Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = single-nuclei RNA-seq

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2433 KiB  
Article
A Single-Cell Assessment of Intramuscular and Subcutaneous Adipose Tissue in Beef Cattle
by Mollie M. Green, Hunter R. Ford, Alexandra P. Tegeler, Oscar J. Benitez, Bradley J. Johnson and Clarissa Strieder-Barboza
Agriculture 2025, 15(14), 1545; https://doi.org/10.3390/agriculture15141545 - 18 Jul 2025
Viewed by 616
Abstract
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of [...] Read more.
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of strategies for marbling enhancement while limiting the accumulation of excessive subcutaneous adipose tissue (SAT). The objective of this exploratory study was to define the IM and SAT transcriptional heterogeneity at the whole tissue and single-nuclei levels in beef steers. Longissimus dorsi muscle samples (9–11th rib) were collected from two finished beef steers at harvest to dissect matched IM and adjacent SAT (backfat). Total RNA from IM and SAT was isolated and sequenced in an Illumina NovaSeq 6000. Nuclei from the same samples were isolated by dounce homogenization, libraries generated with 10× Genomics, and sequenced in an Illumina NovaSeq 6000, followed by analysis via Cell Ranger pipeline and Seurat in RStudio (v4.3.2) By the expression of signature marker genes, single-nuclei RNA sequencing (snRNAseq) analysis identified mature adipocytes (AD; ADIPOQ, LEP), adipose stromal and progenitor cells (ASPC; PDGFRA), endothelial cells (EC; VWF, PECAM1), smooth muscle cells (SMC; NOTCH3, MYL9) and immune cells (IMC; CD163, MRC1). We detected six cell clusters in SAT and nine in IM. Across IM and SAT, AD was the most abundant cell type, followed by ASPC, SMC, and IMC. In SAT, AD made up 50% of the cellular population, followed by ASPC (31%), EC (14%), IMC (1%), and SMC (4%). In IM depot, AD made up 23% of the cellular population, followed by ASPC at 19% of the population, EC at 28%, IMC at 7% and SMC at 12%. The abundance of ASPC and AD was lower in IM vs. SAT, while IMC was increased, suggesting a potential involvement of immune cells on IM deposition. Accordingly, both bulk RNAseq and snRNAseq analyses identified activated pathways of inflammation and metabolic function in IM. These results demonstrate distinct transcriptional cellular heterogeneity between SAT and IM depots in beef steers, which may underly the mechanisms by which fat deposits in each depot. The identification of depot-specific cell populations in IM and SAT via snRNAseq analysis has the potential to reveal target genes for the modulation of fat deposition in beef cattle. Full article
Show Figures

Figure 1

10 pages, 1099 KiB  
Communication
Fluorescent In Situ Hybridization Testing Allows the Diagnosis of NRG1 Gene Fusions in Lung and Pancreas Cancers with No Other Identified Oncogenic Driver
by Clara Bastard, Charline Caumont, Laura Samaison, Isabelle Quintin-Roué, Laurent Doucet, Pascale Marcorelles, Cédric Le Maréchal, Jean-Philippe Merlio, David Cappellen and Arnaud Uguen
Cancers 2025, 17(14), 2347; https://doi.org/10.3390/cancers17142347 - 15 Jul 2025
Viewed by 157
Abstract
Some pancreatic ductal-type (PDADK) and lung adenocarcinomas (LADK) lacking other molecular drivers are reported to harbor NRG1 fusions as potential novel therapeutic targets. We investigated the feasibility of a fluorescent in situ hybridization (FISH)-based diagnosis of NRG1 fusions in a case series of [...] Read more.
Some pancreatic ductal-type (PDADK) and lung adenocarcinomas (LADK) lacking other molecular drivers are reported to harbor NRG1 fusions as potential novel therapeutic targets. We investigated the feasibility of a fluorescent in situ hybridization (FISH)-based diagnosis of NRG1 fusions in a case series of PDADK and LADK lacking other identified oncogenic drivers. First, among a case series of PDADK, KRAS analyses (PCR followed in PCR-negative cases by RNA sequencing—RNAseq) found 27/162 (16.7%) KRAS wild-type cases, among which 1/162 (0.6%) NRG1 fusion was diagnosed using FISH. Secondly, among a case series of LDAK, 191/446 (42.8%) cases had no molecular alterations in EGFR, KRAS, BRAF, HER2, MET, ALK, ROS1 and RET according to NGS and FISH analyses and, among them, 4/446 (0.9%) cases had NRG1 fusions using FISH. Finally, four additional cases out of the two previously mentioned cases series (1 PDADK and 3 LADK) with NRG1 fusions diagnosed by first-line RNAseq were also concluded as NRG1 FISH-positive. The NRG1 FISH tests for the nine NRG1 FISH-positive cases resulted in 50% to 80% of positive tumor nuclei, all with single 3′-NRG1 FISH signals. In our series, of the 22 cases analyzed with both NRG1 FISH (positivity criterion of at least 15% of tumor nuclei with a split between the 5′- and the 3′- parts of the probes and/or isolated single 3′-NRG1 signal) and RNAseq, 17 cases were FISH– RNAseq– and 5 cases were FISH+ RNAseq+ (no FISH+ RNAseq– or FISH– RNAseq+ cases in our study) resulting in 100% sensibility and specificity for the NRG1 FISH test. In the case of no access to RNAseq, NRG1 FISH consists of a valuable tool searching for NRG1 fusions in patients with advanced cancers. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

