Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = silica-rich mineral water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3500 KB  
Article
Hydrogeochemical Characteristics and Formation Mechanism of Metasilicic Acid Mineral Water at Taoping Water Source Area
by Dian Liu, Ximin Bai, Xuegang Wang, Shengpin Yu, Tian Li and Fei Deng
Water 2026, 18(2), 249; https://doi.org/10.3390/w18020249 (registering DOI) - 17 Jan 2026
Abstract
Northwestern Jiangxi Province is rich in metasilicic acid (as H2SiO3) mineral water resources. Investigating their hydrogeochemical characteristics and formation mechanism is crucial for the rational utilization of water resources and the sustainable development of the local mineral water industry. [...] Read more.
Northwestern Jiangxi Province is rich in metasilicic acid (as H2SiO3) mineral water resources. Investigating their hydrogeochemical characteristics and formation mechanism is crucial for the rational utilization of water resources and the sustainable development of the local mineral water industry. Taking the Taoping water source area in northwestern Jiangxi as a case study, 11 sets of groundwater and surface water samples were systematically collected. By comprehensively applying mathematical statistics, ionic ratios, and isotopic analyses, the hydrogeochemical characteristics and formation processes of metasilicic acid-type mineral water were examined. The results indicate that: (1) The mineral waters in the area are weakly alkaline and belong to the metasilicic acid type, with concentrations ranging from 22.0 to 67.0 mg/L, of which 75% exceed 30 mg/L. (2) The primary hydrochemical types are HCO3–Ca·Na, HCO3–Ca·Mg, and HCO3–Ca. Analysis of stable isotopes (δ18O and δ2H) and tritium (3H) indicates that metasilicic acid mineral water is primarily recharged by atmospheric precipitation, with an apparent groundwater age of approximately 60 years. (3) The enrichment of metasilicic acid primarily results from the weathering and leaching of silicate minerals, coupled with cation exchange. K+ and Na+ are mainly derived from silicate minerals such as feldspars and halite, whereas Ca2+ and Mg2+ originate primarily from carbonate minerals like calcite and dolomite. During recharge, atmospheric precipitation infiltrates the aquifer, dissolving aluminosilicate and siliceous minerals in the surrounding rocks, thereby releasing metasilicic acid into the groundwater and ultimately forming the metasilicic acid-type mineral water. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 3430 KB  
Article
Deep Eutectic Solvents as a Sustainable Approach for Silica Recovery from Rice Husk
by Célio S. Faria-Júnior, Lucas dos Santos Silva, Armando L. C. Cunha, Filipe S. Buarque and Bernardo Dias Ribeiro
Molecules 2025, 30(24), 4697; https://doi.org/10.3390/molecules30244697 - 8 Dec 2025
Viewed by 506
Abstract
Rice husk is a lignocellulosic biomass rich in silica, which, when disposed of inappropriately, represents an environmental hazard. This study investigated the application of deep eutectic solvents (DES) as a green and efficient approach to the rice husk fractionation, combining the selective dissolution [...] Read more.
