Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,273)

Search Parameters:
Keywords = silicon addition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6400 KB  
Article
Microstructure and Mechanical Property Regulation of As-Cast AlCoCrFeNi2.1Six (x = 0, 0.1, 0.2, 0.3) High-Entropy Alloys
by Rongbin Li, Saiya Li, Jiahao Zhang and Jiaming Tian
Metals 2025, 15(10), 1146; https://doi.org/10.3390/met15101146 - 16 Oct 2025
Abstract
Eutectic high-entropy alloys (EHEAs) combine the casting advantages of eutectic alloys with the comprehensive properties of high-entropy alloys, making them a research hotspot in the field of metallic materials. Among them, the AlCoCrFeNi2.1 EHEA has attracted significant attention due to its excellent [...] Read more.
Eutectic high-entropy alloys (EHEAs) combine the casting advantages of eutectic alloys with the comprehensive properties of high-entropy alloys, making them a research hotspot in the field of metallic materials. Among them, the AlCoCrFeNi2.1 EHEA has attracted significant attention due to its excellent strength–toughness balance characteristics. In this study, alloy samples of AlCoCrFeNi2.1Six (x = 0, 0.1, 0.2, 0.3) were prepared to investigate the regulatory effects of trace Si on its phase composition, microstructure, and mechanical properties. The results show that the base alloy AlCoCrFeNi2.1 is composed of an FCC and BCC phase composition. With the increase in the Si content to x = 0.3, the CrSi2 phase gradually precipitates in the alloy, and its microscopic morphology transforms from the regular lamellar to the dendrite and network structure. The introduction of Si significantly enhances the room-temperature microhardness, wear resistance, and yield strength of the alloy through the mechanisms of solid solution strengthening and second phase strengthening. However, an excessive addition leads to a decrease in ductility and toughness. This study reveals the role of Si in phase control and the strengthening and toughening mechanism of eutectic high-entropy alloys, providing experimental evidence and a theoretical reference for the design of high-performance silicon-modified high-entropy alloys. Full article
(This article belongs to the Section Entropic Alloys and Meta-Metals)
Show Figures

Figure 1

20 pages, 4302 KB  
Article
Supplementation of Trimethylamine N-Oxide or Betaine in Semen Improves Quality of Boar Spermatozoa Stored at 17 °C Following Hydrostatic Pressure Stress
by Cheng Qin, Guangyuan Lu, Xiao Lin, Zhongkai Wang, Shiyu Yang, Liqiong Teng, Xin Lin, Fangfang Li, Shouping Huang and Chuanhuo Hu
Life 2025, 15(10), 1606; https://doi.org/10.3390/life15101606 - 15 Oct 2025
Abstract
HP, as an isotropic physical stress, has been widely applied in cell biology and reproductive research to simulate the effects of environmental pressure on cellular functions. In this study, the elastic silicone membrane of a novel bionic insemination catheter was employed as the [...] Read more.
HP, as an isotropic physical stress, has been widely applied in cell biology and reproductive research to simulate the effects of environmental pressure on cellular functions. In this study, the elastic silicone membrane of a novel bionic insemination catheter was employed as the pressure medium, with semen perfused into a sealed silicone chamber. As the silicone membrane underwent controlled deformation, the liquid inside the chamber generated a nearly uniform isotropic pressure, thereby maintaining spermatozoa in a stable HP environment. Boar sperm are susceptible to physiological and functional damage under HP stress, which can impair fertilization capacity. This study aimed to investigate the effects of TMAO, BET, or their combination on the quality of semen from eight Landrace boars under HP during storage at 17 °C (experiment repeated three times). Semen was collected using the manual collection method and treated with different concentrations of TMAO or BET. Sperm motility parameters were assessed using a CASA system to determine the optimal concentrations. Subsequently, experimental groups were established: the fresh group, HP control group, T group (optimal TMAO), B group (optimal BET), and H group (optimal TMAO + BET). The results showed that the optimal concentrations were 8 mmol/L for TMAO and 20 mmol/L for BET. Compared with the HP control group, the T, B, and H groups showed significantly improved sperm viability, mitochondrial membrane potential (MMP), and plasma membrane integrity (p < 0.05), and significantly reduced DFI, ROS, MDA, and NO contents (p < 0.05), while acrosome integrity showed no significant differences (p > 0.05). Additionally, the B group showed significantly increased T-AOC (p < 0.05). Non-targeted lipidomic analysis revealed 49 differential lipids in the T group, 262 in the B group, and 269 in the H group compared with the HP control. These differential lipids were mainly associated with PC, AcCa, and sphingolipid signaling pathways, with key sphingolipid pathway lipids including Cer, SM, and DG. These findings indicate that BET and TMAO + BET improve HP-induced sperm damage by modulating the sphingolipid signaling pathway and maintaining PC and AcCa levels, whereas TMAO alone may exert protective effects through additional mechanisms. In conclusion, TMAO, BET, or their combination effectively mitigates the detrimental effects of HP on boar sperm. Full article
(This article belongs to the Section Animal Science)
Show Figures

