Parameter Investigations of Waveguide-Integrated Lithium Niobate Photonic Crystal Microcavity
Abstract
:1. Introduction
2. Fabrication and Structural Imperfections of 2D LN PhC Cavities
Simulation-Driven Tolerance Analysis of Critical Fabrication Errors
3. Investigation of LN-Based Taper Waveguide Integrated with PhC Waveguides
3.1. Bandgap Investigation for the 2D PhC Slab
3.2. Impacts of Taper Geometry and Inclination Angle on Waveguide Transmission Efficiency
4. Influence of Inclination Angle on the High-Q 2D LN-Based PhC Optical Cavity
4.1. Design Guidelines
4.2. Influence of Inclination Angle on Optical Mode and Q-Factor
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nozaki, K.; Tanabe, T.; Shinya, A.; Matsuo, S.; Sato, T.; Taniyama, H.; Notomi, M. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 2010, 4, 477. [Google Scholar] [CrossRef]
- Kuramochi, E.; Nozaki, K.; Shinya, A.; Takeda, K.; Sato, T.; Matsuo, S.; Taniyama, H.; Sumikura, H.; Notomi, M. Large-scale integration of wavelength-addressable all-optical memories on a photonic crystal chip. Nat. Photonics 2014, 8, 474. [Google Scholar] [CrossRef]
- Fan, X.; White, I.M.; Shopova, S.I.; Zhu, H.; Suter, J.D.; Sun, Y. Sensitive optical biosensors for unlabeled targets. Anal. Chim. Acta 2008, 620, 8. [Google Scholar] [CrossRef] [PubMed]
- Soljacic, M.; Joannopoulos, J.D. Enhancement of nonlinear effects using photonic crystals. Nat. Mater. 2004, 3, 211. [Google Scholar] [CrossRef] [PubMed]
- Lodahl, P.; Mahmoodian, S.; Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 2015, 87, 347. [Google Scholar] [CrossRef]
- Song, B.-S.; Noda, S.; Asano, T.; Akahane, Y. Ultra-high-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Nat. Mater. 2005, 4, 207. [Google Scholar] [CrossRef]
- Noda, S.; Fujita, M.; Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics 2007, 1, 449, 1800228 (7 of 8) www.lpr-journal.org. [Google Scholar] [CrossRef]
- Combrie, S.; De Rossi, A.; Tran, Q.V.; Benisty, H. GaInP photonic crystal cavity with ultra-high Q-factor. Opt. Lett. 2008, 33, 1908. [Google Scholar] [CrossRef]
- Eggleton, B.J.; Luther-Davies, B.; Richardson, K. Chalcogenide photonics. Nat. Photonics 2011, 5, 141. [Google Scholar] [CrossRef]
- Trivino, N.V.; Minkov, M.; Urbinati, G.; Galli, M.; Carlin, J.-F.; Butte, R.; Savona, V.; Grandjean, N. III-nitride photonic crystal light-emitting diodes with high extraction efficiency. Appl. Phys. Lett. 2014, 105, 231119. [Google Scholar]
- Debnath, K.; Clementi, M.; Bucio, T.D.; Khokhar, A.Z.; Sotto, M.; Grabska, K.M.; Bajoni, D.; Galli, M.; Saito, S.; Gardes, F.Y. High-speed silicon optical modulator based on a photonic crystal waveguide. Opt. Express 2017, 25, 27334. [Google Scholar] [CrossRef] [PubMed]
- Kosters, M.; Sturman, B.; Werheit, P.; Haertle, D.; Buse, K. Optical tunability of photonic crystal cavities infiltrated with liquid crystals. Nat. Photonics 2009, 3, 510. [Google Scholar]
- Weis, R.S.; Gaylord, T.K. Lithium niobate: Summary of physical properties and crystal structure. Appl. Phys. A 1985, 37, 191. [Google Scholar] [CrossRef]
- Wooten, E.L.; Kissa, K.M.; Yi-Yan, A.; Murphy, E.J.; Lafaw, D.A.; Hallemeier, P.F.; Maack, D.; Attanasio, D.V.; Fritz, D.J.; McBrien, G.J.; et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 69–82. [Google Scholar] [CrossRef]
- Myers, L.E.; Eckardt, R.C.; Fejer, M.M.; Byer, R.L.; Bosenberg, W.R.; Pierce, J.W. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3. J. Opt. Soc. Am. B 1995, 12, 2102–2116. [Google Scholar] [CrossRef]
