Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = silicone rubber mold

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8548 KiB  
Article
A High-Temperature-Resistant and Conductive Flexible Silicone Rubber with High Phenyl Content Based on Silver-Coated Glass Fibers
by Ao Liu, Linlin Ouyang, Depeng Gong and Chaocan Zhang
Polymers 2025, 17(9), 1187; https://doi.org/10.3390/polym17091187 - 27 Apr 2025
Cited by 1 | Viewed by 787
Abstract
To enhance the high-temperature resistance of silicone rubber and meet the application requirements of flexible conductive silicone rubber under elevated temperature conditions, this study adopts a chemical modification strategy by introducing phenyl groups into the molecular chains of silicone rubber to improve its [...] Read more.
To enhance the high-temperature resistance of silicone rubber and meet the application requirements of flexible conductive silicone rubber under elevated temperature conditions, this study adopts a chemical modification strategy by introducing phenyl groups into the molecular chains of silicone rubber to improve its thermal resistance. High-phenyl-content hydroxyl-terminated silicone oil (MPPS) was used as the polymer backbone, and vinylmethyldimethoxysilane (VDMS) served as the chain extender. Through a silanol condensation reaction, vinylmethylphenyl polysiloxane (VMPPS) with a crosslinkable structure was synthesized, providing reactive sites for subsequent vulcanization and molding. Subsequently, needle-like silver-coated glass fiber (AGF) conductive fillers were prepared via a green and environmentally friendly electroless silver plating method. These fillers were incorporated into the phenyl polysiloxane matrix to impart electrical conductivity to the phenyl silicone rubber while synergistically enhancing its thermal resistance. Finally, thermally resistant conductive silicone rubber was fabricated through high-temperature vulcanization, and the key properties of the material were systematically characterized. The synthesized phenyl polysiloxane exhibited a number-averaged molecular weight of up to 181,136, with a PDI of 2.43. When the loading of AGF reached 25 phr, the phenyl silicone rubber composite achieved the electrical percolation threshold, exhibiting a conductivity of 7.12 S/cm. With a further increase in AGF content to 35 phr, the composite demonstrated excellent thermal stability, with a 5% weight loss temperature of 478 °C and a residual mass of 37.36% at 800 °C. Moreover, after thermal aging at 100 °C for 72 h, the conductivity degradation of the phenyl silicone rubber was significantly lower than that of commercial silicone rubber, indicating outstanding electrical stability. This study provides an effective approach for the application of flexible electronic materials under extreme thermal environments. Full article
Show Figures

Figure 1

19 pages, 2778 KiB  
Article
The Potential of Using Shungite Mineral from Eastern Kazakhstan in Formulations for Rubber Technical Products
by Sergey V. Nechipurenko, Valeriya V. Bobrova, Andrey V. Kasperovich, Mubarak Ye. Yermaganbetov, Sergey A. Yefremov, Aigerim K. Kaiaidarova, Danelya N. Makhayeva, Bayana B. Yermukhambetova, Grigoriy A. Mun and Galiya S. Irmukhametova
Materials 2025, 18(1), 114; https://doi.org/10.3390/ma18010114 - 30 Dec 2024
Cited by 1 | Viewed by 777
Abstract
This study examined the effect of partially replacing semi-reinforcing carbon black grade N550 (up to 10 pts. wt.) and fully replacing industrial chalk with natural shungite mineral in industrial formulations of elastomer compositions intended for manufacturing various rubber technical products. It has been [...] Read more.
This study examined the effect of partially replacing semi-reinforcing carbon black grade N550 (up to 10 pts. wt.) and fully replacing industrial chalk with natural shungite mineral in industrial formulations of elastomer compositions intended for manufacturing various rubber technical products. It has been shown that due to the high content of carbon and silicon components in the composition of shungite mineral micropowders, their use as a filler in elastomer formulations significantly improves the physical and mechanical properties of rubber technical products (RTPs) manufactured using such compositions. It was determined that the use of SM as a partial replacement for carbon black in rubbers intended for molded rubber technical products contributes to a reduction in Mooney viscosity (up to 26.8%) and optimal vulcanization time (up to 23.7%), achieving rubbers with the required set of physical–mechanical properties and with an enhancing sealing capability (up to 19.7%). It has been established that the use of shungite mineral micropowders as a complete replacement for industrial chalk increases the strength of rubber products (RTPs) by up to 18.5% and enhances their resistance to liquid aggressive environments. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Figure 1