Figure 1

23 pages, 3462 KB  
Article
Development and Modeling of a Novel Magnetorheological Elastomer Isolator in Hybrid Mode with a Compression–Shear Hybrid Fractional-Derivative Parametric Model
by Yun Tian, Zhongwei Hu, Yingqing Guo, Lihua Zhu, Jun Dai, Yuxuan Tao and Xin Wang
Sensors 2025, 25(20), 6376; https://doi.org/10.3390/s25206376 - 15 Oct 2025
Abstract
Magnetorheological elastomers (MREs) are composed of soft silicone rubber, carbonyl iron particles (CIPs), and various additives. This study designs and fabricates a novel hybrid-mode MRE isolator that can operate in both compression and shear modes simultaneously. Experimental and modeling investigations are conducted to [...] Read more.
Magnetorheological elastomers (MREs) are composed of soft silicone rubber, carbonyl iron particles (CIPs), and various additives. This study designs and fabricates a novel hybrid-mode MRE isolator that can operate in both compression and shear modes simultaneously. Experimental and modeling investigations are conducted to examine the dynamic mechanical properties of the hybrid-mode MRE isolator under varying excitation frequencies, displacement amplitudes, and magnetic field strengths. The equivalent stiffness, energy dissipation, and equivalent damping of the MRE isolator are determined. Experimental results reveal that the hybrid-mode MRE isolator exhibits a pronounced MR effect by utilizing a hybrid magnetic field generation system, with all three parameters significantly increasing as the magnetic field strength increases. However, as the excitation frequency increases, the equivalent stiffness and energy dissipation increase, while the equivalent damping decreases. Based on the experimental findings, a compression–shear hybrid fractional-derivative parametric (CSHF) model is proposed to describe the impact of different operating conditions on the dynamic viscoelastic properties of the MRE isolator. A comparative analysis of the experimental results and model predictions indicates that the proposed mechanical model can accurately describe the dynamic mechanical characteristics of the hybrid-mode MRE isolator. Full article
(This article belongs to the Special Issue Structural Health Monitoring and Smart Disaster Prevention)
24 pages, 16775 KB  
Article
Development of Carbide-Reinforced Al-7075 Multi-Layered Composites via Friction Stir Additive Manufacturing
by Adeel Hassan, Khurram Altaf, Mokhtar Che Ismail, Srinivasa Rao Pedapati, Roshan Vijay Marode, Imtiaz Ali Soomro and Naveed Ahmed
J. Compos. Sci. 2025, 9(10), 568; https://doi.org/10.3390/jcs9100568 (registering DOI) - 15 Oct 2025
Abstract
Friction stir additive manufacturing (FSAM) is a promising solid-state technique for fabricating high-strength aluminum alloys, such as Al-7075, which are difficult to process using conventional melting-based additive manufacturing (AM) methods. This study investigates the mechanical properties and tool wear behavior of seven-layered Al-7075 [...] Read more.
Friction stir additive manufacturing (FSAM) is a promising solid-state technique for fabricating high-strength aluminum alloys, such as Al-7075, which are difficult to process using conventional melting-based additive manufacturing (AM) methods. This study investigates the mechanical properties and tool wear behavior of seven-layered Al-7075 multi-layered composites reinforced with silicon carbide (SiC) and titanium carbide (TiC) fabricated via FSAM. Microstructural analysis confirmed defect-free multi-layered composites with a homogeneous distribution of SiC and TiC reinforcements in the nugget zone (NZ), although particle agglomeration was observed at the bottom of the pin-driven zone (PDZ). The TiC-reinforced composite exhibited finer grains than the SiC-reinforced composite in both as-welded and post-weld heat-treated (PWHT) conditions, achieving a minimum grain size of 1.25 µm, corresponding to a 95% reduction compared to the base metal. The TiC-reinforced multi-layered composite demonstrated superior mechanical properties, attaining a microhardness of 93.7 HV and a UTS of 263.02 MPa in the as-welded condition, compared to 88.6 HV and 236.34 MPa for the SiC-reinforced composite. After PWHT, the TiC-reinforced composite further improved to 159.12 HV and 313.46 MPa UTS, along with a higher elongation of 11.14% compared to 7.5% for the SiC-reinforced composite. Tool wear analysis revealed that SiC reinforcement led to greater tool degradation, resulting in a 1.17% weight loss. These findings highlight the advantages of TiC reinforcement in FSAM, offering enhanced mechanical performance with reduced tool wear in multi-layered Al-7075 composites. Full article
Show Figures

