Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = silicon nanocrystal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 6374 KiB  
Article
Synthesis of (Bi2O3)1-x(PbO)x Thin Films by Plasma-Assisted Reactive Evaporation
by Aleksandras Iljinas, Vytautas Stankus, Darius Virbukas and Remigijus Kaliasas
Coatings 2025, 15(7), 748; https://doi.org/10.3390/coatings15070748 - 24 Jun 2025
Viewed by 384
Abstract
Thin, dense and nanocrystal bismuth oxide films were prepared by the in situ plasma-assisted reactive evaporation (ARE) method using lead doping. Thin films were deposited at room temperature and at 500 °C temperature on glass and silicon substrates. X-ray diffraction, SEM, EDS, and [...] Read more.
Thin, dense and nanocrystal bismuth oxide films were prepared by the in situ plasma-assisted reactive evaporation (ARE) method using lead doping. Thin films were deposited at room temperature and at 500 °C temperature on glass and silicon substrates. X-ray diffraction, SEM, EDS, and optical measurements were applied to characterize these bismuth oxide films. The results showed that it is possible to synthesize the δ-Bi2O3 phase thin films at a temperature lower than 729 °C using an plasma-assisted reactive evaporation (ARE) method and stabilize it (to room temperature) using the additives of lead oxide. The influence of lead oxide concentration on phase formation was investigated. The optimal amount of lead oxide dopant was determined. An excess of lead oxide concentration forms PbO and δ-Bi2O3 mixture phases and nanorods appear in films. The synthesized δ-Bi2O3 phase was metastable; it transformed into the β-Bi2O3 phase after thermal impact during impedance measurements. The cross section of thin film sample shows the dense and monolithic structure. Optical measurements show that the optical band gap increases with increasing lead concentration. It was found that the highest total ionic conductivity of (Bi1−xPb0.26)2O3 is 0.165 S/cm at 1073 K temperature and activation energy is ΔEtot = 0.5 eV. Full article
(This article belongs to the Special Issue Advances in Novel Coatings)
Show Figures

Figure 1

21 pages, 4037 KiB  
Article
Comparative Study on the Effects of Silicon Nanoparticles and Cellulose Nanocrystals on Drought Tolerance in Tall Fescue (Festuca arundinacea Schreb.)
by Meng Li, Sile Hu, Xulong Bai, Jie Ren, Kanliang Tian, Huili Zhang, Zhilong Zhang and Vanquy Nguyen
Plants 2025, 14(10), 1461; https://doi.org/10.3390/plants14101461 - 14 May 2025
Viewed by 575
Abstract
Tall fescue (Festuca arundinacea Schreb.) is a herbaceous species that is commonly used for ecological slope restoration in China. However, water scarcity often constrains its growth due to the unique site conditions of steep slopes and climate-induced drought stress. This study aims [...] Read more.
Tall fescue (Festuca arundinacea Schreb.) is a herbaceous species that is commonly used for ecological slope restoration in China. However, water scarcity often constrains its growth due to the unique site conditions of steep slopes and climate-induced drought stress. This study aims to compare the ameliorative effects of silicon nanoparticles (Si NPs) and cellulose nanocrystals (CNCs) on drought stress in tall fescue and to elucidate their underlying mechanisms of action. The results indicated that drought stress impaired photosynthesis, restricted nutrient absorption, and increased oxidative stress, ultimately reducing biomass. However, Si NPs and CNCs enhanced drought tolerance and promoted biomass accumulation by improving photosynthesis, osmotic regulation, and antioxidant defense mechanisms. Specifically, Si NP treatment increased biomass by 48.71% compared to drought-stressed control plants, while CNCs resulted in a 33.41% increase. Transcriptome sequencing further revealed that both nanomaterials enhanced drought tolerance by upregulating genes associated with photosynthesis and antioxidant defense. Additionally, Si NPs improved drought tolerance by stimulating root growth, enhancing nutrient uptake, and improving leaf structure. In contrast, CNCs play a distinct role by regulating the expression of genes related to cell wall synthesis and metabolism. These findings highlight the crucial roles of these two nanomaterials in plant stress protection and offer a sustainable strategy for the maintenance and management of slope vegetation. Full article
Show Figures