15 pages, 4330 KiB  
Article
Comparison of Various Surface Treatment Procedures on the Roughness and Susceptibility to Staining of Provisional Prosthodontic Materials
by Satheesh B. Haralur, Abdullah Turki Albarqi, Abdulellah Gharmallah Alamodi, Abdulmajeed Ali Alamri, Saad Awdah Aldail, Mohammed A. Al-Qarni, Saeed M. AlQahtani and Nasser M. Alqahtani
J. Funct. Biomater. 2024, 15(9), 256; https://doi.org/10.3390/jfb15090256 - 3 Sep 2024
Cited by 5 | Viewed by 2052
Abstract
Esthetically pleasing temporary prostheses are often necessary for extended periods in a variety of clinical scenarios. Adjustments to the occlusion or margins are commonly needed before cementing the temporary prosthesis. Therefore, it is clinically necessary to repolish the rough surface to avoid biological [...] Read more.
Esthetically pleasing temporary prostheses are often necessary for extended periods in a variety of clinical scenarios. Adjustments to the occlusion or margins are commonly needed before cementing the temporary prosthesis. Therefore, it is clinically necessary to repolish the rough surface to avoid biological and esthetic issues associated with rough surfaces. The purpose of this in vitro study was to assess and compare the impact of various polishing protocols on the surface roughness and color stability of three resin materials used for provisional crowns. A total of 150 specimens were fabricated from auto-polymerizing polymethyl methacrylate, bis-acryl composite, and Methyl methacrylate-LC resin using a stainless steel mold. Each material group was divided into five groups (n = 10) based on the applied surface treatment: positive control group (G1): no roughening or surface treatment, Negative control group (G2): acrylic bur-roughened surface without any polishing, the different surface treatment groups of silicon carbide and aluminum oxide stone polishing (G3), diamond-coated rubber twist (G4), and Surface Glaze (G5). An optical profilometer was used to assess the surface roughness of all samples. After undergoing 6000 cycles of thermocycling followed by immersion in a coffee solution for 15 days at 37 °C, color parameters were measured using a spectrophotometer both before and after a storage period to evaluate color differences. A two-way ANOVA test with α = 0.05 significance level was carried out to determine the impacts of both the materials utilized and the polishing protocol. Among the three types of resin examined, the bisacryl group exhibited superior surface quality in positive control groups, while PMMA resin demonstrated higher polishability. The diamond-coated rubber twits resulted in lower Ra values of 0.36 (0.01) µm, 0.52 (0.11) µm, and 0.28 (0.05) µm for PMMA, BAMA, and MMLC resins, respectively. The application of photo-polymerized surface glaze led to a plaque accumulation threshold of 0.2 µm across all resin groups. The greatest mean color change occurred in the negative control group, indicating a propensity for more staining on rougher surfaces. The Bisacryl resin exhibited higher ΔE values, whereas PMMA showed better color stability. The lowest ΔE values were found when the surface glaze was applied to all of the provisional crown resins. Untreated Bisacryl resin exhibited the lowest Ra values, while PMMA resins demonstrated superior surface morphology after polishing. PMMA provisional crown resins showed increased resistance to staining. The use of surface glaze enhanced both smoothness and color stability on the surfaces. Full article
Show Figures