Figure 1

21 pages, 7112 KB  
Article
A Two-Plane Proton Radiography System Using ATLAS IBL Pixel-Detector Modules
by Hendrik Speiser, Claus Maximillian Bäcker, Johannes Esser, Alina Hild, Marco Iampieri, Ann-Kristin Lüvelsmeyer, Annsofie Tappe, Helen Thews, Kevin Kröninger and Jens Weingarten
Instruments 2025, 9(4), 23; https://doi.org/10.3390/instruments9040023 - 14 Oct 2025
Abstract
Accurate knowledge of a patient’s anatomy during every treatment fraction in proton therapy is an important prerequisite to ensure a correct dose deposition in the target volume. Adaptive proton therapy aims to detect those changes and adjust the treatment plan accordingly. One way [...] Read more.
Accurate knowledge of a patient’s anatomy during every treatment fraction in proton therapy is an important prerequisite to ensure a correct dose deposition in the target volume. Adaptive proton therapy aims to detect those changes and adjust the treatment plan accordingly. One way to trigger a daily re-planning of the treatment is to take a proton radiograph from the beam’s-eye view before the treatment to check for possible changes in the water equivalent thickness (WET) along the path due to daily changes in the patient’s anatomy. In this paper, the Two-Plane Imaging System (TPIS) is presented, comprising two ATLAS IBL silicon pixel-detector modules developed for the tracking detector of the ATLAS experiment at CERN. The prototype of the TPIS is described in detail, and proof-of-principle WET images are presented, of two-step phantoms and more complex phantoms with bone-like inlays (WET 10 to 40 mm). This study shows the capability of the TPIS to measure WET images with high precision. In addition, the potential of the TPIS to accurately determine WET changes over time down to 1 mm between subsequently taken WET images of a changing phantom is shown. This demonstrates the possible application of the TPIS and ATLAS IBL pixel-detector module in adaptive proton therapy. Full article
(This article belongs to the Special Issue Medical Applications of Particle Physics, 2nd Edition)
Show Figures