29 pages, 8846 KiB  
Article
Single-Cell Transcriptomic Profiling Reveals Regional Differences in the Prefrontal and Entorhinal Cortex of Alzheimer’s Disease Brain
by Rui-Ze Niu, Wan-Qing Feng, Li Chen and Tian-Hao Bao
Int. J. Mol. Sci. 2025, 26(10), 4841; https://doi.org/10.3390/ijms26104841 - 19 May 2025
Viewed by 802
Abstract
Previous studies have largely overlooked cellular differential alterations across differentially affected brain regions in both disease mechanisms and therapeutic development of Alzheimer’s disease (AD). This study aimed to compare the differential cellular and transcriptional changes in the prefrontal cortex (PFC) and entorhinal cortex [...] Read more.
Previous studies have largely overlooked cellular differential alterations across differentially affected brain regions in both disease mechanisms and therapeutic development of Alzheimer’s disease (AD). This study aimed to compare the differential cellular and transcriptional changes in the prefrontal cortex (PFC) and entorhinal cortex (EC) of AD patients through an integrated single-cell transcriptomic analysis. We integrated three single-cell RNA sequencing (scRNA-seq) datasets comprising PFC and EC samples from AD patients and age-matched healthy controls. A total of 124,658 nuclei and 31 cell clusters were obtained and classified into eight major cell types, with EC exhibiting much more pronounced transcriptional alterations than PFC. Through network analysis, we pinpointed hub regulatory genes that form interconnected networks driving AD pathogenesis, findings validated by RT-qPCR showing more pronounced expression changes in EC versus PFC of AD mice. Moreover, dysregulation of the LINC01099-associated regulatory networks in the PFC and EC, showing correlation with AD progression, may present new therapeutic targets for AD. Together, these results suggest that effective AD biomarkers and therapeutic strategies may require simultaneous, precise targeting of specific cell populations across multiple brain regions. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

22 pages, 3220 KiB  
Article
A Survey for Human Tissue-Level Determinants of CAV1 Regulation and Function
by Víctor Jiménez-Jiménez, Fátima Sánchez-Cabo, Martin A. Schwartz, Miguel Sánchez-Álvarez and Miguel Ángel del Pozo
Int. J. Mol. Sci. 2025, 26(8), 3789; https://doi.org/10.3390/ijms26083789 - 17 Apr 2025
Viewed by 620
Abstract
CAV1 is a protein-coding gene linked to several disorders, including cancer, lipodystrophy, and cardiovascular diseases. While its ability to respond to various mechanical and metabolic stimuli has been documented, a comprehensive understanding of its physiological regulation in humans is lacking. We leveraged the [...] Read more.
CAV1 is a protein-coding gene linked to several disorders, including cancer, lipodystrophy, and cardiovascular diseases. While its ability to respond to various mechanical and metabolic stimuli has been documented, a comprehensive understanding of its physiological regulation in humans is lacking. We leveraged the comprehensiveness of human post-mortem tissue data from the Genotype-Tissue Expression (GTEx) consortium, systematically exploring the sources of variability in CAV1 transcriptional levels using extensive bulk and single-nuclei RNA-seq datasets. This human-centric approach, avoiding inter-species comparisons, constitutes a unique resource to explore CAV1 regulation within the complexity of human tissues. Notably, cell type proportion was identified as a major determinant of CAV1 transcription levels across tissues. Donor physiological conditions, including disease states and end-of-life circumstances, also exhibited a tissue-specific influence. Among primary upstream regulators associated with CAV1, chromatin modifiers stood out, especially SMARCA2, which showed a positive correlation across tissues, and PRC2 complexes, which exhibited tissue-specific correlation. Upstream regulatory networks determining CAV1 levels are also enriched for annotations such as mechanobiology (e.g., TEAD4), immunity (e.g., RELA and STAT3), and metabolism (e.g., MYC and NRF1). A remarkable observation was a strong correlation between CAV1 and the relative infiltration of immune cells across tissues, supporting a potential role for CAV1 as a marker and driver of tissue immune infiltration. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

