Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (580)

Search Parameters:
Keywords = skin permeation study

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5797 KiB  
Article
Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
by Lilian Sosa, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, Rafel Prohens and Marcelle Silva-Abreu
Gels 2025, 11(8), 601; https://doi.org/10.3390/gels11080601 - 1 Aug 2025
Viewed by 167
Abstract
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal [...] Read more.
Leishmaniasis is an infectious disease common in tropical and subtropical regions worldwide. This study aimed to develop a topical meglumine antimoniate gel (MA-gel) for the treatment of cutaneous leishmaniasis. The MA-gel was characterized in terms of morphology, pH, swelling, porosity, rheology, and thermal properties by differential scanning calorimetry (DSC). Biopharmaceutical evaluation included in vitro drug release and ex vivo skin permeation. Safety was evaluated through biomechanical skin property measurements and cytotoxicity in HaCaT and RAW 267 cells. Leishmanicidal activity was tested against promastigotes and amastigotes of Leishmania infantum, and in silico studies were conducted to explore possible mechanisms of action. The composition of the MA-gel included 30% MA, 20% Pluronic® F127 (P407), and 50% water. Scanning electron microscopy revealed a sponge-like and porous internal structure of the MA-gel. This formula exhibited a pH of 5.45, swelling at approximately 12 min, and a porosity of 85.07%. The DSC showed that there was no incompatibility between MA and P407. Drug release followed a first-order kinetic profile, with 22.11 µg/g/cm2 of the drug retained in the skin and no permeation into the receptor compartment. The MA-gel showed no microbial growth, no cytotoxicity in keratinocytes, and no skin damage. The IC50 for promastigotes and amastigotes of L. infantum were 3.56 and 23.11 µg/mL, respectively. In silico studies suggested that MA could act on three potential therapeutic targets according to its binding mode. The MA-gel demonstrated promising physicochemical, safety, and antiparasitic properties, supporting its potential as a topical treatment for cutaneous leishmaniasis. Full article
(This article belongs to the Special Issue Functional Hydrogels: Design, Processing and Biomedical Applications)
Show Figures

Figure 1

22 pages, 2224 KiB  
Article
Development and Evaluation of an Anti-Inflammatory Emulsion: Skin Penetration, Physicochemical Properties, and Fibroblast Viability Assessment
by Jolita Stabrauskiene, Agnė Mazurkevičiūtė, Daiva Majiene, Rima Balanaskiene and Jurga Bernatoniene
Pharmaceutics 2025, 17(7), 933; https://doi.org/10.3390/pharmaceutics17070933 - 19 Jul 2025
Viewed by 461
Abstract
Background/Objectives. Chronic inflammatory skin disorders, such as atopic dermatitis and psoriasis, require safe and effective topical treatments. This study aimed to develop and evaluate a novel anti-inflammatory emulsion enriched with menthol, capsaicin, amino acids (glycine, arginine, histidine), and boswellic acid. Methods. Three formulations [...] Read more.
Background/Objectives. Chronic inflammatory skin disorders, such as atopic dermatitis and psoriasis, require safe and effective topical treatments. This study aimed to develop and evaluate a novel anti-inflammatory emulsion enriched with menthol, capsaicin, amino acids (glycine, arginine, histidine), and boswellic acid. Methods. Three formulations were prepared: a control (E1), a partial (E2), and a comprehensive formulation (E3). Physicochemical analyses included texture profiling, rheological behavior, pH stability, moisture content, and particle size distribution. Results. E3 demonstrated superior colloidal stability, optimal pH (5.75–6.25), and homogenous droplet size (<1 µm), indicating favorable dermal delivery potential. Ex vivo permeation studies revealed effective skin penetration of menthol and amino acids, with boswellic acid remaining primarily in the epidermis, suggesting localized action. Under oxidative stress conditions, E3 significantly improved fibroblast viability, indicating synergistic cytoprotective effects of combined active ingredients. While individual compounds showed limited or dose-dependent efficacy, their combination restored cell viability to near-control levels. Conclusions. These findings support the potential of this multi-component emulsion as a promising candidate for the topical management of inflammatory skin conditions. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