Figure 1

20 pages, 3107 KB  
Article
Observer-Based Volumetric Flow Control in Nonlinear Electro-Pneumatic Extrusion Actuator with Rheological Dynamics
by Ratchatin Chancharoen, Chaiwuth Sithiwichankit, Kantawatchr Chaiprabha, Setthibhak Suthithanakom and Gridsada Phanomchoeng
Actuators 2025, 14(10), 496; https://doi.org/10.3390/act14100496 - 14 Oct 2025
Viewed by 23
Abstract
Consistent volumetric flow control is essential in extrusion-based additive manufacturing, particularly when printing viscoelastic materials with complex rheological properties. This study proposes a control framework incorporating simplified rheological dynamics via a Kelvin–Voigt model that integrates nonlinear dynamic modeling, an unknown input observer (UIO), [...] Read more.
Consistent volumetric flow control is essential in extrusion-based additive manufacturing, particularly when printing viscoelastic materials with complex rheological properties. This study proposes a control framework incorporating simplified rheological dynamics via a Kelvin–Voigt model that integrates nonlinear dynamic modeling, an unknown input observer (UIO), and a closed-loop PID controller to regulate material flow in a motorized electro-pneumatic extrusion system. A comprehensive state-space model is developed, capturing both mechanical and rheological dynamics. The UIO estimates unmeasurable internal states—specifically, syringe plunger velocity—which are critical for real-time flow regulation. Simulation results validate the observer’s accuracy, while experimental trials with a curing silicone resin confirm that the system can achieve steady extrusion and maintain stable linewidth once transient disturbances settle. The proposed system leverages a dual-mode actuation mechanism—combining pneumatic buffering and motor-based adjustment—to achieve responsive and robust control. This architecture offers a compact, sensorless solution well-suited for high-precision applications in bioprinting, electronics, and soft robotics, and provides a foundation for intelligent flow regulation under dynamic material behaviors. Full article
Show Figures

Figure 1

25 pages, 21140 KB  
Article
Biodegradable PLA/PHB Composites with Inorganic Fillers and Modifiers
by Jozef Feranc, Martina Repiská, Roderik Plavec, Katarína Tomanová, Michal Ďurfina, Zuzana Vanovčanová, Ida Vašková, Leona Omaníková, Mária Fogašová, Slávka Hlaváčiková, Ján Kruželák, Zuzana Kramárová, Eduard Oswald and Pavol Alexy
Polymers 2025, 17(20), 2721; https://doi.org/10.3390/polym17202721 - 10 Oct 2025
Viewed by 287
Abstract
The work is focused on the study of the influence of different types of inorganic fillers, in combination with modifiers, on the rheological, thermal, and mechanical properties of a biodegradable mixture based on PLA/PHB. Ten types of inorganic fillers based on talc, magnesium [...] Read more.
The work is focused on the study of the influence of different types of inorganic fillers, in combination with modifiers, on the rheological, thermal, and mechanical properties of a biodegradable mixture based on PLA/PHB. Ten types of inorganic fillers based on talc, magnesium hydroxide, aluminum hydroxide, calcium carbonate, and silicon dioxide were used in the study, along with three types of modifiers. It was concluded that fillers containing reactive OH groups on their surface act as strong pro-degradants in PLA/PHB blends, and their degrading effect can be suppressed by the addition of reactive modifiers. Each modifier acts specifically with different types of fillers. Therefore, it is necessary to select a suitable filler/modifier combination not only for fillers with different chemical compositions but also for fillers with different morphologies within the same chemical type. Moreover, the preparation of PLA/PHB/magnesium hydroxide blends with suitable processing and application properties opens the possibility of developing environmentally friendly polymeric materials with a reduced flammability. The addition of talc, which has a platelet structure, can increase the barrier properties of the mixture. Full article
(This article belongs to the Special Issue Advances in Biocompatible and Biodegradable Polymers, 4th Edition)
Show Figures