- Halder, M.; Beberatos, A.; Gisin, N.; Scarani, V.; Simon, C.; Zbinden, H. Entangling independent photons by time measurement. Nat. Phys. 2007, 3, 692–695. [Google Scholar] [CrossRef]
- Pijolat, M.; Loubriat, S.; Queste, S.; Mercier, D.; Reinhardt, A.; Defay, E.; Deguet, C.; Clavelier, L.; Moriceau, H.; Aid, M.; et al. Large electromechanical coupling factor film bulk acoustic resonator with X-cut LiNbO3 layer transfer. Appl. Phys. Lett. 2009, 95, 182106. [Google Scholar] [CrossRef]
- Gong, S.; Piazza, G. Design and analysis of lithium-niobate-based high electromechanical coupling RF-MEMS resonators for wideband filtering. IEEE Trans. Microw. Theory Tech. 2013, 61, 403–414. [Google Scholar] [CrossRef]
- Heanue, J.F.; Bashaw, M.C.; Hesselink, L. Volume holographic storage and retrieval of digital data. Science 1994, 265, 749–752. [Google Scholar] [CrossRef]
- Buse, K.; Adibi, A.; Psaltis, D. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 1998, 393, 665–668. [Google Scholar] [CrossRef]
- Reindl, L.M.; Shrena, I.M. Wireless measurement of temperature using surface acoustic waves sensors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 1457–1463. [Google Scholar] [CrossRef] [PubMed]
- Arizmendi, L. Photonic applications of lithium niobate crystals. Phys. Status Solidi A 2004, 201, 253–283. [Google Scholar] [CrossRef]
- Notomi, M.; Kuramochi, E.; Tanabe, T. High-Q Photonic Crystal Nanocavities in Silicon-on-Insulator. Nat. Photonics 2008, 2, 741–747. [Google Scholar] [CrossRef]
- Upham, J.; Tanaka, Y.; Asano, T.; Noda, S. Fabrication and Characterization of High-Q Silicon Photonic Crystal Cavities. Optica 2017, 4, 140–144. [Google Scholar]
- Guarino, A.; Poberaj, G.; Rezzonico, D.; Günter, P. Electro–optically tunable microring resonators in lithium niobate. Nat. Photonics 2007, 1, 407–410. [Google Scholar] [CrossRef]
- Rabiei, P.; Ma, J.; Khan, S.; Chiles, J.; Fathpour, S. Heterogeneous lithium niobate photonics on silicon substrates. Opt. Express 2013, 21, 25573–25581. [Google Scholar] [CrossRef]
- Chen, D.; Muhammad, S.; Huang, W.; Zheng, X.; Wen, G.; Huang, Y. Parameter investigations on lithium-niobate-based photonic crystal optomechanical cavity. Results Phys. 2023, 48, 106458. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, S.; Wu, Y.; Yu, H. Two-dimensional thin film lithium niobate photonic crystal waveguide for integrated photonic chips. Appl. Phys. Lett. 2024, 124, 141104. [Google Scholar] [CrossRef]
- Liang, H.; Luo, R.; He, Y.; Jiang, H.; Lin, Q. High-quality lithium niobate photonic crystal nanocavities. Optica 2017, 4, 1251–1258. [Google Scholar] [CrossRef]
- Li, M.; Liang, H.; Luo, R.; He, Y.; Lin, Q. High-Q 2D Lithium Niobate Photonic Crystal Slab Nanoresonators. Laser Photonics Rev. 2019, 13, 1800228. [Google Scholar] [CrossRef]
- Ge, R.; Yan, X.; Liang, Z.; Li, H.; Wu, J.; Liu, X.; Chen, Y.; Chen, X. Large quality factor enhancement based on cascaded uniform lithium niobate bichromatic photonic crystal cavities. Opt. Lett. 2022, 48, 113–116. [Google Scholar] [CrossRef]
- Lin, J.; Xu, Y.; Fang, Z.; Wang, M.; Song, J.; Wang, N.; Qiao, L.; Fang, W.; Cheng, Y. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining. Sci. Rep. 2015, 5, 8072. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cai, L.; Wang, Y.; Jiang, Y.; Hu, H. Waveguides consisting of single-crystal lithium niobate thin film and oxidized titanium stripe. Opt. Express 2015, 23, 24212–24219. [Google Scholar] [CrossRef] [PubMed]