21 pages, 2264 KiB  
Article
Stability, Bioactivity, and Skin Penetration of Prunus Leaf Extracts in Cream Formulations: A Clinical Study on Skin Irritation
by Lapatrada Mungmai, Eakkaluk Wongwad, Patcharawan Tanamatayarat, Tammanoon Rungsang, Pattavet Vivattanaseth, Nattapol Aunsri and Weeraya Preedalikit
Cosmetics 2025, 12(4), 146; https://doi.org/10.3390/cosmetics12040146 - 10 Jul 2025
Cited by 1 | Viewed by 581
Abstract
Prunus leaf extracts are rich in phenolic and flavonoid compounds like rutin, and they are known for their antioxidant potential. This study compares the bioactivity and stability of leaf extracts from Prunus domestica L. (EL), Prunus salicina Lindl. (JL), and Prunus cerasifera Ehrh. [...] Read more.
Prunus leaf extracts are rich in phenolic and flavonoid compounds like rutin, and they are known for their antioxidant potential. This study compares the bioactivity and stability of leaf extracts from Prunus domestica L. (EL), Prunus salicina Lindl. (JL), and Prunus cerasifera Ehrh. (CL) and evaluates the dermal safety of a cream containing the extract with the most favorable in vitro properties for potential cosmetic use. Ethanolic extracts were assessed for total phenolic and condensed tannin contents, as well as antioxidants, using DPPH assay and lipid peroxidation inhibitory activities. The CL extract exhibited moderate total phenolic content, the highest condensed tannin content, and strong antioxidant (IC50 = 22.1 ± 3.1 µg/mL) and anti-lipid peroxidation (62.3 ± 1.0%) activities. Based on these results, CL was incorporated into a cream formulation (CCL), which was then evaluated for physicochemical properties, antioxidant retention, and in vitro skin permeation using Franz diffusion cells. The formulation remained physically stable under ambient conditions and retained antioxidant activity above 74.5% under thermal cycling conditions. Rutin from the CCL formulation was retained within the Strat-M™ membrane (4.0 ± 1.1%), which was 5.7-fold higher than that of the control (0.7 ± 0.6%) over 8 h; however, it was not detected in the receptor chamber under these in vitro conditions. A semi-open patch test conducted on 26 healthy volunteers under double-blind conditions revealed no signs of irritation, confirming the formulation’s dermal safety. Overall, the findings support the feasibility of using P. cerasifera extract as a stable antioxidant component in topical skincare formulations. Full article
(This article belongs to the Section Cosmetic Dermatology)
Show Figures

Figure 1

18 pages, 2518 KiB  
Article
Injectable PEG-PCL-PEG Copolymers for Skin Rejuvenation: In Vitro Cell Studies to in Vivo Collagen Induction
by Seunghwa Lee, Aram Kim, Jimo Koo, Yunsik Kim, Sunglim Choi and Jin Cheol Cho
Polymers 2025, 17(14), 1892; https://doi.org/10.3390/polym17141892 - 8 Jul 2025
Viewed by 482
Abstract
In this study, we designed an injectable skin-rejuvenating formulation based on polyethylene glycol–polycaprolactone–polyethylene glycol (PEG-PCL-PEG) copolymers to provide a synergistic combination of biocompatibility, antioxidative capacity, and regenerative potential. Through the systematic optimization of the precursor molar ratio and molecular weight, well-defined PEG-PCL-PEG copolymers [...] Read more.
In this study, we designed an injectable skin-rejuvenating formulation based on polyethylene glycol–polycaprolactone–polyethylene glycol (PEG-PCL-PEG) copolymers to provide a synergistic combination of biocompatibility, antioxidative capacity, and regenerative potential. Through the systematic optimization of the precursor molar ratio and molecular weight, well-defined PEG-PCL-PEG copolymers were synthesized and structurally characterized using gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H-NMR), and Fourier transform infrared (FT-IR) spectroscopy. An optimized precipitation and drying protocol effectively reduced residual solvents, as confirmed by gas chromatography (GC). Idebenone was incorporated as an antioxidant to prevent skin aging, while hyaluronic acid (HA), L-arginine, and glycerin were included to promote collagen regeneration. In vitro assays demonstrated that idebenone-loaded samples exhibited prolonged intracellular antioxidant activity with low cytotoxicity. The collagen-promoting formulation, containing HA, glycerin, and L-arginine, enhanced the expression of transforming growth factor-β (TGF-β) and type III collagen (COL3) while suppressing inflammatory genes, suggesting a favorable environment for extracellular matrix remodeling. In vivo evaluation corroborated these outcomes, showing angiogenesis, collagen reorganization, and progressive dermal thickness. Histological analysis further confirmed sustained matrix regeneration and tissue integration. These results highlight the potential of PEG-PCL-PEG-based injectables as a multifunctional platform for collagen regeneration, offering a promising strategy for both cosmetic and clinical applications. Full article
(This article belongs to the Special Issue Polyester-Based Materials: 3rd Edition)
Show Figures