Figure 1

28 pages, 8209 KB  
Article
Photocatalytic Enhancement of Anatase Supported on Mesoporous Modified Silica for the Removal of Carbamazepine
by Guillermo Cruz-Quesada, Beatriz Rosales-Reina, Inmaculada Velo-Gala, María del Pilar Fernández-Poyatos, Miguel A. Álvarez, Cristian García-Ruiz, María Victoria López-Ramón and Julián J. Garrido
Nanomaterials 2025, 15(19), 1533; https://doi.org/10.3390/nano15191533 - 8 Oct 2025
Viewed by 310
Abstract
TiO2 is the most used material for the photocatalytic removal of organic pollutants in aqueous media. TiO2, specifically its anatase phase, is well-known for its great performance under UV irradiation, high chemical stability, low cost and non-toxicity. Nevertheless, TiO2 [...] Read more.
TiO2 is the most used material for the photocatalytic removal of organic pollutants in aqueous media. TiO2, specifically its anatase phase, is well-known for its great performance under UV irradiation, high chemical stability, low cost and non-toxicity. Nevertheless, TiO2 presents two main drawbacks: its limited absorption of the visible spectrum; and its relatively low specific surface area and pore volume. Regarding the latter, several works in the literature have addressed the issue by developing new synthesis approaches in which anatase is dispersed and supported on the surface of porous materials. In the present work, two series of materials have been prepared where anatase has been supported on mesoporous silica (MSTiR%) in situ through a hydrothermal synthesis approach, where, in addition to using tetraethoxysilane (TEOS) as a silicon precursor, three organotriethoxysilanes [RTEOS, where R = methyl (M), propyl (P) or phenyl (Ph)] were used at a RTEOS:TEOS molar percentage of 10 and 30%. The materials were thoroughly characterized by several techniques to determine their morphological, textural, chemical, and UV-vis light absorption properties and then the most promising materials were used as photocatalysts in the photodegradation of the emerging contaminant and antiepileptic carbamazepine (CBZ) under UV irradiation. The materials synthesized using 10% molar percentage of RTEOS (MSTiR10) were able to almost completely degrade (~95%), 1 mg L−1 of CBZ after 1 h of irradiation using a 275 nm LED and 0.5 g L−1 of catalyst dose. Therefore, this new synthesis approach has proven useful to develop photoactive TiO2 composites with enhanced textural properties. Full article
Show Figures

Figure 1

38 pages, 6401 KB  
Review
Silicon Nanostructures for Hydrogen Generation and Storage
by Gauhar Mussabek, Gulmira Yar-Mukhamedova, Sagi Orazbayev, Valeriy Skryshevsky and Vladimir Lysenko
Nanomaterials 2025, 15(19), 1531; https://doi.org/10.3390/nano15191531 - 7 Oct 2025
Viewed by 448
Abstract
Today, hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution, since it has a high energy capacity and does not emit carbon oxide when burned. However, for the widespread application of [...] Read more.
Today, hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution, since it has a high energy capacity and does not emit carbon oxide when burned. However, for the widespread application of hydrogen energy, it is necessary to search new technical solutions for both its production and storage. A promising effective and cost-efficient method of hydrogen generation and storage can be the use of solid materials, including nanomaterials in which chemical or physical adsorption of hydrogen occurs. Focusing on the recommendations of the DOE, the search is underway for materials with high gravimetric capacity more than 6.5% wt% and in which sorption and release of hydrogen occurs at temperatures from −20 to +100 °C and normal pressure. This review aims to summarize research on hydrogen generation and storage using silicon nanostructures and silicon composites. Hydrogen generation has been observed in Si nanoparticles, porous Si, and Si nanowires. Regardless of their size and surface chemistry, the silicon nanocrystals interact with water/alcohol solutions, resulting in their complete oxidation, the hydrolysis of water, and the generation of hydrogen. In addition, porous Si nanostructures exhibit a large internal specific surface area covered by SiHx bonds. A key advantage of porous Si nanostructures is their ability to release molecular hydrogen through the thermal decomposition of SiHx groups or in interaction with water/alkali. The review also covers simulations and theoretical modeling of H2 generation and storage in silicon nanostructures. Using hydrogen with fuel cells could replace Li-ion batteries in drones and mobile gadgets as more efficient. Finally, some recent applications, including the potential use of Si-based agents as hydrogen sources to address issues associated with new approaches for antioxidative therapy. Hydrogen acts as a powerful antioxidant, specifically targeting harmful ROS such as hydroxyl radicals. Antioxidant therapy using hydrogen (often termed hydrogen medicine) has shown promise in alleviating the pathology of various diseases, including brain ischemia–reperfusion injury, Parkinson’s disease, and hepatitis. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

