Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (244)

Search Parameters:
Keywords = slot coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4646 KiB  
Article
A Wideband Magneto-Electric (ME) Dipole Antenna Enabled by ME Resonance and Aperture-Coupled Excitation
by Hyojin Jang, Seyeon Park, Junghyeon Kim, Kyounghwan Kim and Sungjoon Lim
Micromachines 2025, 16(8), 853; https://doi.org/10.3390/mi16080853 - 24 Jul 2025
Viewed by 308
Abstract
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the [...] Read more.
In this study, we propose a novel wideband aperture-coupled magneto-electric (ME) dipole antenna that achieves enhanced bandwidth by simultaneously leveraging ME resonance and aperture-coupled excitation. Building upon the conventional ME dipole architecture, the antenna integrates a pair of horizontal metal patches forming the electric dipole and a pair of vertical metal patches forming the magnetic dipole. A key innovation is the aperture-coupled feeding mechanism, where electromagnetic energy is transferred from a tapered microstrip line to the dipole structure through a slot etched in the ground plane. This design not only excites the characteristic ME resonances effectively but also significantly improves impedance matching, delivering a markedly broader impedance bandwidth. To validate the proposed concept, a prototype antenna was fabricated and experimentally characterized. Measurements show an impedance bandwidth of 84.48% (3.61–8.89 GHz) for S11 ≤ −10 dB and a maximum in-band gain of 7.88 dBi. The antenna also maintains a stable, unidirectional radiation pattern across the operating band, confirming its potential for wideband applications such as 5G wireless communications. Full article
(This article belongs to the Special Issue RF Devices: Technology and Progress)
Show Figures

Figure 1

14 pages, 3251 KiB  
Communication
Design and Optimization of a Miniaturized Wireless Power Transfer System Using Matching Media for Efficiency Enhancement at 1.6 GHz
by Aftab Ahmad, Ashfaq Ahmad and Dong-You Choi
Electronics 2025, 14(14), 2918; https://doi.org/10.3390/electronics14142918 - 21 Jul 2025
Viewed by 318
Abstract
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the [...] Read more.
This paper presents the design and performance analysis of a compact wireless power transfer (WPT) system operating at 1.6 GHz. The transmitter (Tx) structure consists of a circular slot and a circular radiating element, excited from the backside of the substrate, while the receiver (Rx) comprises a slotted patch antenna miniaturized using two vertical vias. The initial power transfer efficiency (PTE), represented by the transmission coefficient S21, was measured to be −31 dB with a 25 mm separation between Tx and Rx. To enhance the efficiency of the system, a dielectric matching media (MM) was introduced between the transmitter and receiver. Through the implementation of the MM, the PTE improved significantly, with S21 increasing to −24 dB. A parametric study was conducted by varying the thickness of the MM from 1 mm to 10 mm and the relative permittivity (εr) from 5 to 30. The results demonstrate that both the thickness and dielectric constant of the MM play a crucial role in improving the coupling and overall efficiency of the WPT system. The optimal configuration was achieved with a matching media thickness of 10 mm and a relative permittivity of 25, which yielded the best improvement in transmission performance. This work offers a practical approach to enhance near-field WPT efficiency using simple matching structures and is particularly relevant for compact and low-profile energy transfer applications. Full article
(This article belongs to the Special Issue Advances in Low Power Circuit and System Design and Applications)
Show Figures