Figure 1

17 pages, 26914 KiB  
Article
A Cost-Effective Approach to Creating Large Silicone Rubber Molds Using Advanced Rigid Polyurethane Foam
by Chil-Chyuan Kuo, Yi-Qing Lu, Song-Hua Huang and Armaan Farooqui
Polymers 2024, 16(15), 2210; https://doi.org/10.3390/polym16152210 - 2 Aug 2024
Cited by 2 | Viewed by 2228
Abstract
In practical applications, polyurethane (PU) foam must be rigid to meet the demands of various industries and provide comfort and protection in everyday life. PU foam components are extensively used in structural foam, thermal insulation, decorative panels, packaging, imitation wood, and floral foam, [...] Read more.
In practical applications, polyurethane (PU) foam must be rigid to meet the demands of various industries and provide comfort and protection in everyday life. PU foam components are extensively used in structural foam, thermal insulation, decorative panels, packaging, imitation wood, and floral foam, as well as in models and prototypes. Conventional technology for producing PU foam parts often leads to defects such as deformation, short shots, entrapped air, warpage, flash, micro-bubbles, weld lines, and voids. Therefore, the development of rigid PU foam parts has become a crucial research focus in the industry. This study proposes an innovative manufacturing process for producing rigid PU foam parts using silicone rubber molds (SRMs). The deformation of the silicone rubber mold can be predicted based on its wall thickness, following a trend equation with a correlation coefficient of 0.9951. The volume of the PU foam part can also be predicted by the weight of the PU foaming agent, as indicated by a trend equation with a correlation coefficient of 0.9824. The optimal weight ratio of the foaming agent to water, yielding the highest surface hardness, was found to be 5:1. The surface hardness of the PU foam part can also be predicted based on the weight of the water used, according to a proposed prediction equation with a correlation coefficient of 0.7517. The average surface hardness of the fabricated PU foam part has a Shore O hardness value of approximately 75. Foam parts made with 1.5 g of water added to 15 g of a foaming agent have the fewest internal pores, resulting in the densest interior. PU foam parts exhibit excellent mechanical properties when 3 g of water is added to the PU foaming agent, as evidenced by their surface hardness and compressive strength. Using rigid PU foam parts as a backing material in the proposed method can reduce rapid tool production costs by about 62%. Finally, an innovative manufacturing process for creating large SRMs using rigid PU foam parts as backing material is demonstrated. Full article
Show Figures

Figure 1

17 pages, 5759 KiB  
Article
The Effects of a Crosslinking Agent on the Microrheological Properties and Cellular Structure of Silicone Rubber Foam Prepared via a Green Process
by Hongyu He, Lulu Li, Hong Liu, Bin Luo, Zhipeng Li and Wenhuai Tian
Materials 2024, 17(3), 707; https://doi.org/10.3390/ma17030707 - 1 Feb 2024
Cited by 4 | Viewed by 1491
Abstract
Chemical foaming technology is widely used in the preparation of silicone rubber foam and is attributable to its one-step molding capability and eco-friendly production processes. The microrheological properties of silicone rubber play a pivotal role during the foaming process. In this study, Rheolaser [...] Read more.
Chemical foaming technology is widely used in the preparation of silicone rubber foam and is attributable to its one-step molding capability and eco-friendly production processes. The microrheological properties of silicone rubber play a pivotal role during the foaming process. In this study, Rheolaser Lab (Formulaction, Toulouse, France) was used to conduct in situ examinations for the influence of a crosslinking agent on the microrheological properties of silicone rubber foam for the first time. This study monitors the entire reaction process of silicone rubber foam from liquid to solid, as well as the matching of crosslinking and foaming reactions. Various parameters, including solid–liquid balance, elasticity index, and macroscopic viscosity index, are measured to analyze the microrheological properties of silicone rubber foam. The results show that the silicone rubber foam exhibits good microrheological properties, thereby demonstrating excellent performance at a crosslinking agent content of 2%. Through adjusting the experimental conditions, a sustainable and efficient approach was proposed for better cellular structure control in the industrial preparation of silicone rubber foam. Full article
(This article belongs to the Special Issue Polymer Foams: Materials, Processing and Properties)
Show Figures