Graphical abstract

11 pages, 4983 KiB  
Article
Thin Hydrogenated Amorphous Silicon Carbide Layers with Embedded Ge Nanocrystals
by Zdeněk Remeš, Jiří Stuchlík, Jaroslav Kupčík and Oleg Babčenko
Nanomaterials 2025, 15(3), 176; https://doi.org/10.3390/nano15030176 - 23 Jan 2025
Cited by 2 | Viewed by 1045
Abstract
The in situ combination of plasma-enhanced chemical vapor deposition (PECVD) and vacuum evaporation in the same vacuum chamber allowed us to integrate germanium nanocrystals (Ge NCs) into hydrogenated amorphous silicon carbide (a-SiC:H) thin films deposited from monomethyl silane diluted with hydrogen. Transmission electron [...] Read more.
The in situ combination of plasma-enhanced chemical vapor deposition (PECVD) and vacuum evaporation in the same vacuum chamber allowed us to integrate germanium nanocrystals (Ge NCs) into hydrogenated amorphous silicon carbide (a-SiC:H) thin films deposited from monomethyl silane diluted with hydrogen. Transmission electron microscopy (TEM) and energy-dispersive X-ray (EDX) spectroscopy were used for the microscopic characterization, while photothermal deflection spectroscopy (PDS) and near-infrared photoluminescence spectroscopy (NIR PL) were for optical characterization. The presence of Ge NCs embedded in the amorphous a-Si:C:H thin films was confirmed by TEM and EDX. The embedded Ge NCs increased optical absorption in the NIR spectral region. The quenching of a-SiC:H NIR PL due to the presence of Ge indicates that the diffusion length of free charge carriers in a-SiC:H is in the range of a few tens of nm, an order of magnitude less than in a-Si:H. The optical properties of a-SiC:H films were degraded after vacuum annealing at 550 °C. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

11 pages, 2514 KiB  
Article
The Synthesis and Characterization of CdS Nanostructures Using a SiO2/Si Ion-Track Template
by Aiman Akylbekova, Kyzdarkhan Mantiyeva, Alma Dauletbekova, Abdirash Akilbekov, Zein Baimukhanov, Liudmila Vlasukova, Gulnara Aralbayeva, Ainash Abdrakhmetova, Assyl-Dastan Bazarbek and Fariza Abdihalikova
Crystals 2024, 14(12), 1091; https://doi.org/10.3390/cryst14121091 - 19 Dec 2024
Viewed by 1137
Abstract
In the present work, we present the process of preparing CdS nanostructures based on templating synthesis using chemical deposition (CD) on a SiO2/Si substrate. A 0.7 μm thick silicon dioxide film was thermally prepared on the surface of an n-type conduction [...] Read more.
In the present work, we present the process of preparing CdS nanostructures based on templating synthesis using chemical deposition (CD) on a SiO2/Si substrate. A 0.7 μm thick silicon dioxide film was thermally prepared on the surface of an n-type conduction Si wafer, followed by the creation of latent ion tracks on the film by irradiating them with swift heavy Xe ions with an energy of 231 MeV and a fluence of 108 cm−2. As a result of etching in hydrofluoric acid solution (4%), pores in the form of truncated cones with different diameters were formed. The filling of the nanopores with cadmium sulfide was carried out via templated synthesis using CD methods on a SiO2 nanopores/Si substrate for 20–40 min. After CdS synthesis, the surfaces of nanoporous SiO2 nanopores/Si were examined using a scanning electron microscope to determine the pore sizes and the degree of pore filling. The crystal structure of the filled silica nanopores was investigated using X-ray diffraction, which showed CdS nanocrystals with an orthorhombic structure with symmetry group 59 Pmmn observed at 2θ angles of 61. 48° and 69.25°. Photoluminescence spectra were recorded at room temperature in the spectral range of 300–800 nm at an excitation wavelength of 240 nm, where emission bands centered around 2.53 eV, 2.45 eV, and 2.37 eV were detected. The study of the CVCs showed that, with increasing forward bias voltage, there was a significant increase in the forward current in the samples with a high degree of occupancy of CdS nanoparticles, which showed the one-way electronic conductivity of CdS/SiO2/Si nanostructures. For the first time, CdS nanostructures with orthorhombic crystal structure were obtained using track templating synthesis, and the density of electronic states was modeled using quantum–chemical calculations. Comparative analysis of experimental and calculated data of nanostructure parameters showed good agreement and are confirmed by the results of other authors. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