17 pages, 3452 KB  
Article
Formation of Protective Coatings on TZM Molybdenum Alloy by Complex Aluminosiliconizing and Application of a Preceramic Layer
by Tetiana Loskutova, Volodymyr Taran, Manja Krüger, Nadiia Kharchenko, Myroslav Karpets, Yaroslav Stelmakh, Georg Hasemann and Michael Scheffler
Coatings 2025, 15(10), 1168; https://doi.org/10.3390/coatings15101168 - 5 Oct 2025
Viewed by 342
Abstract
The use of molybdenum-based alloys as materials for components operating under high temperatures and significant mechanical loads is widely recognized due to their excellent mechanical properties. However, their low high-temperature resistance remains a critical limitation, which can be effectively mitigated by applying protective [...] Read more.
The use of molybdenum-based alloys as materials for components operating under high temperatures and significant mechanical loads is widely recognized due to their excellent mechanical properties. However, their low high-temperature resistance remains a critical limitation, which can be effectively mitigated by applying protective coatings. In this study, we investigate the influence of a two-step coating process on the properties and performance of the TZM molybdenum alloy. In the first step, pack cementation was performed. Simultaneous surface saturation with aluminum and silicon, a process known as aluminosiliconizing, was conducted at 1000 °C for 6 h. The saturating mixture comprised powders of aluminum, silicon, aluminum oxide, and ammonium chloride. The second step involved the application of a pre-ceramic coating based on polyhydrosiloxane modified with silicon and boron. This treatment effectively eliminated pores and cracks within the coating. Thermodynamic calculations were carried out to evaluate the likelihood of aluminizing and siliconizing reactions under the applied conditions. Aluminosiliconizing of the TZM alloy resulted in the formation of a protective layer 20–30 µm thick. The multiphase structure of this layer included intermetallics (Al63Mo37, MoAl3), nitrides (Mo2N, AlN, Si3N4), oxide (Al2O3), and a solid solution α-Mo(Al). Subsequent treatment with silicon- and boron-modified polyhydrosiloxane led to the development of a thicker surface layer, 130–160 µm in thickness, composed of crystalline Si, amorphous SiO2, and likely amorphous boron. A transitional oxide layer ((Al,Si)2O3) 5–7 µm thick was also observed. The resulting coating demonstrated excellent structural integrity and chemical inertness in an argon atmosphere at temperatures up to 1100 °C. High-temperature stability at 800 °C was observed for both coating types: aluminosiliconizing, and aluminosiliconizing followed by the pre-ceramic coating. Moreover, additional oxide layers of SiO2 and B2O3 formed on the two-step coated TZM alloy during heating at 800 °C for 24 h. These layers acted as an effective barrier, preventing the evaporation of the substrate material. Full article
Show Figures

Figure 1

14 pages, 2032 KB  
Article
Effect of Rock Crystal Addition on the Properties of Silicone Pressure-Sensitive Adhesives
by Adrian Krzysztof Antosik and Marcin Bartkowiak
Polymers 2025, 17(19), 2687; https://doi.org/10.3390/polym17192687 - 4 Oct 2025
Viewed by 328
Abstract
In the presented work, a natural mineral—rock crystal—was used as a filler to obtain new silicone adhesive tapes. It was expected that, properly crushed, this hard mineral, consisting almost entirely of silica (silicon dioxide), should enhance the thermal resistance and cohesion of the [...] Read more.
In the presented work, a natural mineral—rock crystal—was used as a filler to obtain new silicone adhesive tapes. It was expected that, properly crushed, this hard mineral, consisting almost entirely of silica (silicon dioxide), should enhance the thermal resistance and cohesion of the self-adhesive composition with no/or low reduction in the rest of performance properties of the products. For this purpose, tests were conducted on the functional properties of new self-adhesive tapes, such as adhesion, cohesion, and tack. The obtained results confirmed the scientific assumptions and the thermal resistance of adhesive layers reached over 225 °C. The material itself turned out to not agglomerate in the adhesive composition and to be compatible with it. The new self-adhesive materials have application potential and can be used as materials for special applications in the field of heating, e.g., in connecting pipes, where thermal resistance and thermal expansion are of immense importance. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