22 pages, 27687 KiB  
Article
RNA-Binding Protein Signature in Proliferative Cardiomyocytes: A Cross-Species Meta-Analysis from Mouse, Pig, and Human Transcriptomic Profiling Data
by Thanh Nguyen, Kaili Hao, Yuji Nakada, Bijay Guragain, Peng Yao and Jianyi Zhang
Biomolecules 2025, 15(2), 310; https://doi.org/10.3390/biom15020310 - 19 Feb 2025
Cited by 1 | Viewed by 1298
Abstract
In mammals, because cardiomyocytes withdraw from cell-cycle activities shortly after birth, the heart cannot repair the damage caused by a myocardial injury; thus, understanding how cardiomyocytes proliferate is among the most important topics in cardiovascular sciences. In newborn neonatal mammals, when a left [...] Read more.
In mammals, because cardiomyocytes withdraw from cell-cycle activities shortly after birth, the heart cannot repair the damage caused by a myocardial injury; thus, understanding how cardiomyocytes proliferate is among the most important topics in cardiovascular sciences. In newborn neonatal mammals, when a left ventricular injury is applied in hearts earlier than postnatal day 7, the cardiomyocytes actively proliferate and regenerate lost myocardium in the following weeks. The regulators promoting cardiomyocyte proliferation were discovered by analyzing transcriptomic data generated from models. Most of these regulators support the mRNA production of cell-cycle machinery, yet the mRNA requires translation into functional proteins under the regulation of RNA-binding proteins (RBPs). In this work, we performed a meta-analysis to study the relationship between RBP expression and cardiomyocyte proliferation. To identify RBPs associated with mouse and pig cardiomyocyte proliferation, the single-nuclei RNA sequencing (snRNA-seq) data from regenerating mouse and pig hearts were reanalyzed via an Autoencoder focusing on RBP expression. We also generated and analyzed new bulk RNA-seq from two human-induced pluripotent stem cell-derived (hiPSC) cardiomyocyte (hiPSC-CM) cell lines; the first cell line was harvested sixteen days after differentiation, when the cells still actively proliferated, and the second cell line was harvested one hundred and forty days after differentiation, when the cells ceased cell cycle activity. Then, the RBP associated with mouse, pig, and hiPSC-CM were compared across species. Twenty-one RBPs were found to be consistently upregulated, and six RBPs were downregulated in proliferating mouse, pig, and hiPSC-derived cardiomyocytes. Among upregulated RBPs across species, an immunofluorescence-based imaging analysis validated the significant increase in the proteins of DHX9, PTBP3, HNRNPUL1, and DDX6 in pig hearts with proliferating CMs. This meta-analysis in all species demonstrated a strong relationship between RBP expression and cardiomyocyte proliferation. Full article
Show Figures

Figure 1

15 pages, 6681 KiB  
Article
A Single-Cell Atlas of Porcine Skeletal Muscle Reveals Mechanisms That Regulate Intramuscular Adipogenesis
by Zhong Xu, Junjing Wu, Yujie Li, Jiawei Zhou, Yu Zhang, Mu Qiao, Yue Feng, Hua Sun, Zipeng Li, Lianghua Li, Favour Oluwapelumi Oyelami, Xianwen Peng and Shuqi Mei
Int. J. Mol. Sci. 2024, 25(23), 12935; https://doi.org/10.3390/ijms252312935 - 1 Dec 2024
Cited by 2 | Viewed by 1879
Abstract
Porcine skeletal muscle development is closely linked to meat production efficiency and quality. The accumulation of porcine intramuscular fat is influenced by the hyperplasia and hypertrophy of adipocytes within the muscle. However, the cellular profiles corresponding to the two stages of muscle development [...] Read more.
Porcine skeletal muscle development is closely linked to meat production efficiency and quality. The accumulation of porcine intramuscular fat is influenced by the hyperplasia and hypertrophy of adipocytes within the muscle. However, the cellular profiles corresponding to the two stages of muscle development remain undetermined. Single-nucleus RNA sequencing (snRNA-seq) can elucidate cell subsets in tissues, capture gene expression at the individual cell level, and provide innovative perspectives for studying muscle and intramuscular fat formation. In this study, a total of 78,302 nuclei and 9 clusters of cells, which included fibro/adipogenic progenitor (FAP), myonuclei, adipocytes, and other cell types, of Xidu black pigs, were identified on Day 1 and Day 180. The pattern of cell clustering varied between the two developmental stages. Notably, the percentage of adipocytes in the Day 180 group was higher than in the Day 1 group (0.51% vs. 0.15%). Pseudo-time sequence analysis indicated that FAPs could differentiate into adipocytes and myonuclei cells, respectively. The THRSP gene was identified as a biomarker for swine intramuscular fat cells, and its down-regulation resulted in significant reduction in lipid droplet formation in porcine preadipocytes. Our research provides new insights into the cellular characteristics of intramuscular fat formation, which may facilitate the development of novel strategies to enhance intramuscular fat deposition and improve pork quality. Full article
Show Figures