Figure 1

18 pages, 3666 KiB  
Article
Development of a Silicone Rubber Mold with an Innovative Waterfall Cooling Channel
by Chil-Chyuan Kuo, Pin-Han Lin, Jing-Yan Xu, Zhe-Xhi Lin, Zi-Huan Wang, Zhi-Jun Lai and Song-Hua Huang
Polymers 2024, 16(2), 256; https://doi.org/10.3390/polym16020256 - 16 Jan 2024
Cited by 8 | Viewed by 1793
Abstract
A conformal cooling channel (CCC) follows the mold core or cavity profile to carry out uniform cooling in the cooling stage. However, the significant pressure drop along the cooling channels is a distinct disadvantage of the CCC. In this study, an innovative waterfall [...] Read more.
A conformal cooling channel (CCC) follows the mold core or cavity profile to carry out uniform cooling in the cooling stage. However, the significant pressure drop along the cooling channels is a distinct disadvantage of the CCC. In this study, an innovative waterfall cooling channel (WCC) was proposed and implemented. The WCC cools the injected products via surface contact, replacing the conventional line contact to cool the injected products. The WCC was optimized using numerical simulation software. Silicone rubber molds with two kinds of cooling channels were designed and implemented. The cooling time of the molded part was evaluated using a low-pressure wax injection molding machine. The experimental results of the cooling time of the molded part were compared with the simulation results from numerical simulation software. The results showed that the optimal mesh element count was about 1,550,000 with a mesh size of 1 mm. The simulation software predicted the filling time of the water cup injection-molded product to be approximately 2.008 s. The cooling efficiency for a silicone rubber mold with a WCC is better than that of the silicone rubber mold with a CCC since the core and cavity cooling efficiency is close to 50%. The pressure drop of the WCC is smaller than that of the CCC, which reduces the pressure drop by about 56%. Taking a water cup with a mouth diameter of 70 mm, a height of 60 mm, and a thickness of 2 mm as an example, the experimental results confirmed that the use of the WCC can save the cooling time of the product by about 265 s compared with the CCC. This shows how a WCC can increase cooling efficiency by approximately 17.47%. Full article
(This article belongs to the Topic Rubbers and Elastomers Materials)
Show Figures

Figure 1

16 pages, 4257 KiB  
Article
Liquid Silicone Rubber Headlamp Lens Injection Molding Process Optimization Based on Tie Bar Elongation and NSGA III
by Hanjui Chang, Shuzhou Lu, Yue Sun and Rui Wang
Polymers 2023, 15(21), 4278; https://doi.org/10.3390/polym15214278 - 31 Oct 2023
Cited by 5 | Viewed by 2117
Abstract
This study aimed to improve the injection molding quality of LSR material lenses by optimizing the process parameters. To achieve this goal, we employed the population-based optimization algorithm NSGA-III, which can simultaneously optimize multiple objective functions and identify an equilibrium point among them, [...] Read more.
This study aimed to improve the injection molding quality of LSR material lenses by optimizing the process parameters. To achieve this goal, we employed the population-based optimization algorithm NSGA-III, which can simultaneously optimize multiple objective functions and identify an equilibrium point among them, thereby reducing the time required to find the optimal process parameters. We utilized analysis software to simulate the injection molding process of LSR material lenses, with a specific focus on examining the relationship between tie bar elongation and the optimized process parameters. During the study, we intentionally varied key process parameters, including the melt temperature, holding pressure, and holding time, to analyze their impact on the residual stress of the final product. In order to investigate the intricate relationship between the tie bar yield, injection molding process parameters, and lens residual stress, we installed strain sensors on the tie bar to continuously monitor changes in clamping force throughout the injection molding process. The experimental results showed that both the tie bar force and mold cavity pressure exerted significant influence on residual stresses. By applying the NSGA-III algorithm for optimization, we successfully determined the optimal process parameters, which included a melt temperature of 34.92 °C, a holding pressure of 33.97 MPa, and a holding time of 9.96 s. In comparison to the initially recommended process parameters during the design phase, the optimized parameters led to reductions of 12.98% in clamping force and 47.14% in residual stress. Furthermore, the average transmittance of the actual product remained within the range of 95–98%. In summary, this approach not only enables the prediction of the lens’s residual stress trends based on the tie bar elongation, but also leads to a substantial enhancement of lens quality, characterized by reduced residual stress and improved transmittance through the optimization of process parameters. This methodology can serve as a valuable guide for optimizing real-world injection molding processes. Full article
(This article belongs to the Special Issue Silicone-Based Polymers: From Fabrication to Application)
Show Figures

