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Abstract: A conformal cooling channel (CCC) follows the mold core or cavity profile to carry out
uniform cooling in the cooling stage. However, the significant pressure drop along the cooling
channels is a distinct disadvantage of the CCC. In this study, an innovative waterfall cooling channel
(WCC) was proposed and implemented. The WCC cools the injected products via surface contact,
replacing the conventional line contact to cool the injected products. The WCC was optimized using
numerical simulation software. Silicone rubber molds with two kinds of cooling channels were
designed and implemented. The cooling time of the molded part was evaluated using a low-pressure
wax injection molding machine. The experimental results of the cooling time of the molded part
were compared with the simulation results from numerical simulation software. The results showed
that the optimal mesh element count was about 1,550,000 with a mesh size of 1 mm. The simulation
software predicted the filling time of the water cup injection-molded product to be approximately
2.008 s. The cooling efficiency for a silicone rubber mold with a WCC is better than that of the silicone
rubber mold with a CCC since the core and cavity cooling efficiency is close to 50%. The pressure
drop of the WCC is smaller than that of the CCC, which reduces the pressure drop by about 56%.
Taking a water cup with a mouth diameter of 70 mm, a height of 60 mm, and a thickness of 2 mm as
an example, the experimental results confirmed that the use of the WCC can save the cooling time of
the product by about 265 s compared with the CCC. This shows how a WCC can increase cooling
efficiency by approximately 17.47%.

Keywords: silicone rubber mold; conformal cooling channel; waterfall cooling channel; cooling
time; simulation

1. Introduction

A conformal cooling channel (CCC) [1] refers to a specific category of the cooling
system designed for dies or molds used in various manufacturing processes, such as blow
molding [2], metal forming [3], plastic injection molding [4], die casting [5], and metal
injection molding [6]. The feature of CCC is to optimize heat dissipation during the cooling
stage of the various manufacturing processes. CCC is known for its ability to conform to
the shape of the molded product manufactured.

Vargas-Isaza et al. [7] evaluated the cooling efficiency of polymer injection molds
with CCC using a numerical simulation. The results showed that a 9.26% reduction in the
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warpage of the cup-shaped injection molded part was obtained using a CCC compared with
the conventional cooling channel. Nguyen et al. [8] used the response surface methodology
to determine the optimum CCC shape in an injection mold. The results showed that the
temperature distribution of the CCC mold surface was more uniform than that of the con-
ventional cooling channel. Minh et al. [9] optimized the cooling channel in injection molds
using Taguchi-integrated principal component analysis. It was found that CCC shows an
average temperature peak at 58.78 ◦C. Choi et al. [10] used the biomimetic engineering
method to design the CCC. The results showed that the pressure loss was reduced by about
10 times. In addition, the temperature deviation of the part was improved by approximately
46% using the CCC compared to the part using a conventional cooling channel. Torres-Alba
et al. [11] proposed an innovative CCC system that is highly susceptible to warping. The
results indicated that the cycle time decreased by about 66%. The residual stress was also
reduced by about 81.88%. Gotlih et al. [12] proposed a method for CCC system selection
based on non-dominated sorting. The simulation results revealed that the CCC system
provides the lowest warpage and shortest cycle times. Kanbur et al. [13] focused on the
metal additive manufacturing of a plastic injection mold insert with a CCC system. The
deviations between the printed and design parameters were less than 5% for the circular
and tapered channels. Torres-Alba et al. [14] presented a hybrid cooling model based
on the CCC system in combination with mold inserts. The results showed that the CCC
system improves the gradient of the temperature map and uniformity by approximately
51.666%. Torres-Alba et al. [15] presented a new CCC for application in optical parts of
great thickness, deep cores, and optical requirements. The results showed that the cycle
time of the injection molded plastic part by about 32%.

A CCC [16–21] is extensively employed in the injection molding process due to its
consistent cooling during the cooling stage post-filling. However, a notable drawback of
CCC is the considerable pressure drop along the cooling channels. To solve this drawback,
this study proposes an innovative waterfall cooling channel (WCC), and a silicone rubber
mold incorporating WCC was developed and implemented. Two types of silicone rubber
molds were fabricated using silicone rubber. The cooling duration of the molded component
was evaluated using a low-pressure wax injection molding machine. A rapid tool with
WCC was designed and optimized using Moldex3D simulation software. The cooling
time of the silicone rubber mold with WCC and CCC was investigated experimentally.
The experimental results of the cooling time of the molded part were compared with the
simulation results.