Figure 1

17 pages, 13647 KiB  
Article
Single-Nuclei Transcriptome Profiling Reveals Intra-Tumoral Heterogeneity and Characterizes Tumor Microenvironment Architecture in a Murine Melanoma Model
by Sushant Parab, Valery Sarlo, Sonia Capellero, Luca Palmiotto, Alice Bartolini, Daniela Cantarella, Marcello Turi, Annamaria Gullà, Elena Grassi, Chiara Lazzari, Marco Rubatto, Vanesa Gregorc, Fabrizio Carnevale-Schianca, Martina Olivero, Federico Bussolino and Valentina Comunanza
Int. J. Mol. Sci. 2024, 25(20), 11228; https://doi.org/10.3390/ijms252011228 - 18 Oct 2024
Viewed by 1712
Abstract
Malignant melanoma is an aggressive cancer, with a high risk of metastasis and mortality rates, characterized by cancer cell heterogeneity and complex tumor microenvironment (TME). Single cell biology is an ideal and powerful tool to address these features at a molecular level. However, [...] Read more.
Malignant melanoma is an aggressive cancer, with a high risk of metastasis and mortality rates, characterized by cancer cell heterogeneity and complex tumor microenvironment (TME). Single cell biology is an ideal and powerful tool to address these features at a molecular level. However, this approach requires enzymatic cell dissociation that can influence cellular coverage. By contrast, single nucleus RNA sequencing (snRNA-seq) has substantial advantages including compatibility with frozen samples and the elimination of a dissociation-induced, transcriptional stress response. To better profile and understand the functional diversity of different cellular components in melanoma progression, we performed snRNA-seq of 16,839 nuclei obtained from tumor samples along the growth of murine syngeneic melanoma model carrying a BRAFV600E mutation and collected 9 days or 23 days after subcutaneous cell injection. We defined 11 different subtypes of functional cell clusters among malignant cells and 5 different subsets of myeloid cells that display distinct global transcriptional program and different enrichment in early or advanced stage of tumor growth, confirming that this approach was useful to accurately identify intratumor heterogeneity and dynamics during tumor evolution. The current study offers a deep insight into the biology of melanoma highlighting TME reprogramming through tumor initiation and progression, underlying further discovery of new TME biomarkers which may be potentially druggable. Full article
Show Figures