Figure 1

16 pages, 1249 KiB  
Article
Impact of Electromagnetic Field on the Physicochemical Properties, Permeability, and Accumulation of Salicylic Acid
by Karolina Zyburtowicz-Ćwiartka, Anna Nowak, Anna Muzykiewicz-Szymańska, Łukasz Kucharski, Maciej Konopacki, Rafał Rakoczy and Paula Ossowicz-Rupniewska
Appl. Sci. 2025, 15(13), 7606; https://doi.org/10.3390/app15137606 - 7 Jul 2025
Viewed by 363
Abstract
Transdermal drug delivery offers a non-invasive route for the systemic and localized administration of therapeutics; however, the skin’s barrier function limits its efficiency. This study investigates the application of various electromagnetic field (EMF) configurations to enhance the transdermal delivery of salicylic acid, a [...] Read more.
Transdermal drug delivery offers a non-invasive route for the systemic and localized administration of therapeutics; however, the skin’s barrier function limits its efficiency. This study investigates the application of various electromagnetic field (EMF) configurations to enhance the transdermal delivery of salicylic acid, a model compound with moderate lipophilicity and ionizability. Samples were exposed to pulsed, oscillating, static, and rotating magnetic fields, and their effects on physicochemical properties, thermal stability, skin permeation, and accumulation were evaluated. Structural analyses (FTIR, XRD) and thermal assessments (TGA, DSC) confirmed that EMF exposure did not alter the chemical structure or stability of salicylic acid. In vitro transdermal studies using porcine skin and Franz diffusion cells revealed that pulsed magnetic fields—especially with a 5 s on/5 s off cycle—and rotating magnetic fields at 30–50 Hz significantly enhanced drug permeation compared to controls. In contrast, static fields of negative polarity increased skin retention, suggesting their potential for controlled, localized delivery. These findings demonstrate that EMFs can be used as tunable, non-destructive tools to modulate drug transport across the skin and support their integration into transdermal delivery systems aimed at optimizing therapeutic profiles. Full article
Show Figures

Figure 1

22 pages, 1889 KiB  
Article
Development and Characterization of Bigels for the Topical Delivery of Curcumin
by Juan Luis Peréz-Salas, Martha Rocío Moreno-Jiménez, Luis Medina-Torres, Nuria Elizabeth Rocha-Guzmán, María Josefa Bernad-Bernad, Rubén Francisco González-Laredo and José Alberto Gallegos-Infante
Sci. Pharm. 2025, 93(3), 28; https://doi.org/10.3390/scipharm93030028 - 3 Jul 2025
Viewed by 389
Abstract
The topical application of curcumin can act directly on the tissue, but there are problems related to solubility and permeation. Bigels combine hydrogels and organogels to enhance the release and transport of bioactives through the skin. The aim of this study was to [...] Read more.
The topical application of curcumin can act directly on the tissue, but there are problems related to solubility and permeation. Bigels combine hydrogels and organogels to enhance the release and transport of bioactives through the skin. The aim of this study was to develop bigels for the topical delivery of curcumin. Employing a rheology test, it was found that all bigels showed a solid-like behavior structure (G′ > G″) with stiffness increasing with higher organogel content. The principle of time–temperature superposition (TTS) was used to generate master curves. Microscopy revealed a morphological structure that depended on the organogel/hydrogel ratio. The bigels exhibited a pH compatible with that of human skin, and the curcumin content met the standards for uniform dosage. Thermal characterization showed the presence of three peaks in coconut oil bigels and two peaks in castor oil bigels. Bigels with a 45% castor oil organogel/55% hydrogel ratio exhibited a longer controlled release of curcumin, while bigels with coconut oil showed a faster release. The release data were fitted to mathematical models indicating non-Fickian release. The permeability of curcumin through Strat-M membranes was investigated, and greater permeation was observed with increasing organogel content. The developed bigels could be a promising option for the topical delivery of curcumin. Full article
Show Figures