Figure 1

14 pages, 4522 KiB  
Article
A Wideband Circularly Polarized Metasurface Antenna with High Gain Using Characteristic Mode Analysis
by Zijie Li, Yuechen Liu, Mengfei Zhao, Weihua Zong and Shi He
Electronics 2025, 14(14), 2818; https://doi.org/10.3390/electronics14142818 - 13 Jul 2025
Viewed by 394
Abstract
This paper proposes a novel high-gain, wideband, circularly polarized (CP) metasurface (MTS) antenna. The antenna is composed of a centrally symmetric MTS and a slot-coupled feeding network. Through characteristic mode analysis (CMA), parasitic patches and mode-suppressing patches are added around the MTS to [...] Read more.
This paper proposes a novel high-gain, wideband, circularly polarized (CP) metasurface (MTS) antenna. The antenna is composed of a centrally symmetric MTS and a slot-coupled feeding network. Through characteristic mode analysis (CMA), parasitic patches and mode-suppressing patches are added around the MTS to enhance the desired modes and suppress the unwanted modes. Subsequently, a feeding network that merges a ring slot with an L-shaped microstrip line is utilized to excite two orthogonal modes with a 90° phase difference, thereby achieving CP and high-gain radiation. Finally, a prototype with dimensions of 0.9λ0 × 0.9λ0 × 0.05λ0 is fabricated and tested. The measured results demonstrate an impedance bandwidth (IBW) of 39.5% (4.92–7.37 GHz), a 3 dB axial ratio bandwidth (ARBW) of 33.1% (5.25–7.33 GHz), and a peak gain of 9.4 dBic at 6.9 GHz. Full article
Show Figures

Figure 1

15 pages, 4432 KiB  
Article
Millimeter-Wave Miniaturized Substrate-Integrated Waveguide Multibeam Antenna Based on Multi-Layer E-Plane Butler Matrix
by Qing-Yuan Wu, Ling-Hui Wu, Cheng-Qin Ben and Ji-Wei Lian
Electronics 2025, 14(13), 2553; https://doi.org/10.3390/electronics14132553 - 24 Jun 2025
Viewed by 285
Abstract
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along [...] Read more.
A millimeter-wave multi-layer and miniaturized multibeam antenna fed by an E-plane Butler matrix (BM) in substrate integrated waveguide (SIW) technology is proposed. For the beam-forming network (BFN), a folded E-plane 4 × 4 BM is proposed, whose basic components are stacked up along the vertical direction aiming to reduce the horizontal size by more than 75% compared with a single-layer BM. For the radiation portion, an unconventional slot antenna array arranged in a ladder type is adopted. The slot antenna elements are distributed in separate layers, making them more compatible with the presented BM and are arranged in the longitudinal direction to suppress the mutual coupling effect. Furthermore, the BM has been adjusted to accommodate the slot antenna array and obtain further miniaturization. The overall dimension of the designed multibeam antenna, taking the BFN into account, is 12 mm × 45 mm × 2 mm (1.2 λ × 4.5 λ × 0.2 λ), which is preferable for future 6G smartphone applications. The impacts of the air gap in fabrication are also taken into consideration to alleviate the error between simulated model and fabricated prototype. Full article
Show Figures

Figure 1

23 pages, 4357 KiB  
Article
Slot Optimization Based on Coupled Airspace Capacity of Multi-Airport System
by Sichen Liu, Shuce Wang, Minghua Hu and Lei Yang
Appl. Sci. 2025, 15(12), 6759; https://doi.org/10.3390/app15126759 - 16 Jun 2025
Viewed by 313
Abstract
An airport slot is the core resource in the air transportation system. In most busy airports in China, airline demand significantly exceeds the available slot capacity. Scientific and reasonable slot allocation techniques and methods can improve the operational efficiency and benefits of multi-airport [...] Read more.
An airport slot is the core resource in the air transportation system. In most busy airports in China, airline demand significantly exceeds the available slot capacity. Scientific and reasonable slot allocation techniques and methods can improve the operational efficiency and benefits of multi-airport systems. Existing research has predominantly addressed slot allocation optimization for individual airports; however, there are differences in the functional positioning and resource allocation during multi-airport slot optimization, which makes cooperative optimization in the context of multi-airport slot allocation difficult. The dynamic sharing of airspace capacity in multi-airport systems is crucial for optimizing airport slot allocation and improving resource utilization efficiency. This study develops a multi-objective optimization model incorporating coupled airspace capacity relationships within multi-airport systems and the fairness of airlines and airports in order to realize the optimal utilization of multi-airport system resources, considering specialized 24 h airport slot coordination parameter patterns and slot firebreaks in China. Finally, the validity and scalability of the model are verified using real flight data from three airports in the Beijing airport terminal area, and simulations are conducted to verify the model. The findings provide a solid reference for the optimization of airport slot timetables in multi-airport systems, having both important theoretical value and practical significance. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