9 pages, 2570 KiB  
Article
Analysis of Oxide Capacitance Changes Based on the Formation–Annihilation of Conductive Filaments in a SiO2/Si-NCs/SiO2 Stack Layer-Based MIS-like Capacitor
by J. Miguel Germán-Martínez, K. E. González-Flores, B. Palacios-Márquez, C. Mendoza-Ramírez, M. Moreno, L. Hernández-Martínez and A. Morales-Sánchez
J. Compos. Sci. 2024, 8(12), 487; https://doi.org/10.3390/jcs8120487 - 22 Nov 2024
Viewed by 859
Abstract
This work reports on the correlation between resistive switching (RS) with capacitance switching (CS) states observed in SiO2/Si-nanocrystals (Si-NCs)/SiO2 stack layers using a metal-insulating semiconductor (MIS)-like device. The formation of Si-NCs, which act as conductive nodes, of about 6.7 nm [...] Read more.
This work reports on the correlation between resistive switching (RS) with capacitance switching (CS) states observed in SiO2/Si-nanocrystals (Si-NCs)/SiO2 stack layers using a metal-insulating semiconductor (MIS)-like device. The formation of Si-NCs, which act as conductive nodes, of about 6.7 nm in size was confirmed using a transmission electron microscope. These devices exhibit bipolar RS properties with an intermediate resistive state (IRS), which is a self-compliance behavior related to the presence of the Si-NCs layer. The current value changes from 40 nA to 550 µA, indicating RS from a high resistance state (HRS) to a low resistance state (LRS) with the IRS at 100 µA. The accumulation (CA) and inversion capacitance (CI) also change when these RS events occur. The CA switches from 2.52 nF to 3 nF with an intermediate CS of 2.7 nF for the HRS, LRS, and IRS, respectively. The CI also switches from 0.23 nF to 0.6 nF for the HRS and LRS, respectively. These devices show an ON/OFF current ratio of 104 with retention times of 104 s. Furthermore, both CA and CI states remained stable for more than 103 s. These findings highlight the potential of these devices for applications in information storage through memristor and memcapacitor technologies. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

13 pages, 4891 KiB  
Article
Förster Resonance Energy Transfer and Enhanced Emission in Cs4PbBr6 Nanocrystals Encapsulated in Silicon Nano-Sheets for Perovskite Light Emitting Diode Applications
by Araceli Herrera Mondragon, Roberto Gonzalez Rodriguez, Noah Hurley, Sinto Varghese, Yan Jiang, Brian Squires, Maoding Cheng, Brooke Davis, Qinglong Jiang, Mansour Mortazavi, Anupama B. Kaul, Jeffery L. Coffer, Jingbiao Cui and Yuankun Lin
Nanomaterials 2024, 14(19), 1596; https://doi.org/10.3390/nano14191596 - 3 Oct 2024
Cited by 1 | Viewed by 1902
Abstract
Encapsulating Cs4PbBr6 quantum dots in silicon nano-sheets not only stabilizes the halide perovskite, but also takes advantage of the nano-sheet for a compatible integration with the traditional silicon semiconductor. Here, we report the preparation of un-passivated Cs4PbBr6 [...] Read more.
Encapsulating Cs4PbBr6 quantum dots in silicon nano-sheets not only stabilizes the halide perovskite, but also takes advantage of the nano-sheet for a compatible integration with the traditional silicon semiconductor. Here, we report the preparation of un-passivated Cs4PbBr6 ellipsoidal nanocrystals and pseudo-spherical quantum dots in silicon nano-sheets and their enhanced photoluminescence (PL). For a sample with low concentrations of quantum dots in silicon nano-sheets, the emission from Cs4PbBr6 pseudo-spherical quantum dots is quenched and is dominated with Pb2+ ion/silicene emission, which is very stable during the whole measurement period. For a high concentration of Cs4PbBr6 ellipsoidal nanocrystals in silicon nano-sheets, we have observed Förster resonance energy transfer with up to 87% efficiency through the oscillation of two PL peaks when UV excitation switches between on and off, using recorded video and PL lifetime measurements. In an area of a non-uniform sample containing both ellipsoidal nanocrystals and pseudo-spherical quantum dots, where Pb2+ ion/silicene emissions, broadband emissions from quantum dots, and bandgap edge emissions (515 nm) appear, the 515 nm peak intensity increases five times over 30 min of UV excitation, probably due to a photon recycling effect. This irradiated sample has been stable for one year of ambient storage. Cs4PbBr6 quantum dots encapsulated in silicon nano-sheets can lead to applications of halide perovskite light emitting diodes (PeLEDs) and integration with traditional semiconductor materials. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electric Applications)
Show Figures