Figure 1

22 pages, 23445 KiB  
Article
Single Nuclei Transcriptomics Reveals Obesity-Induced Endothelial and Neurovascular Dysfunction: Implications for Cognitive Decline
by Dragan Milenkovic, Saivageethi Nuthikattu, Jennifer E. Norman and Amparo C. Villablanca
Int. J. Mol. Sci. 2024, 25(20), 11169; https://doi.org/10.3390/ijms252011169 - 17 Oct 2024
Cited by 1 | Viewed by 2237
Abstract
Obesity confers risk for cardiovascular disease and vascular dementia. However, genomic alterations modulated by obesity in endothelial cells in the brain and their relationship to other neurovascular unit (NVU) cells are unknown. We performed single nuclei RNA sequencing (snRNAseq) of the NVU (endothelial [...] Read more.
Obesity confers risk for cardiovascular disease and vascular dementia. However, genomic alterations modulated by obesity in endothelial cells in the brain and their relationship to other neurovascular unit (NVU) cells are unknown. We performed single nuclei RNA sequencing (snRNAseq) of the NVU (endothelial cells, astrocytes, microglia, and neurons) from the hippocampus of obese (ob/ob) and wild-type (WT) male mice to characterize obesity-induced transcriptomic changes in a key brain memory center and assessed blood–brain barrier permeability (BBB) by gadolinium-enhanced magnetic resonance imaging (MRI). Ob/ob mice displayed obesity, hyperinsulinemia, and impaired glucose tolerance. snRNAseq profiled 14 distinct cell types and 32 clusters within the hippocampus of ob/ob and WT mice and uncovered differentially expressed genes (DEGs) in all NVU cell types, namely, 4462 in neurons, 1386 in astrocytes, 125 in endothelial cells, and 154 in microglia. Gene ontology analysis identified important biological processes such as angiogenesis in endothelial cells and synaptic trafficking in neurons. Cellular pathway analysis included focal adhesion and insulin signaling, which were common to all NVU cell types. Correlation analysis revealed significant positive correlations between endothelial cells and other NVU cell types. Differentially expressed long non-coding RNAs (lncRNAs) were observed in cells of the NVU-affecting pathways such as TNF and mTOR. BBB permeability showed a trend toward increased signal intensity in ob/ob mice. Taken together, our study provides in-depth insight into the molecular mechanisms underlying cognitive dysfunction in obesity and may have implications for therapeutic gene targeting. Full article
(This article belongs to the Special Issue Genomics in Neurodegenerative Diseases)
Show Figures

Figure 1

16 pages, 2131 KiB  
Article
Transcriptional Response to Tick-Borne Flavivirus Infection in Neurons, Astrocytes and Microglia In Vivo and In Vitro
by Ebba Rosendal, Richard Lindqvist, Nunya Chotiwan, Johan Henriksson and Anna K. Överby
Viruses 2024, 16(8), 1327; https://doi.org/10.3390/v16081327 - 19 Aug 2024
Cited by 1 | Viewed by 1780
Abstract
Tick-borne encephalitis virus (TBEV) is a neurotropic member of the genus Orthoflavivirus (former Flavivirus) and is of significant health concern in Europe and Asia. TBEV pathogenesis may occur directly via virus-induced damage to neurons or through immunopathology due to excessive inflammation. While [...] Read more.
Tick-borne encephalitis virus (TBEV) is a neurotropic member of the genus Orthoflavivirus (former Flavivirus) and is of significant health concern in Europe and Asia. TBEV pathogenesis may occur directly via virus-induced damage to neurons or through immunopathology due to excessive inflammation. While primary cells isolated from the host can be used to study the immune response to TBEV, it is still unclear how well these reflect the immune response elicited in vivo. Here, we compared the transcriptional response to TBEV and the less pathogenic tick-borne flavivirus, Langat virus (LGTV), in primary monocultures of neurons, astrocytes and microglia in vitro, with the transcriptional response in vivo captured by single-nuclei RNA sequencing (snRNA-seq) of a whole mouse cortex. We detected similar transcriptional changes induced by both LGTV and TBEV infection in vitro, with the lower response to LGTV likely resulting from slower viral kinetics. Gene set enrichment analysis showed a stronger transcriptional response in vivo than in vitro for astrocytes and microglia, with a limited overlap mainly dominated by interferon signaling. Together, this adds to our understanding of neurotropic flavivirus pathogenesis and the strengths and limitations of available model systems. Full article
(This article belongs to the Special Issue Usutu Virus, West Nile Virus and Neglected Flaviviruses)
Show Figures