18 pages, 4350 KB  
Article
Preparation and Properties of Al-SiC Composite Coatings from AlCl3-LiAlH4-Benzene-THF System
by Hongmin Kan, Linxin Qi and Jiang Wu
Coatings 2025, 15(10), 1159; https://doi.org/10.3390/coatings15101159 - 4 Oct 2025
Viewed by 303
Abstract
Al-SiC composite coatings were successfully fabricated through the process of electrodeposition utilizing an AlCl3-LiAlH4-benzene-THF system. This method allows for the incorporation of silicon carbide (SiC) particles into the aluminum matrix, enhancing the coating’s properties. The study examined various factors [...] Read more.
Al-SiC composite coatings were successfully fabricated through the process of electrodeposition utilizing an AlCl3-LiAlH4-benzene-THF system. This method allows for the incorporation of silicon carbide (SiC) particles into the aluminum matrix, enhancing the coating’s properties. The study examined various factors that influence the coating characteristics, including current density, temperature, and the quantity of SiC particles added to the formula. The findings revealed that these parameters significantly affect the resulting surface morphology, corrosion resistance, and hardness of the Al-SiC composite coatings. Specifically, the analysis demonstrated that the Al-SiC composite coating produced optimal surface morphology, which is crucial for its performance and durability in various applications. when the current density is 50 mA/cm2, the bath temperature is at 30 °C, and the addition amount of SiC particles is optimized to 40 g/L. Combined with electrochemical experimental data, the corrosion resistance of the composite coating prepared under this condition was significantly improved. The results of scanning electron microscopy showed that the surface of the composite coating prepared under this process parameter was uniform and dense, without obvious holes and cracks, and the SiC particles were uniformly distributed in the coating with high density. Through the hardness test of composite coatings with different SiC particle contents, it was found that in the research interval, when the SiC particle content was less than 3 wt%, the hardness of the coating changed relatively slowly. As the amount of SiC particles surpassed 4 wt%, there was a notable increase in hardness. At a SiC concentration of 5%, the coating exhibited a hardness level of 152.1 HV. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Figure 1

21 pages, 406 KB  
Article
DRBoost: A Learning-Based Method for Steel Quality Prediction
by Yang Song, Shuaida He and Qiyu Wu
Symmetry 2025, 17(10), 1644; https://doi.org/10.3390/sym17101644 - 3 Oct 2025
Viewed by 266
Abstract
Steel products play an important role in daily production and life as a common production material. Currently, the quality of steel products is judged by manual experience. However, various inspection criteria employed by human operators and complex factors and mechanisms in the steelmaking [...] Read more.
Steel products play an important role in daily production and life as a common production material. Currently, the quality of steel products is judged by manual experience. However, various inspection criteria employed by human operators and complex factors and mechanisms in the steelmaking process may lead to inaccuracies. To address these issues, we propose a learning-based method for steel quality prediction, which is named DRBoost,based on multiple machine learning techniques, including Decision tree, Random forest, and the LSBoost algorithm. In our method, the decision tree clearly captures the nonlinear relationships between features and serves as a solid baseline for making preliminary predictions. Random forest enhances the model’s robustness and avoids overfitting by aggregating multiple decision trees. LSBoost uses gradient descent training to assign contribution coefficients to different kinds of raw materials to obtain more accurate predictions. Five key chemical elements, including carbon, silicon, manganese, phosphorus, and sulfur, which significantly influence the major performance characteristics of steel products, are selected. Steel quality prediction is conducted by predicting the contents of these chemical elements. Multiple models are constructed to predict the contents of five key chemical elements in steel products. These models are symmetrically complementary, meeting the requirements of different production scenarios and forming a more accurate and universal method for predicting the steel product’s quality. In addition, the prediction method provides a symmetric quality control system for steel product production. Experimental evaluations are conducted based on a dataset of 2012 samples from a steel plant in Liaoning Province, China. The input variables include various raw material usages, while the outputs are the content of five key chemical elements that influence the quality of steel products. The experimental results show that the models demonstrate their advantages in different performance metrics and are applicable to practical steelmaking scenarios. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