Figure 1

11 pages, 3841 KiB  
Article
In Situ Growth Method for Large-Area Flexible Perovskite Nanocrystal Films
by Xingting Zhou, Bin Xu, Xue Zhao, Hongyu Lv, Dongyang Qiao, Xing Peng, Feng Shi, Menglu Chen and Qun Hao
Materials 2024, 17(14), 3550; https://doi.org/10.3390/ma17143550 - 18 Jul 2024
Viewed by 1138
Abstract
Metal halide perovskites have shown unique advantages compared with traditional optoelectronic materials. Currently, perovskite films are commonly produced by either multi-step spin coating or vapor deposition techniques. However, both methods face challenges regarding large-scale production. Herein, we propose a straightforward in situ growth [...] Read more.
Metal halide perovskites have shown unique advantages compared with traditional optoelectronic materials. Currently, perovskite films are commonly produced by either multi-step spin coating or vapor deposition techniques. However, both methods face challenges regarding large-scale production. Herein, we propose a straightforward in situ growth method for the fabrication of CsPbBr3 nanocrystal films. The films cover an area over 5.5 cm × 5.5 cm, with precise thickness control of a few microns and decent uniformity. Moreover, we demonstrate that the incorporation of magnesium ions into the perovskite enhances crystallization and effectively passivates surface defects, thereby further enhancing luminous efficiency. By integrating this approach with a silicon photodiode detector, we observe an increase in responsivity from 1.68 × 10−2 A/W to 3.72 × 10−2 A/W at a 365 nm ultraviolet wavelength. Full article
Show Figures

Figure 1

17 pages, 2852 KiB  
Article
Langmuir–Blodgett Transfer of Nanocrystal Monolayers: Layer Compaction, Layer Compression, and Lattice Stretching of the Transferred Layer
by Reken N. Patel, Brian Goodfellow, Andrew T. Heitsch, Detlef-M. Smilgies and Brian A. Korgel
Nanomaterials 2024, 14(14), 1192; https://doi.org/10.3390/nano14141192 - 12 Jul 2024
Viewed by 2041
Abstract
Grazing incidence small angle X-ray scattering (GISAXS) was used to study the structure and interparticle spacing of monolayers of organic ligand-stabilized iron oxide nanocrystals floating at the air–water interface on a Langmuir trough, and after transfer to a solid support via the Langmuir–Blodgett [...] Read more.
Grazing incidence small angle X-ray scattering (GISAXS) was used to study the structure and interparticle spacing of monolayers of organic ligand-stabilized iron oxide nanocrystals floating at the air–water interface on a Langmuir trough, and after transfer to a solid support via the Langmuir–Blodgett technique. GISAXS measurements of the nanocrystal arrangement at the air–water interface showed that lateral compression decreased the interparticle spacing of continuous films. GISAXS also revealed that Langmuir–Blodgett transfer of the nanocrystal layers to a silicon substrate led to a stretching of the film, with a significant increase in interparticle spacing. Full article
Show Figures

