as the “heart” of this system, the deep-sea lifting pump’s comprehensive performance (high pressure tolerance, non-clogging features, elevated lift capacity, wear resistance, corrosion resistance, and high reliability, etc.), is critical to transport efficiency, operational stability, and lifespan of the mining system. As a mixed transport pump for solid and liquid media under extreme conditions, its internal flow structure is exceedingly complex, incorporating gas–liquid–solid multiphase flow. A precise understanding of its internal flow mechanisms is essential for breaking through the design limitations of deep-sea lifting pumps and enhancing their operational stability and reliability under various working conditions and multiphase media, thereby providing technical support for advancing global marine resource development and offshore equipment upgrades. This paper comprehensively reviews the design theory, optimization methods, numerical simulations, and experimental studies of deep-sea lifting pumps. It discusses the application of various design optimization techniques in hydraulic lifting pumps, details the multiphase flow numerical algorithms commonly used in deep-sea lifting pumps along with their modified models, and summarizes some experimental methodologies in this field. Lastly, it outlines the forthcoming challenges in deep-sea lifting pump research and proposes potential directions to promote the commercial development of deep-sea mining, thereby offering theoretical and engineering support for the development of deep-sea mining slurry pumps. Full article
(This article belongs to the Special Issue Design and Optimization of Fluid Machinery)
Show Figures

Figure 1

18 pages, 4636 KiB  
Article
Determination of Critical Damage Size of Inclined Waterproof Coal Pillar under Asymmetric Load
by Xingping Lai, Xiaoqian Yuchi, Helong Gu, Pengfei Shan and Wenhua Yang
Water 2024, 16(9), 1233; https://doi.org/10.3390/w16091233 - 25 Apr 2024
Cited by 3 | Viewed by 1264
Abstract
Quantitative determination of the critical size of an inclined coal pillar in an old goaf water-affected area is of great significance for water damage prevention and safe mining. The critical size of the inclined waterproof coal pillar is derived by using mechanical analyses, [...] Read more.
Quantitative determination of the critical size of an inclined coal pillar in an old goaf water-affected area is of great significance for water damage prevention and safe mining. The critical size of the inclined waterproof coal pillar is derived by using mechanical analyses, numerical calculations, and field engineering practices to determine the stability of the waterproof coal pillar in the old goaf water-affected area of the 1303 working face of Dananhu No. 1 Mine in the Xinjiang region. Firstly, a force model of the inclined waterproof coal pillar was established to reveal the law that the critical size of the coal pillar increases with the increase in coal seam inclination under the action of asymmetric load. Then, numerical simulation was applied to reveal the dynamic evolution processes of plastic deformation–destabilization of the coal pillar under the influence of mining and single-side water pressure, and the critical size of the coal pillar in the study area was determined to be 19.09 m. Finally, measures such as pumping pressure relief and slurry reinforcement were adopted to reduce the deformation rate of the roadway on the side of the coal pillar, which ensured the stability of the waterproof coal pillar and the safe mining of the working face. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

26 pages, 32541 KiB  
Article
The Influence of Shear-Thinning Characteristics on Multiphase Pump Vortex Structure Evolution, Pressure Fluctuation, and Gas-Solid Distribution
by Long Chen, Yingxin Yang, Cancan Peng, Xiaodong Zhang and Yan Gong
Processes 2024, 12(2), 284; https://doi.org/10.3390/pr12020284 - 27 Jan 2024
Viewed by 1626
Abstract
In the current landscape of natural gas hydrate extraction, the lifting pump assumes a pivotal role as the essential equipment for conveying subsea fluidized hydrate slurry to the wellhead. The inherent shear-thinning characteristics of natural gas hydrate slurry, compounded by the complex multiphase [...] Read more.
In the current landscape of natural gas hydrate extraction, the lifting pump assumes a pivotal role as the essential equipment for conveying subsea fluidized hydrate slurry to the wellhead. The inherent shear-thinning characteristics of natural gas hydrate slurry, compounded by the complex multiphase flow conditions of the “gas-liquid-solid” system, present significant challenges to the operational efficiency and stability of the lifting pump. Consequently, this study adopts a hybrid approach, combining experimental and numerical simulations, to comparatively investigate the impact of non-Newtonian and viscous Newtonian fluids on the hydraulic performance, vortex structure evolution, and induced pressure fluctuations in a multiphase pump. Concurrently, a comparative analysis is conducted on the influence of these two fluid types on the distribution patterns of the “gas-solid” two-phase system. The research findings indicate that the apparent viscosity variations are more pronounced in the diffuser region compared to the impeller region. Under non-Newtonian fluid conditions, two separation vortices emerge at the trailing edge of the diffuser, as opposed to a single separation vortex in the viscous Newtonian fluid, with the latter exhibiting a smaller vortex structure scale. Moreover, the shear-thinning characteristics intensify the interaction between the separated vortex and the mainstream, resulting in an exacerbation of pressure fluctuations. In contrast to the viscous Newtonian fluid, the rotor–stator interaction and shear-thinning characteristics play a predominant role in pressure fluctuations, with shear-thinning attributes giving rise to low-frequency pressure fluctuations. Additionally, shear-thinning characteristics significantly influence the distribution behavior of the gas-solid two-phase flow. Full article
Show Figures