12 pages, 8325 KiB  
Article
Co-Design of Single-Layer RCS-Reducing Surface and Antenna Array Based on AMC Technique
by Rongyu Yang, Xiaoyi Liao, Yujie Wang, Xiangcheng Qian, Minxing Wang, Hongfei Zhang and Xiaoxing Fang
Electronics 2025, 14(12), 2392; https://doi.org/10.3390/electronics14122392 - 11 Jun 2025
Viewed by 339
Abstract
A co-design of radar cross section (RCS) reducing surface and array antenna on a single-layer printed board is presented in this paper. To achieve this goal, two kinds of artificial magnetic conductors (AMCs) are designed and optimized. The first kind of AMC shares [...] Read more.
A co-design of radar cross section (RCS) reducing surface and array antenna on a single-layer printed board is presented in this paper. To achieve this goal, two kinds of artificial magnetic conductors (AMCs) are designed and optimized. The first kind of AMC shares the same geometry with the array element and thus is simultaneously used as the array element. The other kind of AMC generates opposed-phased reflections for a normal incident wave, and when they are in a checkerboard configuration, the RCS is reduced via phase cancellation of opposed-phased reflections. In the range of 10 GHz to 16 GHz, the designed bi-functional surface achieves an 8 dB decline in monostatic RCS, while the array antenna obtains a gain of 15 dBi, a side-lobe less than −10 dB, and a cross-polarization less than −20 dB at 13.5 GHz. To validate the calculation results, a prototype is fabricated and measured. To feed the array antenna, a T-type power divider network is etched under the ground and the array is fed via coupling slots on the ground. The measured results agree with the simulation results. Full article
(This article belongs to the Special Issue Broadband High-Power Millimeter-Wave and Terahertz Devices)
Show Figures

Figure 1

9 pages, 3584 KiB  
Article
Parameter Study of 500 nm Thick Slot-Type Photonic Crystal Cavities for Cavity Optomechanical Sensing
by Zhe Li, Jun Liu, Yi Zhang, Chenguwei Xian, Yifan Wang, Kai Chen, Gen Qiu, Guangwei Deng, Yongjun Huang and Boyu Fan
Photonics 2025, 12(6), 584; https://doi.org/10.3390/photonics12060584 - 8 Jun 2025
Viewed by 2451
Abstract
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical [...] Read more.
In recent years, research on light-matter interactions in silicon-based micro/nano cavity optomechanical systems demonstrates high-resolution sensing capabilities (e.g., sub-fm-level displacement sensitivity). Conventional 2D photonic crystal (PhC) cavity optomechanical sensors face inherent limitations: thin silicon layers (200–300 nm) restrict both the mass block (critical for thermal noise suppression) and optical Q-factor. Enlarging the detection mass in such thin layers exacerbates in-plane height nonuniformity, severely limiting high-precision sensing. This study proposes a 500 nm thick silicon-based 2D slot-type PhC cavity design for advanced sensing applications, fabricated on a silicon-on-insulator (SOI) substrate with optimized air slot structures. Systematic parameter optimization via finite element simulations defines structural parameters for the 1550 nm band, followed by 6 × 6 × 6 combinatorial experiments on lattice constant, air hole radius, and line-defect waveguide width. Experimental results demonstrate a loaded Q-factor of 57,000 at 510 nm lattice constant, 175 nm air hole radius, and 883 nm line-defect waveguide width (measured sidewall angle: 88.4°). The thickened silicon layer delivers dual advantages: enhanced mass block for thermal noise reduction and high Q-factor for optomechanical coupling efficiency, alongside improved ridge waveguide compatibility. This work advances the practical development of CMOS-compatible micro-opto-electromechanical systems (MOEMS). Full article
Show Figures