Figure 1

11 pages, 2893 KiB  
Article
Wulff Constructions for an Equilibrium MFI-Type Zeolite Shape Modelling under Different Conditions
by Yanliang Zhao, Wei Zhang, Lei Sun, Xiaoxian Li, Weiqiao Deng and Liang Zhang
Crystals 2024, 14(1), 63; https://doi.org/10.3390/cryst14010063 - 3 Jan 2024
Cited by 3 | Viewed by 2024
Abstract
As an MFI-type zeolite, ZSM-5 zeolite has wide applications in industry, such as in the fine chemical, petrochemical, and coal chemical industries. However, shape control of ZSM-5 nanocrystals constitutes one of the major challenges of current nanotechnology. Here, the MFI framework structure was [...] Read more.
As an MFI-type zeolite, ZSM-5 zeolite has wide applications in industry, such as in the fine chemical, petrochemical, and coal chemical industries. However, shape control of ZSM-5 nanocrystals constitutes one of the major challenges of current nanotechnology. Here, the MFI framework structure was used as the theoretical model of pure silicon ZSM-5 to investigate the surface energy and Wulff shape. The models with different crystal surfaces were simulated by molecular dynamics (MD) with the assistance of machine learning potentials (MLPs). The factors influencing the crystal surface energy, such as temperature, pH, and ionic concentration, have been studied in detail. Depending on the calculated surface energies, the crystal surface morphology and its ratio were obtained by means of the Wulff theorem. The results show that the area in the equilibrium shape of the (110) surface is usually the largest, and its proportion varies with external conditions. A high temperature and high concentration of the aluminum source promoted the growth of the (110) crystal surface, and the theoretical value of the crystal surface ratio was as high as 90%. This study provides theoretical insight into the synthesis of zeolites with different morphologies of all-silicon or low-aluminum. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

19 pages, 7994 KiB  
Article
Catalysts Based on Iron Oxides for Wastewater Purification from Phenolic Compounds: Synthesis, Physicochemical Analysis, Determination of Catalytic Activity
by Binara T. Dossumova, Larissa R. Sassykova, Tatyana V. Shakiyeva, Dinara Muktaly, Aigul A. Batyrbayeva and Madina A. Kozhaisakova
ChemEngineering 2024, 8(1), 8; https://doi.org/10.3390/chemengineering8010008 - 1 Jan 2024
Cited by 4 | Viewed by 3033
Abstract
In this work, the synthesis of magnetite nanoparticles and catalysts based on it stabilized with silicon and aluminum oxides was carried out. It is revealed that the stabilization of the magnetite surface by using aluminum and silicon oxides leads to a decrease in [...] Read more.
In this work, the synthesis of magnetite nanoparticles and catalysts based on it stabilized with silicon and aluminum oxides was carried out. It is revealed that the stabilization of the magnetite surface by using aluminum and silicon oxides leads to a decrease in the size of magnetite nanocrystals in nanocomposites (particle diameter less than ~10 nm). The catalytic activity of the obtained catalysts was evaluated during the oxidation reaction of phenol, pyrocatechin and cresol with oxygen. It is well known that phenolic compounds are among the most dangerous water pollutants. The effect of phenol concentration and the effect of temperature (303–333 K) on the rate of oxidation of phenol to Fe3O4/SiO2 has been studied. It has been determined that the dependence of the oxidation rate of phenol on the initial concentration of phenol in solution is described by a first-order equation. At temperatures of 303–313 K, incomplete absorption of the calculated amount of oxygen is observed, and the analysis data indicate the non-selective oxidation of phenol. Intermediate products, such as catechin, hydroquinone, formic acid, oxidation products, were found. The results of UV and IR spectroscopy showed that catalysts based on magnetite Fe3O4 are effective in the oxidation of phenol with oxygen. In the UV spectrum of the product in the wavelength range 190–1100 nm, there is an absorption band at a wavelength of 240–245 nm and a weak band at 430 nm, which is characteristic of benzoquinone. In the IR spectrum of the product, absorption bands were detected in the region of 1644 cm−1, which is characteristic of the oscillations of the C=O bonds of the carbonyl group of benzoquinone. The peaks also found at 1353 cm−1 and 1229 cm−1 may be due to vibrations of the C-H and C-C bonds of the quinone ring. It was found that among the synthesized catalysts, the Fe3O4/SiO2 catalyst demonstrated the greatest activity in the reaction of liquid-phase oxidation of phenol. Full article
Show Figures