Figure 1

19 pages, 8480 KiB  
Article
(W/O/W) Double Emulsions-Filled Chitosan Hydrogel Beads for Topical Application
by Rui Sun, Yufeng Sun, Xiaoyan Tang and Juling Ji
Gels 2025, 11(7), 504; https://doi.org/10.3390/gels11070504 - 27 Jun 2025
Viewed by 393
Abstract
The aim of this study was to develop double emulsions-filled chitosan hydrogel beads for topical application and to elucidate their skin penetration behavior. Double emulsions were prepared by a two-step emulsification method, and double emulsions-filled chitosan hydrogel beads were prepared by the extrusion [...] Read more.
The aim of this study was to develop double emulsions-filled chitosan hydrogel beads for topical application and to elucidate their skin penetration behavior. Double emulsions were prepared by a two-step emulsification method, and double emulsions-filled chitosan hydrogel beads were prepared by the extrusion method. The structure, stability, and skin penetration behavior were investigated. The results of yield efficiency (above 80%) and microstructure observation confirmed the feasibility of the preparation method. After loading the hydrophilic active ingredients (vitamin C) into this system, the retention ratio after storage for 6 weeks increased by 77.6%. Furthermore, hydrogel beads could promote the permeation of hydrophilic active ingredients loaded in double emulsions. When the concentration of chitosan was 3% (w/v), the permeation coefficient of vitamin C from hydrogel beads exhibited an increase (1.7-fold) compared with double emulsions. This system could affect the orderliness of lipid structures in the stratum corneum. In addition, the results indicated that this system could be used for the topical delivery of hydrophobic active ingredients (quercetin) as well. This is the first report of chitosan bead stabilization of W/O/W emulsions, yielding a 2.6-fold increase in skin uptake of hydrophilic actives. Full article
(This article belongs to the Special Issue Recent Advances in Gels for Pharmaceutical Application)
Show Figures

Figure 1

17 pages, 3142 KiB  
Article
Evaluation of the In Vitro Permeation Parameters of Topical Diclofenac Sodium from Transdermal Pentravan® Products and Hydrogel Celugel Through Human Skin
by Urszula Adamiak-Giera, Michał Gackowski, Joanna Szostak, Tomasz Osmałek, Damian Malinowski, Anna Nowak, Anna Machoy-Mokrzyńska, Maciej Miernik, Mirosław Halczak, Maciej Romanowski, Anna Czerkawska and Monika Białecka
Pharmaceuticals 2025, 18(6), 810; https://doi.org/10.3390/ph18060810 - 28 May 2025
Viewed by 814
Abstract
Background: Diclofenac is a phenylacetic acid derivative classified as a non-selective COX inhibitor. Similar to other NSAIDs, it is characterized by anti-inflammatory, antipyretic, and analgesic effects. Long-term therapy with diclofenac might also lead to severe gastrointestinal, renal, or cardiovascular systems disorders. Aim of [...] Read more.
Background: Diclofenac is a phenylacetic acid derivative classified as a non-selective COX inhibitor. Similar to other NSAIDs, it is characterized by anti-inflammatory, antipyretic, and analgesic effects. Long-term therapy with diclofenac might also lead to severe gastrointestinal, renal, or cardiovascular systems disorders. Aim of the study was to compare own formulation prepared from pharmaceutical raw materials with ready-to-use diclofenac product. Methods: In the in vitro permeation experiments, human skin was excised from the abdomen of living patients as a result of plastic surgery. The transdermal semi-solid formulations were compounded using Pentravan®, a ready-to-use transdermal base and hydrophilic gel base (Celugel). In vitro Penetration Studies, HPLC analysis, optical microscopy imaging, and a spreadability test were conducted. Rheological analysis provided insights into flow behavior, structure, and thixotropy. Results: Combination of Celugel with diclofenac sodium and the addition of substances acting as absorption enhancers, e.g., menthol, may provide an interesting alternative for enteral drugs, especially in patients with multimorbidity and polypharmacy. Conclusions: Topical diclofenac sodium with of addition of permeation enhancers like menthol might provide higher drug concentrations in the surrounding tissues and better analgesic and anti-inflammatory effects in compare to commercially available product and may provide optimum effectiveness with minimal risk of adverse effects, particularly in elderly and polymedicated patients. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