Figure 1

12 pages, 3496 KiB  
Article
MC-Injection Molding with Liquid Silicone Rubber (LSR) and Acrylonitrile Butadiene Styrene (ABS) for Medical Technology
by Mohammad Ali Nikousaleh, Ralf-Urs Giesen, Hans-Peter Heim and Michael Hartung
Polymers 2023, 15(19), 3972; https://doi.org/10.3390/polym15193972 - 2 Oct 2023
Cited by 4 | Viewed by 2936
Abstract
The multicomponent injection molding of liquid silicone rubbers (LSR) with thermoplastics, such as polybutylene terephthalate (PBT) or polyamide (PA), is a state-of-the-art technique and is used in the manufacturing process for many components in the automotive industry and in the field of sanitary [...] Read more.
The multicomponent injection molding of liquid silicone rubbers (LSR) with thermoplastics, such as polybutylene terephthalate (PBT) or polyamide (PA), is a state-of-the-art technique and is used in the manufacturing process for many components in the automotive industry and in the field of sanitary engineering. Standard thermoplastics, such as acrylonitrile butadiene styrene (ABS), cannot be bonded with silicone rubbers in injection molding because of their low heat deflection temperature. In this study, we investigated ABS grades approved for medical applications to show how dynamic mold heating and various pretreatment methods for thermoplastic surfaces can be used to produce ABS-LSR test specimens. In addition, such components’ sterilization effect on the adhesive bond will be shown. Full article
(This article belongs to the Special Issue Injection Molding Process in Polymer Processing)
Show Figures

Figure 1

14 pages, 5778 KiB  
Article
Ultrasonic-Assisted Surface Finishing of STAVAX Mold Steel Using Lab-Made Polishing Balls on a 5-Axis CNC Machining Center
by Fang-Jung Shiou, Jian-Nan Pan, Zhao-Li Ding and Sun-Peng Lin
Materials 2023, 16(17), 5888; https://doi.org/10.3390/ma16175888 - 28 Aug 2023
Cited by 1 | Viewed by 1718
Abstract
The inconvenience of conventional wool ball polishing is that the surface finishing process should be equipped with a slurry container. The main objective of this research is to develop an ultrasonic-assisted surface finishing process for STAVAX mold steel on a 5-axis CNC machining [...] Read more.
The inconvenience of conventional wool ball polishing is that the surface finishing process should be equipped with a slurry container. The main objective of this research is to develop an ultrasonic-assisted surface finishing process for STAVAX mold steel on a 5-axis CNC machining center, by using new lab-made rubber polishing balls containing the abrasive aluminum oxide instead of the traditional wool ball polishing. In total, five types (type A to type E) of new rubber-matrixed polishing balls with a composite of nitrile butadiene rubber (NBR), an abrasive of aluminum oxide, and an additive of silicon dioxide have been developed. The performance of the composites with different grain sizes (0.05 μm to 3 μm) and concentrations of the abrasive of aluminum oxide have been investigated. The effects of multiple polishing passes on the surface roughness improvement for the lab-made polishing balls have also been investigated in this study. A surface roughness of Ra 0.027 μm on average was achieved by using the multiple polishing process of E-C-B-A. The volumetric wear of the lab-made polishing balls, using ultrasonic vibration-assisted polishing, can be improved from about 12.64% (type A) to 65.48% (type E) compared with the non-vibration-assisted polishing. The suitable combination of the ultrasonic vibration-assisted polishing parameters were an amplitude of 10 μm, a frequency of 23 kHz, a spindle speed of 5000 rpm, a feed rate of 60 mm/min, a stepover of 20 μm, a penetration depth of 180 μm, and a polishing pass of E-C-B-A, based on the experimental results. The surface roughness improvement on a test carrier with a saddle surface has also been presented by using the ultrasonic vibration-assisted polishing with the lab-made polishing balls. Full article
(This article belongs to the Special Issue Ultrasound for Material Characterization and Processing II)
Show Figures