Figure 1

37 pages, 9293 KiB  
Article
Deconstructing Intratumoral Heterogeneity through Multiomic and Multiscale Analysis of Serial Sections
by Patrick G. Schupp, Samuel J. Shelton, Daniel J. Brody, Rebecca Eliscu, Brett E. Johnson, Tali Mazor, Kevin W. Kelley, Matthew B. Potts, Michael W. McDermott, Eric J. Huang, Daniel A. Lim, Russell O. Pieper, Mitchel S. Berger, Joseph F. Costello, Joanna J. Phillips and Michael C. Oldham
Cancers 2024, 16(13), 2429; https://doi.org/10.3390/cancers16132429 - 1 Jul 2024
Cited by 1 | Viewed by 2179
Abstract
Tumors may contain billions of cells, including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. [...] Read more.
Tumors may contain billions of cells, including distinct malignant clones and nonmalignant cell types. Clarifying the evolutionary histories, prevalence, and defining molecular features of these cells is essential for improving clinical outcomes, since intratumoral heterogeneity provides fuel for acquired resistance to targeted therapies. Here we present a statistically motivated strategy for deconstructing intratumoral heterogeneity through multiomic and multiscale analysis of serial tumor sections (MOMA). By combining deep sampling of IDH-mutant astrocytomas with integrative analysis of single-nucleotide variants, copy-number variants, and gene expression, we reconstruct and validate the phylogenies, spatial distributions, and transcriptional profiles of distinct malignant clones. By genotyping nuclei analyzed by single-nucleus RNA-seq for truncal mutations, we further show that commonly used algorithms for identifying cancer cells from single-cell transcriptomes may be inaccurate. We also demonstrate that correlating gene expression with tumor purity in bulk samples can reveal optimal markers of malignant cells and use this approach to identify a core set of genes that are consistently expressed by astrocytoma truncal clones, including AKR1C3, whose expression is associated with poor outcomes in several types of cancer. In summary, MOMA provides a robust and flexible strategy for precisely deconstructing intratumoral heterogeneity and clarifying the core molecular properties of distinct cellular populations in solid tumors. Full article
(This article belongs to the Special Issue Intratumoral Heterogeneity in Brain Cancers)
Show Figures

Figure 1

16 pages, 3720 KiB  
Review
Single-Cell Sequencing Technology in Ruminant Livestock: Challenges and Opportunities
by Avery Lyons, Jocelynn Brown and Kimberly M. Davenport
Curr. Issues Mol. Biol. 2024, 46(6), 5291-5306; https://doi.org/10.3390/cimb46060316 - 27 May 2024
Cited by 4 | Viewed by 2447
Abstract
Advancements in single-cell sequencing have transformed the genomics field by allowing researchers to delve into the intricate cellular heterogeneity within tissues at greater resolution. While single-cell omics are more widely applied in model organisms and humans, their use in livestock species is just [...] Read more.
Advancements in single-cell sequencing have transformed the genomics field by allowing researchers to delve into the intricate cellular heterogeneity within tissues at greater resolution. While single-cell omics are more widely applied in model organisms and humans, their use in livestock species is just beginning. Studies in cattle, sheep, and goats have already leveraged single-cell and single-nuclei RNA-seq as well as single-cell and single-nuclei ATAC-seq to delineate cellular diversity in tissues, track changes in cell populations and gene expression over developmental stages, and characterize immune cell populations important for disease resistance and resilience. Although challenges exist for the use of this technology in ruminant livestock, such as the precise annotation of unique cell populations and spatial resolution of cells within a tissue, there is vast potential to enhance our understanding of the cellular and molecular mechanisms underpinning traits essential for healthy and productive livestock. This review intends to highlight the insights gained from published single-cell omics studies in cattle, sheep, and goats, particularly those with publicly accessible data. Further, this manuscript will discuss the challenges and opportunities of this technology in ruminant livestock and how it may contribute to enhanced profitability and sustainability of animal agriculture in the future. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Biology 2024)
Show Figures

Figure 1

17 pages, 4542 KiB  
Article
Single-Cell Transcriptional Response of the Placenta to the Ablation of Caveolin-1: Insights into the Adaptive Regulation of Brain–Placental Axis in Mice
by Maliha Islam and Susanta K. Behura
Cells 2024, 13(3), 215; https://doi.org/10.3390/cells13030215 - 24 Jan 2024
Cited by 2 | Viewed by 2304
Abstract
Caveolin-1 (Cav1) is a major plasma membrane protein that plays important functions in cellular metabolism, proliferation, and senescence. Mice lacking Cav1 show abnormal gene expression in the fetal brain. Though evidence for placental influence on brain development is emerging, whether the [...] Read more.
Caveolin-1 (Cav1) is a major plasma membrane protein that plays important functions in cellular metabolism, proliferation, and senescence. Mice lacking Cav1 show abnormal gene expression in the fetal brain. Though evidence for placental influence on brain development is emerging, whether the ablation of Cav1 affects the regulation of the brain–placental axis remains unexamined. The current study tests the hypothesis that gene expression changes in specific cells of the placenta and the fetal brain are linked to the deregulation of the brain–placental axis in Cav1-null mice. By performing single-nuclei RNA sequencing (snRNA-seq) analyses, we show that the abundance of the extravillious trophoblast (EVT) and stromal cells, but not the cytotrophoblast (CTB) or syncytiotrophoblast (STB), are significantly impacted due to Cav1 ablation in mice. Interestingly, specific genes related to brain development and neurogenesis were significantly differentially expressed in trophoblast cells due to Cav1 deletion. Comparison of single-cell gene expression between the placenta and the fetal brain further showed that specific genes such as plexin A1 (Plxna1), phosphatase and actin regulator 1 (Phactr1) and amyloid precursor-like protein 2 (Aplp2) were differentially expressed between the EVT and STB cells of the placenta, and also, between the radial glia and ependymal cells of the fetal brain. Bulk RNA-seq analysis of the whole placenta and the fetal brain further identified genes differentially expressed in a similar manner between the placenta and the fetal brain due to the absence of Cav1. The deconvolution of reference cell types from the bulk RNA-seq data further showed that the loss of Cav1 impacted the abundance of EVT cells relative to the stromal cells in the placenta, and that of the glia cells relative to the neuronal cells in the fetal brain. Together, the results of this study suggest that the ablation of Cav1 causes deregulated gene expression in specific cell types of the placenta and the fetal brain in mice. Full article
Show Figures