27 pages, 4866 KiB  
Article
Preparation and Evaluation of Tadalafil-Loaded Nanoemulgel for Transdermal Delivery in Cold-Induced Vasoconstriction: A Potential Therapy for Raynaud’s Phenomenon
by Shery Jacob, Jamila Ojochenemi Abdullahi, Shahnaz Usman, Sai H. S Boddu, Sohaib Naseem Khan, Mohamed A. Saad and Anroop B Nair
Pharmaceutics 2025, 17(5), 596; https://doi.org/10.3390/pharmaceutics17050596 - 1 May 2025
Viewed by 1017
Abstract
Background/Objectives: Raynaud’s phenomenon (RP) is characterized by an exaggerated vasoconstrictive response of small blood vessels in the fingers and toes to cold or stress. Oral therapy with tadalafil (TDL), a phosphodiesterase-5 inhibitor, is limited by systemic side effects and reduced patient compliance. This [...] Read more.
Background/Objectives: Raynaud’s phenomenon (RP) is characterized by an exaggerated vasoconstrictive response of small blood vessels in the fingers and toes to cold or stress. Oral therapy with tadalafil (TDL), a phosphodiesterase-5 inhibitor, is limited by systemic side effects and reduced patient compliance. This study aimed to develop and evaluate a TDL-loaded nanoemulgel for transdermal delivery as a non-invasive treatment alternative for cold-induced vasoconstriction. Methods: TDL-loaded nanoemulsions were prepared using the aqueous titration method with cinnamon oil as the oil phase and Cremophor RH40 and Transcutol as the surfactant–cosurfactant system. The optimized nanoemulsion was incorporated into a carbopol-based gel to form a nanoemulgel. The formulation was characterized for droplet size, morphology, thermodynamic stability, rheological properties, in vitro drug release, skin permeation, and pharmacokinetic behavior. Infrared thermography was employed to assess in vivo efficacy in cold-induced vasoconstriction models. Results: The optimized TDL nanoemulsion exhibited a spherical morphology, a nanoscale droplet size, and an enhanced transdermal flux. The resulting nanoemulgel displayed suitable physicochemical and rheological properties for topical application, a short lag time (0.7 h), and a high permeability coefficient (Kp = 3.59 × 10−2 cm/h). Thermal imaging showed significant vasodilation comparable to standard 0.2% nitroglycerin ointment. Pharmacokinetic studies indicated improved transdermal absorption with a higher Cmax (2.13 µg/mL), a prolonged half-life (t1/2 = 16.12 h), and an increased AUC0–24 compared to an oral nanosuspension (p < 0.001). Conclusions: The developed TDL nanoemulgel demonstrated effective transdermal delivery and significant potential as a patient-friendly therapeutic approach for Raynaud’s phenomenon, offering an alternative to conventional oral therapy. Full article
(This article belongs to the Special Issue Transdermal Delivery: Challenges and Opportunities)
Show Figures