Figure 1

17 pages, 6072 KiB  
Article
Parameter Investigations of Waveguide-Integrated Lithium Niobate Photonic Crystal Microcavity
by Sohail Muhammad, Dingwei Chen, Chengwei Xian, Jun Zhou, Zhongke Lei, Pengju Kuang, Liang Ma, Guangjun Wen, Boyu Fan and Yongjun Huang
Photonics 2025, 12(5), 475; https://doi.org/10.3390/photonics12050475 - 12 May 2025
Viewed by 647
Abstract
Despite significant progress, fabricating two-dimensional (2D) lithium niobate (LN)-based photonic crystal (PhC) cavities integrated with tapered and PhC waveguides remains challenging, due to structural imperfections. Notable, especially, are variations in hole radius (r) and inclination angle (°), which induce bandgap shifts [...] Read more.
Despite significant progress, fabricating two-dimensional (2D) lithium niobate (LN)-based photonic crystal (PhC) cavities integrated with tapered and PhC waveguides remains challenging, due to structural imperfections. Notable, especially, are variations in hole radius (r) and inclination angle (°), which induce bandgap shifts and degrade quality factors (Q-factor). These fabrication errors underscore the critical need to address nanoscale tolerances. Here, we systematically investigate the impacts of key geometric parameters on optical performance and optimize a 2D LN-based cavity integrated with taper and PhC waveguide system. Using a 3D Finite-Difference Time-Domain (FDTD) and varFDTD simulations, we identify stringent fabrication thresholds. The a must exceed 0.72 µm to sustain Q > 107; reducing a to 0.69 µm collapses Q-factors below 104, due to under-coupled modes and bandgap misalignment, which necessitates ±0.005 µm precision. When an r < 0.22 µm weakens confinement, Q plummets to 2 × 104 at r = 0.20 µm (±0.01 µm etching tolerance). Inclination angles < 70° induce 100× Q-factor losses, requiring ±2° alignment for symmetric modes. Air slot width (s) variations shift resonant wavelengths and require optimization in coordination with the inclination angle. By optimizing s and the inclination angle (at 70°), we achieve a record Q-factor of 6.21 × 106, with, in addition, C-band compatibility (1502–1581 nm). This work establishes rigorous design–fabrication guidelines, demonstrating the potential for LN-based photonic devices with high nano-fabrication robustness. Full article
(This article belongs to the Special Issue Advances in Integrated Photonics)
Show Figures

Figure 1

14 pages, 20644 KiB  
Article
A High-Gain Circularly Polarized Magnetoelectric Dipole Antenna Array for Millimeter-Wave Applications
by Jun Xiao, Jing Wu, Zihang Ye, Tongyu Ding, Chongzhi Han and Qiubo Ye
Sensors 2025, 25(10), 3046; https://doi.org/10.3390/s25103046 - 12 May 2025
Viewed by 500
Abstract
A high-gain circularly polarized (CP) magnetoelectric dipole (ME-dipole) radiating element is demonstrated at a millimeter-wave (MMW) 5G band of 37–43.5 GHz. Each ME-dipole radiating element, consisting of two pairs of ring-shaped and L-shaped metal posts is excited by a cross-shaped substrate-integrated waveguide (SIW) [...] Read more.
A high-gain circularly polarized (CP) magnetoelectric dipole (ME-dipole) radiating element is demonstrated at a millimeter-wave (MMW) 5G band of 37–43.5 GHz. Each ME-dipole radiating element, consisting of two pairs of ring-shaped and L-shaped metal posts is excited by a cross-shaped substrate-integrated waveguide (SIW) coupling slot to achieve CP radiation. Through the use of all-metal radiating structures with a height of 3.4 mm, high-gain and high-efficiency radiation performances are achieved. For proof of concept, a 4 × 4 antenna array with a SIW feeding network is designed, fabricated, and measured. The measured impedance bandwidth of the proposed 4 × 4 CP antenna array is 19.2% from 33.9 to 41.1 GHz for |S11| ≤ −10 dB. The measured 3 db AR bandwidth is 10.3% from 37 to 41 GHz. The measured peak gain is 20.3 dBic at 41 GHz. The measured and simulated results are in good agreement. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