Figure 1

12 pages, 2829 KiB  
Article
Spatial Transcriptomic Analysis of Focal and Normal Areas of Myocyte Disarray in Human Hypertrophic Cardiomyopathy
by Jason Laird, Gayani Perera, Rebecca Batorsky, Hongjie Wang, Knarik Arkun and Michael T. Chin
Int. J. Mol. Sci. 2023, 24(16), 12625; https://doi.org/10.3390/ijms241612625 - 10 Aug 2023
Cited by 3 | Viewed by 3566
Abstract
Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder that can lead to heart failure and sudden cardiac death, characterized at the histological level by focal areas of myocyte disarray, hypertrophy and fibrosis, and only a few disease-targeted therapies exist. To identify the focal [...] Read more.
Hypertrophic Cardiomyopathy (HCM) is a common inherited disorder that can lead to heart failure and sudden cardiac death, characterized at the histological level by focal areas of myocyte disarray, hypertrophy and fibrosis, and only a few disease-targeted therapies exist. To identify the focal and spatially restricted alterations in the transcriptional pathways and reveal novel therapeutic targets, we performed a spatial transcriptomic analysis of the areas of focal myocyte disarray compared to areas of normal tissue using a commercially available platform (GeoMx, nanoString). We analyzed surgical myectomy tissue from four patients with HCM and the control interventricular septum tissue from two unused organ donor hearts that were free of cardiovascular disease. Histological sections were reviewed by an expert pathologist, and 72 focal areas with varying degrees of myocyte disarray (normal, mild, moderate, severe) were chosen for analysis. Areas of interest were interrogated with the Human Cancer Transcriptome Atlas designed to profile 1800 transcripts. Differential expression analysis revealed significant changes in gene expression between HCM and the control tissue, and functional enrichment analysis indicated that these genes were primarily involved in interferon production and mitochondrial energetics. Within the HCM tissue, differentially expressed genes between areas of normal and severe disarray were enriched for genes related to mitochondrial energetics and the extracellular matrix in severe disarray. An analysis of the gene expression of the ligand–receptor pair revealed that the HCM tissue exhibited downregulation of platelet-derived growth factor (PDGF), NOTCH, junctional adhesion molecule, and CD46 signaling while showing upregulation of fibronectin, CD99, cadherin, and amyloid precursor protein signaling. A deconvolution analysis utilizing the matched single nuclei RNA-sequencing (snRNA-seq) data to determine cell type composition in areas of interest revealed significant differences in fibroblast and vascular cell composition in areas of severe disarray when compared to normal areas in HCM samples. Cell composition in the normal areas of the control tissue was also divergent from the normal areas in HCM samples, which was consistent with the differential expression results. Overall, our data identify novel and potential disease-modifying targets for therapy in HCM. Full article
(This article belongs to the Special Issue Molecular Research Progress of Inherited Cardiomyopathies)
Show Figures