Figure 1

29 pages, 6444 KiB  
Article
Novel Gels for Post-Piercing Care: Evaluating the Efficacy of Pranoprofen Formulations in Reducing Inflammation
by Negar Ahmadi, Maria Rincón, Mireia Mallandrich, Joaquim Suñer-Carbó, Lilian Sosa, Mireya Zelaya, Sergio Martinez-Ruiz, Cecilia Cordero and Ana C. Calpena
Gels 2025, 11(5), 334; https://doi.org/10.3390/gels11050334 - 30 Apr 2025
Viewed by 871
Abstract
Mild to moderate pain for a few hours to several days post-piercing is normal, and the pain is usually accompanied by swelling, redness, and warmth due to the inflammatory response. Cool compresses and over-the-counter analgesics (e.g., NSAIDs) can ease mild discomfort. However, oral [...] Read more.
Mild to moderate pain for a few hours to several days post-piercing is normal, and the pain is usually accompanied by swelling, redness, and warmth due to the inflammatory response. Cool compresses and over-the-counter analgesics (e.g., NSAIDs) can ease mild discomfort. However, oral NSAIDs may have systemic side effects; for this reason, we propose a topical anti-inflammatory approach. Four pranoprofen-loaded gels were created using different gelling agents: Sepigel® 305 (PF-Gel-Sep), Carbopol® 940 (PF-Gel-Car), Pluronic® F-68 (PF-Gel-Plu), and Lutrol® F-127 (PF-Gel-Lut). The gels were assessed for pH, morphology, FT-IR spectroscopy, rheological properties, spreadability, swelling and degradation, drug release kinetics, skin permeation (cow and human skin), irritation potential (HET-CAM assay), and impact on skin barrier function (TEWL and SCH). The gels exhibited varied rheological properties with PF-Gel-Car showing high viscosity and PF-Gel-Plu very low viscosity. All gels had similar spreadability with PF-Gel-Lut showing the highest. PF-Gel-Car showed the highest amounts of PF released, whereas PF-Gel-Plu led to the highest amount of pranoprofen retained in human and bovine skin. The HET-CAM assay indicated that none of the PF-Gels were irritating. Additionally, PF-Gel-Car and PF-Gel-Plu showed no cytotoxic effects on HaCaT cells. In vivo testing on mice showed that PF-Gel-Car prevented inflammation, while the rest of the gels were able to revert it in 25 min. Skin tolerance tests revealed the gels did not affect TEWL, and some gels improved SCH. The study successfully formulated and characterized four PF-loaded topical gels with potential to be used as an alternative for treating inflammation from piercings and ear tags. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Figure 1

14 pages, 3077 KiB  
Article
An Assessment of the Antifungal Efficacy of a Novel Topical Onychomycosis Treatment Using Human Nail and Skin Infection Models
by Anthony Brown, Felipe Goñi-de-Cerio, Ainhoa Bilbao, Adrià Ribes, Antonio R. Fernández de Henestrosa, Ludmila Prudkin, Paola Perugini and Mónica Foyaca
J. Fungi 2025, 11(5), 345; https://doi.org/10.3390/jof11050345 - 29 Apr 2025
Viewed by 1524
Abstract
Onychomycosis, a fungal nail infection, affects about 4% of the global population. Current topical antifungals like ciclopirox and amorolfine have limited effectiveness, highlighting the need for better treatments. WSNS-PO is a novel water-soluble therapy designed to treat and prevent onychomycosis by enhancing nail [...] Read more.
Onychomycosis, a fungal nail infection, affects about 4% of the global population. Current topical antifungals like ciclopirox and amorolfine have limited effectiveness, highlighting the need for better treatments. WSNS-PO is a novel water-soluble therapy designed to treat and prevent onychomycosis by enhancing nail health. This study evaluated WSNS-PO’s ability to penetrate the nail plate and to treat and prevent infection by Trichophyton rubrum using bovine hoof membranes and human nail clippings. The anti-fungal efficacy of WSNS-PO was additionally evaluated against other dermatophytes, non-dermatophyte fungi, and yeast. The results showed that WSNS-PO effectively permeated nails and reduced and prevented the colonization of human nail fragments by T. rubrum ex vivo, demonstrating an efficacy comparable to ciclopirox and amorolfine. WSNS-PO also prevented the transfer of T. rubrum infection between nails and inhibited the fungal colonization of human skin by dermatophyte and non-dermatophyte fungi and yeast. Together, these results indicate that WSNS-PO possesses fungistatic, barrier-forming, and anti-adhesive properties, suggesting that it holds promise as an onychomycosis treatment against dermatophytes, yeast, and molds. Full article
Show Figures