Figure 1

15 pages, 12501 KiB  
Article
Enhancing Surface Temperature Uniformity in a Liquid Silicone Rubber Injection Mold with Conformal Heating Channels
by Chil-Chyuan Kuo, Qing-Zhou Tasi, Song-Hua Huang and Shih-Feng Tseng
Materials 2023, 16(17), 5739; https://doi.org/10.3390/ma16175739 - 22 Aug 2023
Cited by 16 | Viewed by 1966
Abstract
To enhance the productivity and quality of optical-grade liquid silicone rubber (LSR) and an optical convex lens simultaneously, uniform vulcanization of the molding material is required. However, little has been reported on the uniform vulcanization of LSR in the heated cavity. This paper [...] Read more.
To enhance the productivity and quality of optical-grade liquid silicone rubber (LSR) and an optical convex lens simultaneously, uniform vulcanization of the molding material is required. However, little has been reported on the uniform vulcanization of LSR in the heated cavity. This paper presents a conformal heating channel to enhance the temperature uniformity of the mold surface in the LSR injection molding. The curing rate of an optical convex lens was numerically investigated using Moldex3D molding simulation software. Two different sets of soft tooling inserts, injection mold inserts with conventional and conformal heating channels, were fabricated to validate the simulation results. The mold surface temperature uniformity was investigated by both numerical simulation and experiment. In particular, both a thermal camera and thermocouples were employed to measure the mold surface temperature after LSR injecting molding. It was found that the uniformity of the mold surface for LSR injection mold with the conformal heating channel was better. The average temperature of the mold surface could be predicted by the heating oil temperature according to the proposed prediction equation. The experimental results showed that the trend of the average temperature of five sensor modes was consistent with the simulation results. The error rate of the simulation results was about 8.31% based on the experimental result for the LSR injection mold with the conformal heating channel. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

16 pages, 19175 KiB  
Article
Development of an Injection Mold with High Energy Efficiency of Vulcanization for Liquid Silicone Rubber Injection Molding of the Fisheye Optical Lens
by Chil-Chyuan Kuo, Qing-Zhou Tasi, Song-Hua Hunag and Shih-Feng Tseng
Polymers 2023, 15(13), 2869; https://doi.org/10.3390/polym15132869 - 29 Jun 2023
Cited by 17 | Viewed by 2704
Abstract
Liquid silicone rubber (LSR) techniques are experiencing exponential growth, particularly in the field of high technology due to the low-temperature flexibility, superior heat stability, chemical resistance, and aging resistance of LSR components. Enhancing the curing rate of LSR parts in liquid silicone rubber [...] Read more.
Liquid silicone rubber (LSR) techniques are experiencing exponential growth, particularly in the field of high technology due to the low-temperature flexibility, superior heat stability, chemical resistance, and aging resistance of LSR components. Enhancing the curing rate of LSR parts in liquid silicone rubber injection molding is an important research topic. In this study, an injection mold with high energy efficiency of vulcanization for the liquid silicone rubber injection molding of a fisheye lens was developed and implemented. The LSR injection mold has a conformal heating channel (CHC) and conformal cooling channel (CCC) simultaneously. The function of CHC is to enhance the curing rate of a fisheye lens in the LSR injection molding to meet the requirements of sustainable manufacturing. The curing rates of a fisheye lens were numerically examined using the Moldex3D molding simulation software. It was found that the curing rate of the fisheye optical lens cured by injection mold with CHC was better than that of the injection mold with a conventional heating channel. The curing efficiency could be increased by about 19.12% when the heating oil temperature of 180 °C was used to cure the fisheye optical lens. The simulation results showed that the equation y = −0.0026x3 + 1.3483x2 − 232.11x + 13,770 was the most suitable equation for predicting the curing time (y) through the heating oil temperature (x). It was found that the trend of the experimental results was consistent with the simulation results. In addition, the equation y = −0.0656x2 + 1.5827x − 0.894 with the correlation coefficient of 0.9974 was the most suitable equation for predicting the volumetric shrinkage of the fisheye optical lens (y) through the heating oil temperature (x). The volume shrinkage of the fisheye optical lens cured by injection mold with CHC was very similar to that of the injection mold with a conventional heating channel. The maximum volume shrinkage of the fisheye optical lens cured at 180 °C was about 8.5%. Full article
(This article belongs to the Special Issue Injection Molding Process in Polymer Processing)
Show Figures