- Weigel, P.; Savanier, M.; DeRose, C.; Pomerene, A.T.; Starbuck, A.L.; Lentine, A.L.; Stenger, V.; Mookherjea, S. Lightwave Circuits in Lithium Niobate through Hybrid Waveguides with Silicon Photonics. Sci. Rep. 2016, 6, 22301. [Google Scholar] [CrossRef]
- Witmer, J.D.; Valery, J.A.; Arrangoiz-Arriola, P.; Sarabalis, C.J.; Hill, J.T.; Safavi-Naeini, A.H. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci. Rep. 2017, 7, 46313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Diziain, S.; Geiss, R.; Steinert, M.; Schmidt, C.; Chang, W.-K.; Fasold, S.; Füßel, D.; Chen, Y.-H.; Pertsch, T. Self-suspended micro-resonators patterned in Z-cut lithium niobate membranes. Opt. Mater. Express 2015, 5, 2081–2089. [Google Scholar] [CrossRef]
- Lu, H.; Baida, F.I.; Ulliac, G.; Courjal, N.; Collet, M.; Bernal, M.-P. Lithium niobate photonic crystal wire cavity: Realization of a compact electro-optically tunable filter. Appl. Phys. Lett. 2012, 101, 151117. [Google Scholar] [CrossRef]
- Zhou, G.; Gu, M. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal. Opt. Lett. 2006, 31, 2783–2785. [Google Scholar] [CrossRef]
- Roussey, M.; Bernal, M.-P.; Courjal, N.; van Labeke, D.; Baida, F.I.; Salut, R. Electro-optic effect exaltation on lithium niobate photonic crystals due to slow photons. Appl. Phys. Lett. 2006, 89, 241110. [Google Scholar] [CrossRef]
- Geiss, R.; Diziain, S.; Iliew, R.; Etrich, C.; Hartung, H.; Janunts, N.; Schrempel, F.; Lederer, F.; Pertsch, T.; Kley, E.-B. Light propagation in a free-standing lithium niobate photonic crystal waveguide. Appl. Phys. Lett. 2010, 97, 131109. [Google Scholar] [CrossRef]
- Jiang, W.; Lin, Q. Chip-scale cavity optomechanics in lithium niobate. Sci. Rep. 2016, 6, 36920. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, X.; Andrade, N.; Venkataraman, V.; Ren, X.-F.; Guo, G.-C.; Loncar, M. Second harmonic generation in lithium niobate microdisk resonators. Opt. Express 2017, 25, 6963. [Google Scholar] [CrossRef]
- Krasnokutska, I.; Chapman, R.J.; Tambasco, J.-L.J.; Peruzzo, A. High coupling efficiency grating couplers on lithium niobate on insulator. Opt. Express 2019, 27, 17681–17685. [Google Scholar] [CrossRef] [PubMed]
- Baba, T. Photonic Integration Based on Si Photonics and Photonic Crystals. In Proceedings of the 2021 Opto-Electronics and Communications Conference (OECC), Hong Kong, China, 3–7 July 2021; pp. 1–3. [Google Scholar]
- Jokar, M.H.; Naraghi, A.; Seifouri, M.; Olyaee, S. Design of bio-alcohol sensor based on waveguide-coupled photonic crystal cavity. Results Opt. 2023, 13, 100563. [Google Scholar] [CrossRef]
- Shekhar, S.; Bogaerts, W.; Chrostowski, L.; Bowers, J.E.; Hochberg, M.; Soref, R.; Shastri, B.J. Roadmapping the next generation of silicon photonics. Nat. Commun. 2024, 15, 751. [Google Scholar] [CrossRef] [PubMed]
- Krauss, T.F. Slow light in photonic crystal waveguides. J. Phys. D Appl. Phys. 2007, 40, 2666. [Google Scholar] [CrossRef]
- Baba, T. Slow light in photonic crystals. Nat. Photonics 2008, 2, 465–473. [Google Scholar] [CrossRef]
- Notomi, M.; Kuramochi, E.; Taniyama, H. Ultrahigh-Q nanocavity with 1D photonic gap. Opt. Express 2008, 16, 11095–11102. [Google Scholar] [CrossRef]
- O’brien, J.L.; Furusawa, A.; Vučković, J. Photonic quantum technologies. Nat. Photonics 2009, 3, 687–695. [Google Scholar] [CrossRef]