Figure 1

10 pages, 764 KiB  
Communication
Modeling Femtosecond Reduction of Atomic Scattering Factors in X-ray-Excited Silicon with Boltzmann Kinetic Equations
by Beata Ziaja, Michal Stransky, Konrad J. Kapcia and Ichiro Inoue
Atoms 2023, 11(12), 154; https://doi.org/10.3390/atoms11120154 - 7 Dec 2023
Cited by 1 | Viewed by 1956
Abstract
In this communication, we describe the application of Boltzmann kinetic equations for modeling massive electronic excitation in a silicon nanocrystal film after its irradiation with intense femtosecond hard X-ray pulses. This analysis was inspired by an experiment recently performed at the X-ray free-electron [...] Read more.
In this communication, we describe the application of Boltzmann kinetic equations for modeling massive electronic excitation in a silicon nanocrystal film after its irradiation with intense femtosecond hard X-ray pulses. This analysis was inspired by an experiment recently performed at the X-ray free-electron laser facility SACLA, which measured a significant reduction in atomic scattering factors triggered by an X-ray pulse of the intensity ∼1019 W/cm2, occurring on a timescale comparable with the X-ray pulse duration (6 fs full width at half maximum). We show that a Boltzmann kinetic equation solver can accurately follow the details of the electronic excitation in silicon atoms caused by such a hard X-ray pulse, yielding predictions in very good agreement with the experimental data. Full article
(This article belongs to the Special Issue Atomic Physics in Dense Plasmas)
Show Figures

Figure 1

22 pages, 18769 KiB  
Article
Investigation of Surface Nanoclusters and Paramagnetic Centers of ZnO/Por-Si Structures as the Basis of Sensory Properties
by Danatbek Murzalinov, Tatyana Seredavina, Ainagul Kemelbekova, Yulia Spivak, Vyacheslav Moshnikov, Daniya Mukhamedshina, Kostantin Mit’, Nurzhan Ussipov, Elena Dmitriyeva, Sultan Zhantuarov, Sayora Ibraimova, Kazybek Aimaganbetov, Ekaterina Bondar and Anastasiya Fedosimova
Processes 2023, 11(12), 3332; https://doi.org/10.3390/pr11123332 - 30 Nov 2023
Cited by 3 | Viewed by 1386
Abstract
The detection of particles with uncompensated charge and the determination of the features of their interaction during the formation of nanocrystals on substrates with a developed surface are an interesting area of research. The porous surface formed via the electrochemical etching of silicon [...] Read more.
The detection of particles with uncompensated charge and the determination of the features of their interaction during the formation of nanocrystals on substrates with a developed surface are an interesting area of research. The porous surface formed via the electrochemical etching of silicon acquired fractal properties as a result of the deposition of zinc oxide layers. Microscopy methods using different resolutions revealed a hierarchical structure of the surface, where each of the three consecutive levels contains uniformly distributed formations. The deposition of 20 layers of ZnO maximizes the concentration of nanocrystals at the pore boundaries, while the deposition of 25 layers leads to the formation of a continuous layer. The increase in photoluminescence intensity with an increase in the number of deposited layers is due to the saturation of surface nanostructures with electrons through several mechanisms. Electron paramagnetic resonance (EPR) studies have shown that the main mechanism of radiation recombination is the capture of electrons on oxygen vacancies. The different nature of the EPR saturation of the signal of interconnected paramagnetic centers revealed the formation of zinc oxide particles at the boundaries of pores with different sizes. The results of these studies of surface-active structures effectively complement the knowledge about sensory materials. Full article
Show Figures

Figure 1

14 pages, 4016 KiB  
Article
Multi-Modal Laser-Fabricated Nanocomposites with Non-Invasive Tracking Modality and Tuned Plasmonic Properties
by Yury V. Ryabchikov
Crystals 2023, 13(9), 1381; https://doi.org/10.3390/cryst13091381 - 18 Sep 2023
Cited by 4 | Viewed by 1694
Abstract
Ultrapure composite nanostructures combining semiconductor and metallic elements as a result of ultrafast laser processing are important materials for applications in fields where high chemical purity is a crucial point. Such nanocrystals have already demonstrated prospects in plasmonic biosensing by detecting different analytes [...] Read more.
Ultrapure composite nanostructures combining semiconductor and metallic elements as a result of ultrafast laser processing are important materials for applications in fields where high chemical purity is a crucial point. Such nanocrystals have already demonstrated prospects in plasmonic biosensing by detecting different analytes like dyes and bacteria. However, the structure of the nanocomposites, as well as the control of their properties, are still very challenging due to the significant lack of research in this area. In this paper, the synthesis of silicon–gold nanoparticles was performed using various approaches such as the direct ablation of (i) a gold target immersed in a colloidal solution of silicon nanoparticles and (ii) a silicon wafer immersed in a colloidal solution of plasmonic nanoparticles. The formed nanostructures combine both plasmonic (gold) and paramagnetic (silicon) modalities observed by absorbance and electron paramagnetic resonance spectroscopies, respectively. A significant narrowing of the size distributions of both types of two-element nanocrystals as compared to single-element ones is shown to be independent of the laser fluence. The impact of the laser ablation time on the chemical stability and the concentration of nanoparticles influencing their both optical properties and electrical conductivity was studied. The obtained results are important from a fundamental point of view for a better understanding of the laser-assisted synthesis of semiconductor–metallic nanocomposites and control of their properties for further applications. Full article
(This article belongs to the Special Issue Additive Manufacturing of Alloys via Laser-Based Techniques)
Show Figures