Figure 1

18 pages, 8969 KiB  
Article
Study on the Behavior and State of Viscous Fractured Leakage Bridging and Plugging Slurry during the Pump-In and Pressurization Process
by Yanhui Wu, Cheng Han, Yi Huang, Wandong Zhang, Ming Luo, Peng Xu and Qinglin Liu
Processes 2024, 12(1), 203; https://doi.org/10.3390/pr12010203 - 17 Jan 2024
Viewed by 1168
Abstract
Clarifying the process of bridging and plugging slurry during pumping and squeezing can effectively improve the efficiency and accuracy of fractured leakage treatment while minimizing impacts on safety and the environment. In this paper, computational fluid dynamics (CFD) numerical simulation and experimentation (hydrostatic [...] Read more.
Clarifying the process of bridging and plugging slurry during pumping and squeezing can effectively improve the efficiency and accuracy of fractured leakage treatment while minimizing impacts on safety and the environment. In this paper, computational fluid dynamics (CFD) numerical simulation and experimentation (hydrostatic settling method) are combined to evaluate the dynamic settlement process of different types of plugging slurry through sedimentation changes, sedimentation volume, sedimentation velocity and sedimentation height for factors such as viscosity, particle size, density and concentration of plugging slurry. The formula of particle sedimentation velocity is combined to obtain the following: When the viscosity of plugging slurry is more than 30 mPa·s, the particle diameter is 1.5 mm (particle size is half the fracture width), and the particle density is 2.0–2.6 g/cm3; it shows good dispersion and plugging performance under pumping pressure and while holding and squeezing after lifting the bit. The simulation results show that the particle density should not exceed two times the plugging slurry density, and the particle concentration has little influence on the particle settling volume. Full article
(This article belongs to the Special Issue Complex Fluid Dynamics Modeling and Simulation)
Show Figures

Figure 1

13 pages, 3383 KiB  
Article
Low-Temperature Vacuum Evaporation of Ammonia from Pig Slurry at Laboratory and Pilot-Plant Scale
by Míriam Cerrillo, Miguel Moreno, Laura Burgos, Roberto Estéfano, David Coll, Javier Soraluce, Naeria Navarro, Pedro Antonio Arnau and August Bonmatí
Processes 2023, 11(10), 2910; https://doi.org/10.3390/pr11102910 - 3 Oct 2023
Cited by 4 | Viewed by 2742
Abstract
Livestock manure has a high ammonium content that can limit its direct application on soil as a fertiliser in nitrate-vulnerable zones. Treatment technologies that are able to extract ammonium from livestock manure allow it to be concentrated in small volumes, making it cheaper [...] Read more.
Livestock manure has a high ammonium content that can limit its direct application on soil as a fertiliser in nitrate-vulnerable zones. Treatment technologies that are able to extract ammonium from livestock manure allow it to be concentrated in small volumes, making it cheaper and easier to transport and use as fertiliser in crop areas where there is a deficit of nitrogen. This study proposed using low-temperature vacuum evaporation to treat pig slurry in order to obtain marketable products that can be used as fertilisers and help close the nitrogen cycle. Two different configurations and scales were used. The first was a seven-litre laboratory-scale evaporator complemented with a condenser, a condensate trapper, an acid trap and a vacuum pump operated at −90 kPa vacuum pressure and at three different temperatures: 50.1 ± 0.2 °C, 46.0 ± 0.1 °C and 45.3 ± 1.3 °C. The second, Ammoneva, is an on-farm pilot-scale evaporator (6.4 m3), capable of working in four-hour batches of 1 t of liquid fraction of pig slurry with an operating temperature of 40–45 °C and −80 kPa vacuum pressure. The laboratory-scale evaporator, which features several novel improvements focused on increasing ammonia recovery, showed a higher nitrogen removal efficiency from the liquid fraction of pig slurry than the on-farm pilot plant, achieving 84% at 50.1 °C operation, and recovering most of it in ammonia solution (up to 77% of the initial nitrogen), with 7% of the ammonia not recovered. The Ammoneva pilot plant achieved a treated liquid fraction with 41% of initial nitrogen on average, recovering 15% in the ammonia solution in the acid trap; so, the NH3 gas absorption step needs to be further optimised. However, due to the simplicity of the Ammoneva pilot plant, which is easily placed inside a 20-foot container, and the complete automation of the process, it is suitable as an on-farm treatment for decentralised pig slurry management. The implementation of the novel design developed at laboratory-scale could help further increase recovery efficiencies at the pilot-plant scale. Full article
(This article belongs to the Special Issue Recent Advances in Organic Waste and Wastewater Treatment Processes)
Show Figures

Figure 1

27 pages, 6435 KiB  
Review
The State of the Art on the Flow Characteristic of an Encapsulated Phase-Change Material Slurry
by Krzysztof Dutkowski and Marcin Kruzel
Energies 2023, 16(19), 6931; https://doi.org/10.3390/en16196931 - 2 Oct 2023
Cited by 1 | Viewed by 1661
Abstract
The paper chronologically describes the results of research on the flow of micro-encapsulated PCM (mPCM) and nano-encapsulated PCM (nPCM) slurry in heat-transfer systems. The focus is on three thematic groups: mPCM (nPCM) slurry flow pressure drop; the friction factor in the laminar, transient, [...] Read more.
The paper chronologically describes the results of research on the flow of micro-encapsulated PCM (mPCM) and nano-encapsulated PCM (nPCM) slurry in heat-transfer systems. The focus is on three thematic groups: mPCM (nPCM) slurry flow pressure drop; the friction factor in the laminar, transient, and turbulent flow of slurry in the channels; and the assessment of the effectiveness of using the mPCM (nPCM) slurry in the context of improving heat-transfer coefficients but with increased pumping power. It was found that the number of publications devoted to the above-mentioned topics is very limited compared to the research on the thermal and rheological properties of the mPCM (nPCM) slurry, which has resulted in the lack of systematized knowledge about the influence of slurry concentration, particle size, materials, etc., for example, on the friction factor. It was found that the use of the mPCM (nPCM) slurry in heat-transfer systems may be proper, provided that an appropriate and sufficiently high flow rate is ensured. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

Back to TopTop