22 pages, 6737 KB  
Article
Molecular Dynamics Study on the Effect of Surface Films on the Nanometric Grinding Mechanism of Single-Crystal Silicon
by Meng Li, Di Chang, Pengyue Zhao and Jiubin Tan
Micromachines 2025, 16(10), 1141; https://doi.org/10.3390/mi16101141 - 2 Oct 2025
Viewed by 495
Abstract
To investigate the influence of surface films on the material removal mechanism of single-crystal silicon during nanogrinding, molecular dynamics (MD) simulations were performed under different surface-film conditions. The simulations examined atomic displacements, grinding forces, radial distribution functions (RDF), phase transformations, temperature distributions, and [...] Read more.
To investigate the influence of surface films on the material removal mechanism of single-crystal silicon during nanogrinding, molecular dynamics (MD) simulations were performed under different surface-film conditions. The simulations examined atomic displacements, grinding forces, radial distribution functions (RDF), phase transformations, temperature distributions, and residual stress distributions to elucidate the damage mechanisms at the surface and subsurface on the nanoscale. In this study, boron nitride (BN) and graphene films were applied to the surface of single-crystal silicon workpieces for nanogrinding simulations. The results reveal that both BN and graphene films effectively suppress chip formation, thereby improving the surface quality of the workpiece, with graphene showing a stronger inhibitory effect on atomic displacements. Both films reduce tangential forces and mitigate grinding force fluctuations, while increasing normal forces; the increase in normal force is smaller with BN. Although both films enlarge the subsurface damage layer (SDL) thickness and exhibit limited suppression of crystalline phase transformations, they help to alleviate surface stress release. In addition, the films reduce the surface and subsurface temperatures, with graphene yielding a lower temperature. Residual stresses beneath the abrasive grain are also reduced when either film is applied. Overall, BN and graphene films can enhance the machined surface quality, but further optimization is required to minimize subsurface damage (SSD), providing useful insights for the optimization of single-crystal silicon nanogrinding processes. Full article
Show Figures

Figure 1

13 pages, 1846 KB  
Article
Toward Circular Carbon: Upcycling Coke Oven Waste into Graphite Anodes for Lithium-Ion Batteries
by Seonhui Choi, Inchan Yang, Byeongheon Lee, Tae Hun Kim, Sei-Min Park and Jung-Chul An
Batteries 2025, 11(10), 365; https://doi.org/10.3390/batteries11100365 - 2 Oct 2025
Viewed by 348
Abstract
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular [...] Read more.
This study presents a sustainable upcycling strategy to convert “Pit,” a carbon-rich coke oven by-product from steel manufacturing, into high-purity graphite for use as an anode material in lithium-ion batteries. Despite its high carbon content, raw Pit contains significant impurities and has irregular particle morphology, which limits its direct application in batteries. We employed a multi-step, additive-free refinement process—including jet milling, spheroidization, and high-temperature graphitization—to enhance carbon purity and structural properties. The processed Pit-derived graphite showed a much-improved particle size distribution (D50 reduced from 25.3 μm to 14.8 μm & Span reduced from 1.72 to 1.23), increased tap density (from 0.54 to 0.80 g/cm3), and reduced BET surface area, making it suitable for high-performance lithium-ion batteries anodes. Structural characterization by XRD and TEM confirmed dramatically enhanced crystallinity after graphitization (graphitization degree increasing from ~13 for raw Pit to 95.7% for graphitized Pit at 3000 °C). The fully processed graphite (denoted S_Pit3000) delivered a reversible discharge capacity of 346.7 mAh/g with an initial Coulombic efficiency of 93.5% in half-cell tests—comparable to commercial artificial graphite. Furthermore, when composited with silicon oxide to form a hybrid anode, the material achieved an even higher capacity of 418.0 mAh/g under high mass loading conditions. These results highlight the feasibility of transforming industrial coke waste into value-added electrode materials through environmentally friendly physical processes. The upcycled graphite anode meets industrial performance standards, demonstrating a promising route toward circular economy solutions in both the steel and battery industries. Full article
Show Figures

Figure 1

Back to TopTop