Figure 1

19 pages, 12060 KiB  
Article
Characteristics of 3D Printed Biopolymers for Applications in High-Voltage Electrical Insulation
by Robert Sekula, Kirsi Immonen, Sini Metsä-Kortelainen, Maciej Kuniewski, Paweł Zydroń and Tomi Kalpio
Polymers 2023, 15(11), 2518; https://doi.org/10.3390/polym15112518 - 30 May 2023
Cited by 9 | Viewed by 3107
Abstract
Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical insulation in high-voltage products. In power [...] Read more.
Three-dimensional printing technology is constantly developing and has a wide range of applications; one application is electrical insulation, where the standard technology uses polymer-based filaments. Thermosetting materials (epoxy resins, liquid silicone rubbers) are broadly used as electrical insulation in high-voltage products. In power transformers, however, the main solid insulation is based on cellulosic materials (pressboard, crepe paper, wood laminates). There are a vast variety of transformer insulation components that are produced using the wet pulp molding process. This is a labor-intensive, multi-stage process that requires long drying times. In this paper, a new material, microcellulose-doped polymer, and manufacturing concept for transformer insulation components are described. Our research focuses on bio-based polymeric materials with 3D printability functionalities. A number of material formulations were tested and benchmark products were printed. Extensive electrical measurements were performed to compare transformer components manufactured using the traditional process and 3D printed samples. The results are promising but indicate that further research is still required to improve printing quality. Full article
(This article belongs to the Special Issue Application of Functional Polymer Materials for Advanced Technologies)
Show Figures

Figure 1

15 pages, 44526 KiB  
Article
Making a Soft Elastic Pulsation Pump (SEPP)
by Hao Gu, Yun Xia, Yu Zhang and Xiao Dong Chen
Processes 2023, 11(5), 1581; https://doi.org/10.3390/pr11051581 - 22 May 2023
Viewed by 1913
Abstract
In this work, a soft-elastic pulsation pump (SEPP) has been made and investigated. Here, 3D printing was used to make casting molds and a melt-removal method using wax was employed. The SEPP was made of silicone rubber and driven by an external squeezing [...] Read more.
In this work, a soft-elastic pulsation pump (SEPP) has been made and investigated. Here, 3D printing was used to make casting molds and a melt-removal method using wax was employed. The SEPP was made of silicone rubber and driven by an external squeezing mechanism. A silicone one-way valve was also made which prevented backflow after the fluid was squeezed out of the pump chamber. The material characteristics of the SEPP including durability were examined. The pump operating parameters were confirmed to differential pressure of 100 mm Hg in a close flow loop. The average flow rate was 2 L/min, while yielding a peak flow of 8 L/min, and a stroke volume of 70 mL. A preliminary trial using fresh animal blood had shown that the SEPP has good protection on the blood. Therefore, within the resources available, an interesting idea for an effective SEPP has been proposed and realized in the laboratory. The technical details of the SEPP described, and the experimental results reported here form a good basis for making higher capacity SEPPs. This effort may help make its way to an effective ventricular assist device. Full article
(This article belongs to the Special Issue Design and Optimization Method of Pumps)
Show Figures