26 pages, 469 KiB  
Article
Research on Offloading and Resource Allocation for MEC with Energy Harvesting Based on Deep Reinforcement Learning
by Jun Chen, Junyu Mi, Chen Guo, Qing Fu, Weidong Tang, Wenlang Luo and Qing Zhu
Electronics 2025, 14(10), 1911; https://doi.org/10.3390/electronics14101911 - 8 May 2025
Cited by 1 | Viewed by 501
Abstract
Mobile edge computing (MEC) systems empowered by energy harvesting (EH) significantly enhance sustainable computing capabilities for mobile devices (MDs). This paper investigates a multi-user multi-server MEC network, in which energy-constrained users dynamically harvest ambient energy to flexibly allocate resources among local computation, task [...] Read more.
Mobile edge computing (MEC) systems empowered by energy harvesting (EH) significantly enhance sustainable computing capabilities for mobile devices (MDs). This paper investigates a multi-user multi-server MEC network, in which energy-constrained users dynamically harvest ambient energy to flexibly allocate resources among local computation, task offloading, or intentional task discarding. We formulate a stochastic optimization problem aiming to minimize the time-averaged weighted sum of execution delay, energy consumption, and task discard penalty. To address the energy causality constraints and temporal coupling effects, we develop a Lyapunov optimization-based drift-plus-penalty framework that decomposes the long-term optimization into sequential per-time-slot subproblems. Furthermore, to overcome the curse of dimensionality in high-dimensional action, we propose hierarchical deep reinforcement learning (DRL) solutions incorporating both Q-learning with experience replay and asynchronous advantage actor–critic (A3C) architectures. Extensive simulations demonstrate that our DRL-driven approach achieves lower costs compared with conventional model predictive control methods, while maintaining robust performance under stochastic energy arrivals and channel variations. Full article
Show Figures

Figure 1

19 pages, 8785 KiB  
Article
Design of a 5G MIMO Mobile Intelligent Terminal Antenna with Metasurface Loading
by He Xia, Heming Fan, Zhulin Liu, Hongxiang Miao and Zhiwei Song
Sensors 2025, 25(9), 2927; https://doi.org/10.3390/s25092927 - 6 May 2025
Cited by 1 | Viewed by 573
Abstract
To achieve multi-band coverage within limited space, reduce antenna types, and enhance communication capabilities, an eight-unit dual-band 5G MIMO antenna array is proposed based on a monopole structure. The antenna operates in two frequency bands (3.23–4.14 GHz and 4.31–5.3 GHz), covering the n78 [...] Read more.
To achieve multi-band coverage within limited space, reduce antenna types, and enhance communication capabilities, an eight-unit dual-band 5G MIMO antenna array is proposed based on a monopole structure. The antenna operates in two frequency bands (3.23–4.14 GHz and 4.31–5.3 GHz), covering the n78 and n79 bands for 5G applications. The dual-band and miniaturized design of the antenna elements is achieved through the slotting and branch-loading techniques. The orthogonal placement of corner antenna elements is implemented to reduce coupling and optimize spatial utilization, achieving isolation of over 16 dB between elements. The introduction of a metasurface structure further improved isolation by 2 dB and increased the peak gain of the antenna array to 11.95 dBi. A prototype is fabricated and tested, demonstrating the following performance metrics: isolation exceeding 18 dB, gain ranging from 6 to 12 dBi, envelope correlation coefficient below 0.05, channel capacity greater than 41 bps/Hz, diversity gain of approximately 10 dB, total active reflection coefficient below −24 dB, and radiation efficiency exceeding 72%. These results confirm the superior performance of the proposed antenna design. Full article
Show Figures