- Elsherif, M.; Salih, A.E.; Muñoz, M.G.; Alam, F.; AlQattan, B.; Antonysamy, D.S.; Zaki, M.F.; Yetisen, A.K.; Park, S.; Wilkinson, T.D.; et al. Optical fiber sensors: Working principle, applications, and limitations. Adv. Photonics Res. 2022, 3, 2100371. [Google Scholar] [CrossRef]
- Shen, B.; Hu, D.; Dai, C.; Yu, X.; Tan, X.; Sun, J.; Jiang, J.; Jiang, A. Advanced Etching Techniques of LiNbO3 Nanodevic-es. Nanomaterials 2023, 13, 2789. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Xu, X.-B.; Wang, J.-Q.; Zhang, M.; Li, M.; Zhu, Z.-X.; Wang, Z.-B.; Dong, C.-H.; Fang, W.; Yu, H.; et al. Nonlinear Optical Radiation of a Lithium Niobate Microcavity. Phys. Rev. Appl. 2023, 19, 034087. [Google Scholar] [CrossRef]
- Shugayev, R.; Dominguez, D.; Leenheer, A.; Little, B.; Chow, M.N.H.; Karl, N.; Koppa, M.; Gehl, M.; Jau, Y.-Y.; Eichenfield, M. CMOS-Fabricated Ultraviolet Light Modulators Using Low-Loss Alumina Piezo-Optomechanical Photonic Circuits. Opt. Express 2023, 31, 7890–7898. [Google Scholar]
- Yamamoto, T.; Notomi, M.; Taniyama, H.; Kuramochi, E.; Yoshikawa, Y.; Torii, Y.; Kuga, T. Design of a high-Q air-slot cavity based on a width-modulated line-defect in a photonic crystal slab. Opt. Express 2008, 16, 13809–13817. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, J.; Gao, J.; Shu, J.; Aras, M.S.; Wong, C.W. Design of dispersive optomechanical coupling and cooling in ultrahigh Q/Vslot-type photonic crystal cavities. Opt. Express 2010, 18, 23844–23856. [Google Scholar] [CrossRef] [PubMed]
- Dharanipathy, U.P.; Minkov, M.; Tonin, M.; Savona, V.; Houdré, R. High-Q silicon photonic crystal cavity for enhanced optical nonlinearities. Appl. Phys. Lett. 2014, 105, 101101. [Google Scholar] [CrossRef]
- Muhammad, S.; Chen, D.; Xian, C.; Zhou, J.; Lei, Z.; Kuang, P.; Li, Z.; Wen, G.; Huang, Y. Design and Fabrication of High-Quality Two-Dimensional Silicon-Based Photonic Crystal Optical Cavity with Integrated Waveguides. Photonics 2024, 11, 753. [Google Scholar] [CrossRef]
- Lee, W.-B.; Kwon, Y.-J.; Kim, A.; Sunwoo, Y.-H.; Lee, S.-S. Hybrid integrated thin-film lithium niobate–silicon nitride electro-optical phased array incorporating silicon nitride grating antenna for two-dimensional beam steering. Opt. Express 2024, 32, 9171–9183. [Google Scholar] [CrossRef]
- Li, M.; Ling, J.; He, Y.; Javid, U.A.; Xue, S.; Lin, Q. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 2020, 11, 4123. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Loncar, M. Design of nano-groove photonic crystal cavities in lithium niobate. Opt. Lett. 2015, 40, 2902–2905. [Google Scholar] [CrossRef]
- Lotfiani, A.; Dehdashti Jahromi, H.; Hamedi, S. Monolithic silicon-based photovoltaic-nanoplasmonic biosensor with enhanced limit of detection and minimum detectable power. J. Light. Technol. 2022, 40, 1231–1237. [Google Scholar] [CrossRef]
- Dehdashti Jahromi, H.; Lotfiani, A. A fast and sensitive Schottky photodiode with surface plasmon enhanced photocurrent and extremely low dark current for high-frequency applications in near-infrared. IEEE Sens. J. 2022, 22, 20430–20437. [Google Scholar] [CrossRef]
- Lotfiani, A.; Jahromi, H.D. Guided-mode resonance enhanced Ge-on-Si self-powered surface illuminated photodetector for ultrahigh-speed optical communication systems. IEEE Sens. J. 2024, 24, 40669–40677. [Google Scholar] [CrossRef]
- Dehdashti Jahrom, H. Germanium-incorporated Si-Ge-Si heterojunction phototransistors for a high-limit of detection and wide linear dynamic range near-infrared light detection. Opt. Express 2024, 32, 43475–43489. [Google Scholar] [CrossRef]