2. Experimental Details

Figure 1 shows the flowchart of the experimental methodology. In this study, a molded
part is a water cup featuring a shell thickness of 2 mm, a top diameter of 70 mm, a bottom
diameter of 35 mm, and a height of 60 mm. The WCC was optimized using the Moldex3D
numerical simulation software. The general procedures of running an injection molding
simulation are shown in the figure, which involves pre-processing, analysis setup, and
post-processing. Figure 2 shows the 3D CAD model and dimensions of the CCC for the
core and cavity. According to the guidelines for the design of CCC, the channel diameter is
6 mm since the wall thickness of the injection molded part is 2 mm. The channel centerline
to the mold wall distance is 12 mm since this distance is about two times the channel
diameter. The pitch distance between cooling channels is 8 mm since the distance is about
three times the channel diameter.
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This study proposed an innovative surface-cooled WCC. The design concept of the
WCC includes the following: (a) The cooling liquid flow pattern of the WCC of the cavity
insert is fountain flow; (b) The coolant flow path of the WCC of the core insert is series,
parallel, and serial connections; (c) The coolant flow path of the WCC of the cavity insert
is series, parallel, and series connection; and (d) the WCC of the core and cavity inserts
are both designed with water reservoirs to prevent a coolant backflow in the waterfall
area. Figure 3 shows the 3D CAD model and dimensions of the WCC for the core and
cavity. Figure 4 shows the detailed production flow chart of the silicone rubber mold with
a cooling channel. Generally, the three-dimensional printing (3DP) technique offers the
capability to produce complex geometries in the form of cooling channels. Thus, a fused
deposition modeling machine (Teklink Solution Inc., New Taipei City, Taiwan) [22] was
employed to print WCC and CCC using polyvinyl butyral (PVB) filament stocks (Thunder
3D Inc., New Taipei City, Taiwan) [23]. The printing parameters for the PVB cooling channel
involve a layer thickness of 0.1 mm, a printing bed temperature of 65 ◦C, a printing speed
of 70 mm/s, and a printing temperature of 200 ◦C. An industrial alcohol solution was
employed to remove the PVB cooling channels inside the silicone rubber mold.
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To understand whether the WCC is better than the conventional CCC, this study used
mold flow software to conduct analysis. Figure 5 shows the injection molding simulation
conditions of viscosity and pressure–volume–temperature (PVT) curves. Table 1 shows
the injection molding simulation conditions. Table 2 shows the properties of the silicone
rubber mold. Table 3 shows the properties of the molding material. Wax (K512, Kato Inc.,
New Taipei City, Taiwan) was used as a molding material because the molded patterns can
be employed for investment casting. The silicone rubber (KE-1310ST, Shin Etsu Inc., New
Taipei City, Taiwan) and curing agent (CAT-1310S, Shin Etsu Inc., New Taipei City, Taiwan)
were mixed in a weight ratio of 10:1 to manufacture a silicone rubber mold (SRM). The
mixing process was conducted using a vacuum machine (F-600, Feiling, Inc., New Taipei
City, Taiwan) to eliminate air bubbles under vacuum conditions.
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Table 1. Injection molding simulation conditions.

Parameters Data

Injection pressure (MPa) 0.06

Filling time (s) 2

Melt temperature (◦C) 82

Injection mold temperature (◦C) 27

Shot volume (cm3) 22.8

Hodling time (s) 0.1

Coolant flow rate (cm3/s) 60

Demolding temperature (◦C) 35
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Table 2. Properties of the silicone rubber mold.

Parameters Data

Density (g/cm3) 1.07

Viscocity (CPS) 75,000

Shore hardness D 40

Tensile strengtg (psi) 850

Elongation (%) 340

Table 3. Properties of the molding material.

Parameters Data

Melting point (◦C) 80–85

Specific gravity 0.96

Linear shrinkage (%) 0.9–1.0

Poisson ratio 0.17

Penetration 9

Figure 6 illustrates the setup employed for measuring the cooling time of the molded
wax pattern. The injection molding experiments utilized a low-pressure wax injection
molding machine (0660, W&W Inc., Lake Zurich, IL, USA). This configuration included
K-type thermocouples (C071009-079, Cheng Tay Inc., New Taipei City, Taiwan) with a
measurement sensitivity of ±1 ◦C, a mold temperature controller (JCM-33A, Shinko Inc.,
Tokyo, Japan), and a coolant reservoir with a thermo-electric cooler (TEC12706AJ, Caijia
Inc., Taipei City, Taiwan). The temperature sensors were strategically placed in the silicone
rubber mold cavity, and their other ends were connected to a data acquisition system
(MRD-8002L, IDEA System Inc., New Taipei City, Taiwan). The ambient temperature was
maintained at 27 ◦C. The horizontally oriented silicone rubber mold received molten wax
at 82 ◦C into a mold cavity set at 27 ◦C. The ejection temperature for the molded wax
patterns was set at 30 ◦C through a series of test runs. The inlet coolant temperature was