Figure 1

21 pages, 4692 KiB  
Article
Optical Penetration and “Fingerprinting” Analysis of Automotive Optical Liquid Silicone Components Based on Wavelet Analysis and Multiple Recognizable Performance Evaluation
by Hanjui Chang, Shuzhou Lu, Yue Sun, Guangyi Zhang and Longshi Rao
Polymers 2023, 15(1), 86; https://doi.org/10.3390/polym15010086 - 25 Dec 2022
Cited by 3 | Viewed by 2075
Abstract
The residual stress phenomenon in the injection process of an optical lens affects the quality of optical components, and the refractive error caused by geometric errors is the most serious, followed by the degradation of the accuracy and function of optical components. It [...] Read more.
The residual stress phenomenon in the injection process of an optical lens affects the quality of optical components, and the refractive error caused by geometric errors is the most serious, followed by the degradation of the accuracy and function of optical components. It is very important to ensure that the lens geometry remains intact and the refractive index is low. Therefore, a parameter design method for an optical liquid silicon injection molding was proposed in this study. Wavelet analysis was applied to the noise reduction and feature extraction of the cavity pressure/pressure retaining curve of the injection molding machine, and multiple identifiable performance evaluation methods were used to identify and optimize the parameters of the molding process. Taking an automotive LED lens as an example, Moldex3D simulation software was used to simulate the molding of an LED lens made of LSR material, and two key injection molding factors, melt temperature and V/P switching point, were analyzed and optimized. In this paper, the transmittance and volume shrinkage of LED lenses are taken as quality indexes, and parameters are optimized by setting different V/P switching points and melt temperature schemes. The experimental results show that the residual stress is negatively correlated with transmittance, and the higher the residual stress, the lower the transmittance. Under the optimum process parameters generated by this method, the residual stress of plastic parts is significantly optimized, and the optimization rate is above 15%. In addition, when the V/P switching point is 98 and the melt temperature is 30 °C, the product quality is the best, the volume shrinkage rate is the smallest, and the size is 2.895%, which also means that the carbon emissions are the lowest. Full article
(This article belongs to the Collection Silicon-Containing Polymeric Materials)
Show Figures

Figure 1

18 pages, 6917 KiB  
Article
Stiction and Friction of Nano- and Microtextured Liquid Silicon Rubber Surface Formed by Injection Molding
by Christof Koplin, Dennis F. Weißer, Alexander Fromm and Matthias H. Deckert
Appl. Mech. 2022, 3(4), 1270-1287; https://doi.org/10.3390/applmech3040073 - 31 Oct 2022
Viewed by 2563
Abstract
The use of cross-linking polymers such as liquid silicone rubber (LSR) can replicate serviceable surfaces with nano- and microstructures via the injection molding process. Laser ablation can be used to introduce microstructures into molding tools, while nanostructures are generated via PVD coating processes [...] Read more.
The use of cross-linking polymers such as liquid silicone rubber (LSR) can replicate serviceable surfaces with nano- and microstructures via the injection molding process. Laser ablation can be used to introduce microstructures into molding tools, while nanostructures are generated via PVD coating processes on the tools. This is why nanostructures are built using self-organized layer growth. The aim of this study was to generate evidence of direction-dependent coefficients of friction of elastomeric surfaces in dry or lubricated contact in boundary friction. Models of the dry friction of elastomeric surfaces, such as Schallamach waves or stick-slip cycles, were used to describe the friction modulation of such surfaces. Assumptions for model contacts against smooth partners, both dry and with lubrication, as well as assumptions for the interaction of structures with smooth surfaces, were investigated. It was found that for elastomer surfaces with Shore hardness 50, nanostructures are suitable for creating a direction-dependent friction increase in static and sliding friction. Friction reductions with defined microstructures are possible if their periodicity seems to interact with the wavelength of possible Schallamach waves. The choice of lubrication determines the forced wetting of the contact, but due to the structuring, there is a continuous transition to mixed friction. Full article
Show Figures

Graphical abstract

Back to TopTop