Figure 1

12 pages, 27110 KiB  
Article
Silicon Vacancy in Boron-Doped Nanodiamonds for Optical Temperature Sensing
by Masfer Alkahtani
Materials 2023, 16(17), 5942; https://doi.org/10.3390/ma16175942 - 30 Aug 2023
Cited by 5 | Viewed by 2036
Abstract
Boron-doped nanodiamonds (BNDs) have recently shown a promising potential in hyperthermia and thermoablation therapy, especially in heating tumor cells. To remotely monitor eigen temperature during such operations, diamond color centers have shown a sensitive optical temperature sensing. Nitrogen-vacancy (NV) color center in diamonds [...] Read more.
Boron-doped nanodiamonds (BNDs) have recently shown a promising potential in hyperthermia and thermoablation therapy, especially in heating tumor cells. To remotely monitor eigen temperature during such operations, diamond color centers have shown a sensitive optical temperature sensing. Nitrogen-vacancy (NV) color center in diamonds have shown the best sensitivity in nanothermometry; however, spin manipulation of the NV center with green laser and microwave-frequency excitations is still a huge challenge for biological applications. Silicon-vacancy (SiV) color center in nano/bulk diamonds has shown a great potential to be a good replacement of the NV center in diamond as it can be excited and detected within the biological transparency window and its thermometry operations depends only on its zero-phonon line (ZPL) shift as a function of temperature changes. In this work, BNDs were carefully etched on smooth diamond nanocrystals’ sharp edges and implanted with silicon for optical temperature sensing. Optical temperature sensing using SiV color centers in BNDs was performed over a small range of temperature within the biological temperature window (296–308 K) with an excellent sensitivity of 0.2 K in 10 s integration time. These results indicate that there are likely to be better application of more biocompatible BNDs in hyperthermia and thermoablation therapy using a biocompatible diamond color center. Full article
(This article belongs to the Special Issue Nanocomposites for Functional Applications)
Show Figures

Figure 1

15 pages, 2256 KiB  
Article
Semiempirical Two-Dimensional Model of the Bipolar Resistive Switching Process in Si-NCs/SiO2 Multilayers
by Juan Ramirez-Rios, Karla Esther González-Flores, José Juan Avilés-Bravo, Sergio Alfonso Pérez-García, Javier Flores-Méndez, Mario Moreno-Moreno and Alfredo Morales-Sánchez
Nanomaterials 2023, 13(14), 2124; https://doi.org/10.3390/nano13142124 - 21 Jul 2023
Cited by 1 | Viewed by 1284
Abstract
In this work, the SET and RESET processes of bipolar resistive switching memories with silicon nanocrystals (Si-NCs) embedded in an oxide matrix is simulated by a stochastic model. This model is based on the estimation of two-dimensional oxygen vacancy configurations and their relationship [...] Read more.
In this work, the SET and RESET processes of bipolar resistive switching memories with silicon nanocrystals (Si-NCs) embedded in an oxide matrix is simulated by a stochastic model. This model is based on the estimation of two-dimensional oxygen vacancy configurations and their relationship with the resistive state. The simulation data are compared with the experimental current-voltage data of Si-NCs/SiO2 multilayer-based memristor devices. Devices with 1 and 3 Si-NCs/SiO2 bilayers were analyzed. The Si-NCs are assumed as agglomerates of fixed oxygen vacancies, which promote the formation of conductive filaments (CFs) through the multilayer according to the simulations. In fact, an intermediate resistive state was observed in the forming process (experimental and simulated) of the 3-BL device, which is explained by the preferential generation of oxygen vacancies in the sites that form the complete CFs, through Si-NCs. Full article
(This article belongs to the Special Issue Semiconductor Nanomaterials for Memory Devices)
Show Figures

Figure 1

Back to TopTop