Figure 1

14 pages, 2034 KiB  
Article
Decoding the Gene Regulatory Network of Muscle Stem Cells in Mouse Duchenne Muscular Dystrophy: Revelations from Single-Nuclei RNA Sequencing Analysis
by Yan Shen, Il-Man Kim and Yaoliang Tang
Int. J. Mol. Sci. 2023, 24(15), 12463; https://doi.org/10.3390/ijms241512463 - 5 Aug 2023
Cited by 2 | Viewed by 3024
Abstract
The gene dystrophin is responsible for Duchenne muscular dystrophy (DMD), a grave X-linked recessive ailment that results in respiratory and cardiac failure. As the expression of dystrophin in muscle stem cells (MuSCs) is a topic of debate, there exists a limited understanding of [...] Read more.
The gene dystrophin is responsible for Duchenne muscular dystrophy (DMD), a grave X-linked recessive ailment that results in respiratory and cardiac failure. As the expression of dystrophin in muscle stem cells (MuSCs) is a topic of debate, there exists a limited understanding of its influence on the gene network of MuSCs. This study was conducted with the objective of investigating the effects of dystrophin on the regulatory network of genes in MuSCs. To comprehend the function of dystrophin in MuSCs from DMD, this investigation employed single-nuclei RNA sequencing (snRNA-seq) to appraise the transcriptomic profile of MuSCs obtained from the skeletal muscles of dystrophin mutant mice (DMDmut) and wild-type control mice. The study revealed that the dystrophin mutation caused the disruption of several long non-coding RNAs (lncRNAs), leading to the inhibition of MEG3 and NEAT1 and the upregulation of GM48099, GM19951, and GM15564. The Gene Ontology (GO) enrichment analysis of biological processes (BP) indicated that the dystrophin mutation activated the cell adhesion pathway in MuSCs, inhibited the circulatory system process, and affected the regulation of binding. The study also revealed that the metabolic pathway activity of MuSCs was altered. The metabolic activities of oxidative phosphorylation (OXPHOS) and glycolysis were elevated in MuSCs from DMDmut. In summary, this research offers novel insights into the disrupted gene regulatory program in MuSCs due to dystrophin mutation at the single-cell level. Full article
(This article belongs to the Special Issue Cell Signaling and Omics in Muscular Dystrophies 2.0)
Show Figures

Figure 1

11 pages, 3617 KiB  
Protocol
Development of High-Quality Nuclei Isolation to Study Plant Root–Microbe Interaction for Single-Nuclei Transcriptomic Sequencing in Soybean
by Leonidas W. D’Agostino, Lenin Yong-Villalobos, Luis Herrera-Estrella and Gunvant B. Patil
Plants 2023, 12(13), 2466; https://doi.org/10.3390/plants12132466 - 28 Jun 2023
Cited by 1 | Viewed by 3874
Abstract
Single-nucleus RNA sequencing (sNucRNA-seq) is an emerging technology that has been rapidly adopted and demonstrated to be a powerful tool for detailed characterization of each cell- and sub cell-types in complex tissues of higher eukaryotes. sNucRNA-seq has also been used to dissect cell-type-specific [...] Read more.
Single-nucleus RNA sequencing (sNucRNA-seq) is an emerging technology that has been rapidly adopted and demonstrated to be a powerful tool for detailed characterization of each cell- and sub cell-types in complex tissues of higher eukaryotes. sNucRNA-seq has also been used to dissect cell-type-specific transcriptional responses to environmental or developmental signals. In plants, this technology is being utilized to identify cell-type-specific trajectories for the study of several tissue types and important traits, including the single-cell dissection of the genetic determinants regulating plant–microbe interactions. The isolation of high-quality nuclei is one of the prerequisite steps to obtain high-quality sNucRNA-seq results. Although nuclei isolation from several plant tissues is well established, this process is highly troublesome when plant tissues are associated with beneficial or pathogenic microbes. For example, root tissues colonized with rhizobium bacteria (nodules), leaf tissue infected with bacterial or fungal pathogens, or roots infected with nematodes pose critical challenges to the isolation of high-quality nuclei and use for downstream application. Therefore, isolation of microbe-free, high-quality nuclei from plant tissues are necessary to avoid clogging or interference with the microfluidic channel (e.g., 10× Genomics) or particle-templated emulsion that are used in sNucRNA-seq platforms. Here, we developed a simple, effective, and efficient method to isolate high-quality nuclei from soybean roots and root nodules, followed by washing out bacterial contamination. This protocol has been designed to be easily implemented into any lab environment, and it can also be scaled up for use with multiple samples and applicable to a variety of samples with the presence of microbes. We validated this protocol by successfully generating a barcoded library using the 10× Genomics microfluidic platform from tissue subjected to this procedure. This workflow was developed to provide an accessible alternative to instrument-based approaches (e.g., fluorescent cell sorting) and will expand the ability of researchers to perform experiments such as sNucRNA-seq and sNucATAC-seq on inherently heterogeneous plant tissue samples. Full article
(This article belongs to the Special Issue Development of the Legume Root Nodules)
Show Figures

Figure 1

Back to TopTop