Figure 1

13 pages, 2615 KiB  
Article
Formulation of Caffeine–Hydroxypropyl-β-Cyclodextrin Complex in Hydrogel for Skin Treatment
by Lyubomira Radeva, Eleftheria Kalampalika, Yordan Yordanov, Petar D. Petrov, Virginia Tzankova and Krassimira Yoncheva
Gels 2025, 11(5), 326; https://doi.org/10.3390/gels11050326 - 27 Apr 2025
Cited by 1 | Viewed by 903
Abstract
Caffeine is a well-known xanthine that possesses antioxidant effects that could contribute to its application in different skin disorders. In order to enhance its effects, approaches for improving its permeation and penetration through skin layers could be applied. This study emphasizes the preparation [...] Read more.
Caffeine is a well-known xanthine that possesses antioxidant effects that could contribute to its application in different skin disorders. In order to enhance its effects, approaches for improving its permeation and penetration through skin layers could be applied. This study emphasizes the preparation of caffeine–cyclodextrin complex and its formulation in carbopol hydrogel. The complex was developed at a 1:1 molar ratio between caffeine and hydroxypropyl-β-cyclodextrin. It was found that the complex enhanced the radical scavenging activity of caffeine against ABTS radical as well as the protective effects against H2O2-induced oxidative stress in L929 fibroblasts. Then, the complex was formulated in hydrogel by applying 1% carbopol. The spreadability and penetration of the loaded hydrogel were improved in comparison with the empty hydrogel. The results revealed that the system could be appropriate for therapies of skin disorders, and its wound healing abilities could be further investigated. Full article
(This article belongs to the Special Issue Recent Advances in Gels Engineering for Drug Delivery (2nd Edition))
Show Figures

Graphical abstract

18 pages, 2485 KiB  
Article
Evaluation of Carboxymethyl Chitosan–Genipin Hydrogels as Reservoir Systems for Suramin Delivery in Epithelial Tissues
by David Encinas-Basurto, Victor H. Ruiz, Rick G. Schnellmann and Heidi M. Mansour
Gels 2025, 11(5), 312; https://doi.org/10.3390/gels11050312 - 23 Apr 2025
Viewed by 732
Abstract
Hydrogels (HDs) offer a promising platform for localized and sustained drug delivery. In this study, carboxymethyl chitosan (CMC)—based hydrogels were crosslinked with genipin and evaluated for the controlled release and tissue retention of suramin, a polyanionic drug with anti-inflammatory and antifibrotic properties. The [...] Read more.
Hydrogels (HDs) offer a promising platform for localized and sustained drug delivery. In this study, carboxymethyl chitosan (CMC)—based hydrogels were crosslinked with genipin and evaluated for the controlled release and tissue retention of suramin, a polyanionic drug with anti-inflammatory and antifibrotic properties. The influence of crosslinking density (1%, 3%, and 5%) on drug release, permeation kinetics, and retention was investigated using in vitro synthetic membranes and reconstructed human epithelial tissue models. The 1% genipin HD exhibited the highest cumulative release and drug retention (48.8 ± 6.8 μg/cm2 in synthetic membranes; 24.06 ± 7.33 μg/cm2 in epithelial models), along with a sustained release profile governed by first-order and Fickian diffusion kinetics. Notably, the 1% crosslinked formulation also demonstrated enhanced transmembrane flux (>140 μg/cm2/h after six hours), suggesting that lower crosslinking density favors both diffusional mobility and depot functionality. In contrast, free suramin solution displayed limited tissue interaction and minimal permeation, highlighting the role of the hydrogel matrix in regulating local bioavailability. These findings demonstrate that CMC–genipin HD can closely modulate drug delivery kinetics through crosslinking density, offering a biocompatible strategy for localized treatment of ulcerated epithelial conditions such as oral mucositis or chronic wounds. Diffusion models included a synthetic multilayer membrane (Strat-M®) and a reconstructed human epidermis (EpiDerm™) to simulate skin-like barrier properties. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
Show Figures