Figure 1

20 pages, 6392 KiB  
Article
A Rotational Speed Sensor Based on Flux-Switching Principle
by Duy-Tinh Hoang, Joon-Ku Lee, Kwang-Il Jeong, Kyung-Hun Shin and Jang-Young Choi
Mathematics 2025, 13(8), 1341; https://doi.org/10.3390/math13081341 - 19 Apr 2025
Viewed by 403
Abstract
This study proposes a rotational speed measurement machine based on the flux-switching principle with a 6-stator-slot/19-rotor-pole (6s/19p) topology. With a rotor shape similar to a variable reluctance sensor (VRS), the proposed machine features a simple and robust structure while ensuring the same output [...] Read more.
This study proposes a rotational speed measurement machine based on the flux-switching principle with a 6-stator-slot/19-rotor-pole (6s/19p) topology. With a rotor shape similar to a variable reluctance sensor (VRS), the proposed machine features a simple and robust structure while ensuring the same output frequency as VRS. Additionally, compared to the conventional 12s/10p topology, the 6s/19p configuration reduces permanent magnet (PM) consumption by half while maintaining high induced voltage characteristics. A nonlinear analytical model (NAM), which incorporates the harmonic modeling (HM) technique and an iterative process, is presented. This model more accurately captures the rectangular shape of the PM and stator teeth while accounting for core saturation effects. Based on this model, the optimal dimensions of the proposed machine are investigated to achieve the best performance for speed measurement applications. A coupling FEA simulation between Ansys Maxwell and Twin Builder further analyzes the machine’s performance. Compared to a commercial product of the same size, the proposed machine achieves 31.5% higher output voltage while ensuring lower linearity errors. Moreover, superior load characteristics are observed, with a voltage drop of only 1.58% at 1500 rpm and 30 mA. The proposed machine and NAM provide an improved solution and analytical tool for speed measurement applications. Full article
Show Figures

Figure 1

11 pages, 9446 KiB  
Article
A 60-GHz Wideband High-Efficiency Circularly Polarized Dual-Coil Antenna Array
by Jun Xiao, Qi Gan, Zihang Ye, Chong-Zhi Han, Tongyu Ding and Qiubo Ye
Sensors 2025, 25(7), 2211; https://doi.org/10.3390/s25072211 - 31 Mar 2025
Cited by 1 | Viewed by 547
Abstract
A wideband high-efficiency circularly polarized (CP) dual-coil antenna array is presented for 60-GHz applications in this letter. The proposed CP dual-coil antenna is composed of a resonant substrate-integrated cavity (SIC) and a pair of centrally symmetrical coils, which are fed differentially by a [...] Read more.
A wideband high-efficiency circularly polarized (CP) dual-coil antenna array is presented for 60-GHz applications in this letter. The proposed CP dual-coil antenna is composed of a resonant substrate-integrated cavity (SIC) and a pair of centrally symmetrical coils, which are fed differentially by a substrate-integrated waveguide (SIW) coupling slot. A novel sequential rotation feeding technique is introduced to enhance the axial ratio (AR) and impedance bandwidths of both the 2 × 2 subarray and the 4 × 4 array. The proposed feeding network significantly improves radiation efficiency. The measured results of the fabricated prototype indicate that the proposed array achieves an impedance bandwidth of 20.8% (54.6–67.3 GHz) for |S11| ≤ −10 dB, a 3-dB AR bandwidth of 21.5% (54–67 GHz), a high radiation efficiency of 96.6%, and a peak gain reaching 19.3 dBic at 58 GHz. The proposed circularly polarized (CP) antenna element and array design stand out as strong contenders for 60-GHz wireless applications. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