Polymers 2024, 16, 256 7 of 18

kept at 27 ◦C. The temperature histories of the molded wax patterns were recorded using
temperature sensors.
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3. Results and Discussion

A boundary layer mesh (BLM) [24] has several advantages in mold flow simulations,
mainly when dealing with flows near solid surfaces. In this study, BLM was used for
mold flow simulations because the primary purpose of a BLM is to provide a higher mesh
resolution near the walls of the solid surfaces. It is crucial for accurately capturing the
boundary layer. In addition, a BLM boundary is compatible with intricate geometric
models. The number of BLMs was five in this study. The three-dimensional solid mesh
comprises a tetrahedron and prism. Figure 7 shows the mesh of the water cup. The number
of boundary layers was 5, and the number of elements was 231,981. The numbers of
pyramids, tetrahedrons, prisms, and Hexa were 224, 153,366, 77,719, and 672, respectively.
Figure 8 shows the mesh of the WCC. The number of boundary layers was 5, and the
number of elements was 671,852. The number of tetrahedrons and prisms was 524,045 and
147,807, respectively.

Figure 9 shows the number of meshes as a function of the computation time and
cooling time of the molded part. According to practical experience, increasing the num-
ber of meshes leads to a longer total computation time for the simulation. It becomes
evident that the cooling time of the molded part stabilizes when the mesh element count
surpasses 1,550,000. The cooling time of the molded part is about 89.24 s. Consequently,
a mesh size of approximately 1 mm seems to be the optimal choice, considering both the
cooling time of the molded part and the total computation time of the simulation. Figure 10
shows the short shot of the water cup. According to the simulation results, the filling
process exhibited a smooth flow, completing in approximately 2.008 s. After the filling was
completed, there was no short shot [25] in the molded product, and no meld line [26] or
weld line [27] was found. This result also confirms the suitability of the designed filling
system [28].
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Figure 11 shows the coolant flow length of a silicone rubber mold with the CCC and
WCC. Figure 12 shows the coolant pressure diagram of a silicone rubber mold with the
CCC and WCC. The flow length of the CCC in the core insert was about 570 mm, and the
pressure drop was about 0.017 MPa. The flow length of the CCC in the cavity insert was
about 972 mm, and the pressure drop was about 0.018 MPa. The flow length of the WCC in
the core insert was about 285 mm, and the pressure drop was about 0.007 MPa. The flow
length of the WCC in the cavity insert was about 713 mm, and the pressure drop was about
0.008 MPa. It should be noted that the pressure drop of the WCC was smaller than that
of the CCC. The reduction in pressure drop was about 56%. The CCC is a series of water
channels, and a greater pressure is required at the water inlet to allow water to flow out
from the outlet. However, the WCC is a parallel water channel, which means that water can
flow out from the outlet without using greater pressure. If both use the same pressure to
enter water, the time for the CCC to reach the water outlet is shorter since the flow direction
of the WCC is freer when water enters. Thus, the heat in the silicone rubber mold can be
evenly dispersed and discharged. The CCC is connected in series, which cannot dissipate
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heat like a WCC. Thus, the CCC leads to a significant temperature difference between the
water inlet and the water outlet, and the temperature of the cooling water channel at the
outlet end is higher.
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Figure 13 shows the coolant flow rate and schematic diagram of the coolant flow for
the silicone rubber mold with CCC. The results show that the maximum flow velocity of
the CCC for the core insert is approximately 338 cm/s, and the maximum flow velocity of
the CCC for the cavity insert is approximately 257 cm/s. It should be noted that some dead
water regions at the corners were found in the core insert. Figure 14 shows the coolant
flow rate and a schematic diagram of the coolant flow for the silicone rubber mold with the
WCC. Figure 15 shows the cooling efficiency of the silicone rubber mold with the CCC and
the silicone rubber mold with the WCC. As can be seen, the cooling efficiency for a silicone
rubber mold with WCC is better than that of the silicone rubber mold with CCC since the
core and cavity cooling efficiency is close to 50%.
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Figure 9. Number of meshes as a function of the computation time and cooling time of the
molded part.