Figure 1

20 pages, 6962 KiB  
Article
Topical Delivery of Ceramide by Oil-in-Water Nanoemulsion to Retain Epidermal Moisture Content in Dermatitis
by Yu Zhou, Lichun Wu, Yi Zhang, Jia Hu, Jannatul Fardous, Yasuhiro Ikegami and Hiroyuki Ijima
Biomolecules 2025, 15(5), 608; https://doi.org/10.3390/biom15050608 - 22 Apr 2025
Viewed by 1123
Abstract
External environmental stressors and internal physiological changes frequently compromise the skin barrier, resulting in conditions such as dermatitis and dehydration. A key underlying factor is the depletion of ceramides, essential lipids in the stratum corneum that maintain skin integrity. Although topical ceramide supplementation [...] Read more.
External environmental stressors and internal physiological changes frequently compromise the skin barrier, resulting in conditions such as dermatitis and dehydration. A key underlying factor is the depletion of ceramides, essential lipids in the stratum corneum that maintain skin integrity. Although topical ceramide supplementation is effective for barrier repair, its clinical application is limited by poor solubility and low skin permeability. To overcome these challenges, this study developed an oil-in-water nanoemulsion (O/W-NE) using ultrasonic emulsification for the efficient transdermal delivery of ceramide C2. Octyldodecanol was selected as the oil phase to enhance ceramide solubility, while glycerin was incorporated to increase aqueous phase viscosity, reduce particle size, and function as a biocompatible penetration enhancer. The optimized nanoemulsion achieved a particle size of 112.5 nm and an encapsulation efficiency of 85%. Its performance was evaluated via in vitro release, ex vivo skin permeation, and in vivo biocompatibility studies. Mechanistic investigations revealed that both particle size and glycerin concentration significantly influenced ceramide penetration into the epidermis and dermis. Additionally, the nanoemulsion exhibited moisturizing and barrier-repair effects in a damaged skin model. Overall, this O/W-NE offers a stable, non-invasive strategy for enhancing ceramide delivery and restoring skin barrier function. Full article
(This article belongs to the Special Issue Molecular Advances in Wound Healing and Skin Regeneration)
Show Figures

Graphical abstract

13 pages, 1974 KiB  
Article
In Vitro Percutaneous Absorption of Permeation-Enhancing Estrogen Formulations
by Guiyun Song, Kendice Ip, Bruce Biundo, Maria Carvalho, A. J. Day, August S. Bassani, Hui Song, Benigno C. Valdez and Daniel Banov
Pharmaceuticals 2025, 18(4), 596; https://doi.org/10.3390/ph18040596 - 19 Apr 2025
Viewed by 861
Abstract
Background/Objectives: Hormone Replacement Therapy (HRT) is commonly prescribed to women in need to restore the deficiency of hormones. Estrogens, in particular estradiol (E2) and estriol (E3), are associated with side effects when given orally. As such, estrogen is topically applied on the [...] Read more.
Background/Objectives: Hormone Replacement Therapy (HRT) is commonly prescribed to women in need to restore the deficiency of hormones. Estrogens, in particular estradiol (E2) and estriol (E3), are associated with side effects when given orally. As such, estrogen is topically applied on the skin for the delivery of the hormone. The objective of this in vitro study is to evaluate the percutaneous absorption of compounded estradiol 0.06% and bi-est E3/E2 0.1%/0.06% in aqueous and anhydrous proprietary permeation-enhancing bases, in comparison with the commercially available estradiol transdermal gel (ESTROGel®). Methods: The In Vitro Permeation Test (IVPT) was used and validated for the objectives of this study. The strength of estradiol/estriol in five test formulations was determined using Ultra Performance Liquid Chromatography (UPLC). Results: ESTROGel exhibited a rapid increase in the rate of skin absorption of estradiol within 0.5 h post-application. This peak was followed by a rapid decline in flux within 4 h, and then a slower decline by 16 h post-application. The initial rapid increase for ESTROGel was much faster than the rate of the four test compounded formulations, which each exhibited a slow and steady increase in the rate of skin absorption of estradiol with a peak flux within 6 h, and a steady absorption within 16 h of application. Conclusions: The compounded bases facilitated a steady percutaneous absorption of estradiol, without quick peaking or declining, which is one of the desired characteristics in HRT. Compounding pharmacists and practitioners may consider estradiol compounded formulations as a viable option for hormone delivery to patients. Full article
(This article belongs to the Topic Personalized Drug Formulations)
Show Figures

Figure 1

Back to TopTop