- Yüksel, N.; Börklü, H.R.; Sezer, H.K.; Canyurt, O.E. Review of artificial intelligence applications in engineering design perspective. Eng. Appl. Artif. Intell. 2023, 118, 105697. [Google Scholar] [CrossRef]
- Jahromi, H.D.; Hamedi, S. Artificial intelligence approach for calculating electronic and optical properties of nanocomposites. Mater. Res. Bull. 2021, 141, 111371. [Google Scholar] [CrossRef]
Parameter | Description | Value |
---|---|---|
a | Lattice constant | 0.72 μm |
r | Radius of the air hole | 0.24 μm |
z | Thickness of the slab | 0.3 μm |
w | Distance between the centers of adjacent air holes | 1.2 μm |
Width of the input waveguide | 0.1 μm to 1.55 μm | |
The width of the outer part connected to the PhC waveguide | 1.0 μm to 2.0 μm | |
s | Air slot width | 0.14 μm |
Inclination angle | Inclination angle of the structure | 70° |
Grid size | Total grid size for the simulation | 344.25 billion points |
Simulation time | Anticipated runtime for the simulation | Approximately 10–15 h |
Material Properties | Dielectric and LN |
Varied a (µm) | Parameter r (µm) | Inclination Angle | Q-Factor | Parameter a (µm) | Varied r (µm) | Inclination Angle | Q-Factor |
---|---|---|---|---|---|---|---|
0.72 | 0.24 | 90–60 | 0.72 | 0.23 | 90–60 | ||
0.71 | 0.24 | 90–60 | 0.72 | 0.22 | 90–60 | ||
0.7 | 0.24 | 90–60 | 0.72 | 0.21 | 90–60 | ||
0.69 | 0.24 | 90–60 | – | 0.72 | 0.2 | 90–60 |
Parameters of a (µm) | Working Wavelength Range (nm) | C-Band Transmission | Parameters of r (µm) | Working Wavelength Range (nm) | C-Band Transmission |
---|---|---|---|---|---|
0.72 | 1502–1581 | 90% | 0.23 | 1480–1575 | 91% |
0.71 | 1460–1584 | 88% | 0.22 | 1475–1570 | 87% |
0.7 | 1410–1597 | 85% | 0.21 | 1434–1582 | 88% |
0.69 | 1372–1598 | 82% | 0.2 | 1410–1575 | 88% |
Reference | Cavity Type | Theoretical Optical-Q |
---|---|---|
[55] | Air-slot cavity based on a width-modulated line-defect in a photonic crystal slab | |
[56] | Slot-type photonic crystal cavity | |
[57] | Air-bridge-type heterostructure nanocavity | |
[30] | 2D LN-PhC slab nano resonator | |
[31] | Cascaded bichromatic photonic crystal cavity | |
[58] | Silicon-based PhC optical cavity integrated with waveguide | |
This work | LN-based PhC optical cavity integrated with taper and PhC waveguides |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, S.; Chen, D.; Xian, C.; Zhou, J.; Lei, Z.; Kuang, P.; Ma, L.; Wen, G.; Fan, B.; Huang, Y. Parameter Investigations of Waveguide-Integrated Lithium Niobate Photonic Crystal Microcavity. Photonics 2025, 12, 475. https://doi.org/10.3390/photonics12050475
Muhammad S, Chen D, Xian C, Zhou J, Lei Z, Kuang P, Ma L, Wen G, Fan B, Huang Y. Parameter Investigations of Waveguide-Integrated Lithium Niobate Photonic Crystal Microcavity. Photonics. 2025; 12(5):475. https://doi.org/10.3390/photonics12050475
Chicago/Turabian StyleMuhammad, Sohail, Dingwei Chen, Chengwei Xian, Jun Zhou, Zhongke Lei, Pengju Kuang, Liang Ma, Guangjun Wen, Boyu Fan, and Yongjun Huang. 2025. "Parameter Investigations of Waveguide-Integrated Lithium Niobate Photonic Crystal Microcavity" Photonics 12, no. 5: 475. https://doi.org/10.3390/photonics12050475
APA StyleMuhammad, S., Chen, D., Xian, C., Zhou, J., Lei, Z., Kuang, P., Ma, L., Wen, G., Fan, B., & Huang, Y. (2025). Parameter Investigations of Waveguide-Integrated Lithium Niobate Photonic Crystal Microcavity. Photonics, 12(5), 475. https://doi.org/10.3390/photonics12050475