Figure 16 shows the silicone rubber mold with CCC and WCC for injection molding.
Figure 17 shows the cooling time of the molded wax pattern for the silicone rubber mold
with the WCC and CCC. The cooling time for the water cup injection molded product is
approximately 1380 s when utilizing a silicone rubber mold with CCC for low-pressure
injection molding. In contrast, the cooling time was reduced to about 1115 s when em-
ploying a silicone rubber mold with WCC for the same molding process. This indicates a
noteworthy saving of approximately 265 s, demonstrating an improved cooling efficiency
of about 19.2% using the WCC. Additionally, this study identified an advantage of the
WCCC in the early cooling stage of injection molding. The cooling rate for the water cup
injection-molded product reached approximately 1.688 ◦C/s with a silicone rubber mold
equipped with the WCC for low-pressure injection molding. In comparison, the cooling
rate was only about 0.538 ◦C/s when employing a silicone rubber mold with CCC for the
same process. Notably, there was no significant difference in the cooling rate between a
silicone rubber mold with WCCC and a silicone rubber mold with CCC for low-pressure
injection molding. Furthermore, five test runs of injection molding were conducted in this
study. The cooling time for the water cup injection molded product using a silicone rubber
mold with CCC ranged from approximately 1373 s to 1401 s, with an average cooling time
of about 1385 s. On the other hand, the cooling time for the water cup injection-molded
product using a silicone rubber mold with WCC varied from approximately 1115 s to 1174 s
with an average cooling time of about 1143 s. This indicates an average cooling efficiency
improvement of approximately 17.47% using a silicone rubber mold equipped with WCC.
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However, the cooling efficiency improvement was about 1% when employing a sil-
icone rubber mold with WCC from the numerical simulation. This variance could be
attributed to variations in processing parameters between the simulation software and
the experimental environment. These distinctions [29–31] encompass properties such as
the molding material, silicone rubber mold material, and boundary conditions, including
viscoelasticity, melting point, specific gravity, specific volume, linear shrinkage, viscosity,
specific heat capacity, thermal conductivity, density, elastic modulus, Poisson ratio, coeffi-
cient of linear thermal expansion, coolant inlet temperature, coolant outlet temperature,
mold temperature, ambient temperature, and ejection temperature.
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This research offers valuable insights for designing molds or dies incorporating the
WCC. Generally, the production costs associated with utilizing the WCC or CCC in molds
or dies, employing techniques such as direct metal laser sintering, atom diffusion additive
manufacturing, selective laser sintering, diffusion bonding, direct metal deposition, or
electron beam melting, can be prohibitively high. It is worth noting that WCC-equipped
molds or dies find applications in rotational molding [32], centrifugal molding [33], powder
injection molding [34], plastic injection molding [35], and blow molding [36]. A specific ob-
servation is that molds or dies with the WCC, produced through selective laser melting [37],
may encounter issues such as cooling water leakage at connection points. A notable advan-
tage, however, is that the WCC’s molds or dies exhibit no cooling water leakage during
plastic injection molding when utilizing a one-process fabrication approach with rapid
tooling technology [38,39]. This study utilized silicone rubber [40] to produce the injection
molds with a WCC and CCC [41]. Additionally, conventional molded steel [42–45] can be
employed to create injection molds with WCC or CCC through metal additive manufac-
turing. Investigating pressure variations within the injection mold is also a noteworthy
research focus. These issues are currently ongoing studies. The outcomes will be presented
in subsequent works.
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4. Conclusions

The main objective of this study is to propose an injection mold with an innovative
WCC. The WCC was optimized using Moldex3D simulation software. This study employed
low-pressure wax injection molding to evaluate the rapid mold with two kinds of cooling
channels. The cooling time of the molded part was investigated and compared with the
simulation results using Moldex3D simulation software. The main conclusions from the
experimental work in this study are as follows:

1. The findings of this work highlight significant potential applications in the investment
casting industry, mainly due to the notable impact of reduced cooling times on the
production costs during the mass production of wax patterns.

2. The results showed that the optimal mesh element count was about 1,550,000 with a
mesh size of 1 mm. The simulation software predicted the filling time of the water
cup injection-molded product to be approximately 2.008 s.

3. The simulation results revealed that the cooling performance of the WCC was bet-
ter than that of the CCC since the WCC maintains a uniform and steady cooling
performance of the wax pattern than the CCC.

4. The pressure drop of the WCC is smaller than that of the CCC. The reduction in the
pressure drop is about 56%. In addition, the cooling efficiency of WCC is better than
that of the CCC because the core and cavity cooling efficiency is close to 50%.

5. The use of WCC can save the cooling time of the product by about 265 s com-
pared to the CCC. This shows that WCC can increase the cooling efficiency by
approximately 17.47%.
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