30 pages, 5167 KiB  
Article
Revolutionizing Electric Vehicle Charging Stations with Efficient Deep Q Networks Powered by Multimodal Bioinspired Analysis for Improved Performance
by Sugunakar Mamidala, Yellapragada Venkata Pavan Kumar and Rammohan Mallipeddi
Energies 2025, 18(7), 1750; https://doi.org/10.3390/en18071750 - 31 Mar 2025
Viewed by 568
Abstract
The rapid growth of electric vehicle (EV) adoption presents significant challenges in planning efficient charging infrastructure, including suboptimal station placement, energy consumption, and rising infrastructural costs. The conventional methods, such as grey wolf optimization (GWO), fail to address real-time user demand and dynamic [...] Read more.
The rapid growth of electric vehicle (EV) adoption presents significant challenges in planning efficient charging infrastructure, including suboptimal station placement, energy consumption, and rising infrastructural costs. The conventional methods, such as grey wolf optimization (GWO), fail to address real-time user demand and dynamic factors like fluctuating grid loads and environmental impact. These approaches rely on fixed models, often leading to inefficient energy use, higher operational costs, and increased traffic congestion. This paper proposes a novel framework that integrates deep Q networks (DQNs) for real-time charging optimization, coupled with multimodal bioinspired algorithms like ant lion optimization (ALO) and moth flame optimization (MFO). Unlike conventional geographic placement models that overlook evolving travel patterns, this system dynamically adapts to user behavior, optimizing both onboard and offboard charging systems. The DQN enables continuous learning from changing demand and grid conditions, while ALO and MFO identify optimal station locations, reducing energy consumption and emissions. The proposed framework incorporates dynamic pricing and demand response strategies. These adjustments help balance energy usage, reducing costs and preventing overloading of the grid during peak times, offering real-time adaptability, optimized station placement, and energy efficiency. To improve the performance of the system, the proposed framework ensures more sustainable, cost-effective EV infrastructural planning, minimized environmental impacts, and enhanced charging efficiency. From the results for the proposed system, we recorded various performance parameters such as the installation cost, which decreased to USD 1200 per unit, i.e., a 20% cost efficiency increase, optimal energy utilization increases to 85% and 92% during peak hours and off-peak hours respectively, a charging slot availability increase to 95%, a 30% carbon emission reduction, and 95% performance retention under the stress condition. Further, the power quality is improved by reducing the sag, swell, flicker, and notch by 2 V, 3 V, 0.05 V, and 0.03 V, respectively, with an increase in efficiency to 89.9%. This study addresses critical gaps in real-time flexibility, cost-effective station deployment, and grid resilience by offering a scalable and intelligent EV charging solution. Full article
Show Figures

Figure 1

9 pages, 2050 KiB  
Article
A Fixed-Frequency Beam-Scanning Leaky-Wave Antenna with Circular Polarization for mmWave Application
by Xingying Huo, Yuchen Ma, Jiayi Liu and Qinghuai Zhou
Photonics 2025, 12(3), 274; https://doi.org/10.3390/photonics12030274 - 17 Mar 2025
Viewed by 538
Abstract
A period-reconfigurable leaky-wave antenna (LWA) with circular polarization (CP) and fixed-frequency beam scanning (FFBS) is developed in this article. Operating in the Ka-band, this antenna consists of a low-loss groove gap waveguide (GGW) as the slow-wave transmission structure, a circular split-ring patch [...] Read more.
A period-reconfigurable leaky-wave antenna (LWA) with circular polarization (CP) and fixed-frequency beam scanning (FFBS) is developed in this article. Operating in the Ka-band, this antenna consists of a low-loss groove gap waveguide (GGW) as the slow-wave transmission structure, a circular split-ring patch array on the top layer for radiation, and a slotted ground between them for energy coupling. Each slot is independently and electrically controlled by a pair of PIN diodes under the coupling slot. Thus, the period length of the patches can be manipulated and an LWA with CP and FFBS is achieved with −1th spatial harmonics radiated. The simulation results show that the bean-scanning range from 61° to 63° can be realized during the observation frequency band, with good circular polarization and a peak gain of 17.1 dBi, which is verified by the measurement. Full article
Show Figures

Figure 1

Back to TopTop