Rice husk is a lignocellulosic biomass rich in silica, which, when disposed of inappropriately, represents an environmental hazard. This study investigated the application of deep eutectic solvents (DES) as a green and efficient approach to the rice husk fractionation, combining the selective dissolution of lignin and sugars with the purification of the silica-rich inorganic fraction. Six different DES were produced from choline chloride or betaine with different hydrogen bond donors and characterized for water content and pH. The DES based on carboxylic acids was more acidic, which favored the cleavage of ester and glycosidic bonds in the biomass. The TGA, XRF, SEM, and XRD analyses revealed that the lactic acid-based DES promoted better removal of lignin and mineral impurities, resulting in a purer silica with an amorphous morphology. The 110 °C condition was the most effective in preserving the thermal integrity of the organic (sugars and lignin) and inorganic (silica-rich ash) fractions. The results highlight the potential of DES as selective, sustainable, and tunable solvents for the valorization of agricultural waste, achieving biosilica with SiO2 purity exceeding 80% and lignin removal above 70%, reinforcing the potential of DES as sustainable solvents for agricultural waste valorization. Full article
Show Figures

Graphical abstract

19 pages, 5973 KB  
Article
Phase Transformation and Si/Al Leaching Behavior of High-Silica–Alumina Coal Gangue Activated by Sodium-Based Additives
by Hongwei Du, Ke Li, Xinghao Shi, Lingxian Fang and Zhao Cao
Minerals 2025, 15(9), 942; https://doi.org/10.3390/min15090942 - 4 Sep 2025
Cited by 2 | Viewed by 1221
Abstract
High-silica–alumina coal gangue is rich in kaolinite, quartz, and other mineral components. The potential for resource utilization is huge, but the silica–aluminate structure is highly stable, and it is difficult to achieve efficient dissociation and elemental enrichment using traditional extraction processes. This study [...] Read more.
High-silica–alumina coal gangue is rich in kaolinite, quartz, and other mineral components. The potential for resource utilization is huge, but the silica–aluminate structure is highly stable, and it is difficult to achieve efficient dissociation and elemental enrichment using traditional extraction processes. This study selects typical high-silica–alumina coal gangue as the research object and systematically studies the rules of the physical phase transformation mechanism and ion migration behavior in the activation process of the sodium-based additives stage. In addition, a graded leaching and separation processing route is established, realizing the effective separation and extraction of silica–alumina. The key parameters were optimized using response surface methodology (RSM), obtaining the optimal activation conditions of 800 °C, 30 min, and an additives ratio of 0.8. Under these conditions, the highest dissolution rates of silica and alumina are 82.1% and 92.36%, respectively. Characterization techniques such as XRD, FTIR, and SEM reveal that the activation mechanism of coal gangue involves the decomposition of the aluminosilicate framework and the erosion of sodium ions. At the same time, the chemical bonding reorganization contributes to forming water-soluble sodium silicate (Na2SiO3) and insoluble nepheline (NaAlSiO4), which significantly promotes the release of Si and Al. When the activation temperature is too high, the nepheline phase is transformed into amorphous glassy sodium aluminate and precipitated on the surface, which gradually encapsulates the sodium silicate. This encapsulation restricts dissolution pathways, thereby leading to system densification. Moreover, enhanced resistance to acid attack leads to a decrease in the dissolution rates of Si and Al. This study elucidates the mineral phase reconstruction and element migration mechanisms involved in sodium-based activation and presents a viable approach for the high-value utilization of coal gangue. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 2964 KB  
Article
Towards Safe Diatomite Sludge Management: Lead Immobilisation via Geopolymerisation
by Haozhe Guo, Zhihao Huang, Baifa Zhang, Ting Yu, Thammaros Pantongsuk and Peng Yuan
Minerals 2024, 14(8), 763; https://doi.org/10.3390/min14080763 - 27 Jul 2024
Viewed by 1621
Abstract
Diatomite, a natural adsorbent rich in active silica, serves as a valuable precursor for geopolymer synthesis. The safe disposal of diatomite as a failed lead (Pb(II)) adsorbent is critical to prevent secondary contamination. This study investigated the immobilisation efficiency of geopolymerisation for Pb(II)-rich [...] Read more.
Diatomite, a natural adsorbent rich in active silica, serves as a valuable precursor for geopolymer synthesis. The safe disposal of diatomite as a failed lead (Pb(II)) adsorbent is critical to prevent secondary contamination. This study investigated the immobilisation efficiency of geopolymerisation for Pb(II)-rich diatomite sludge. Low-grade diatomite with high ignition loss was utilised in the synthesis of alkali-activated geopolymers. It was demonstrated that the geopolymers achieved a compressive strength of 28.3 MPa with a 50% replacement rate of metakaolin by diatomite sludge, which was not a compromise in strength compared to that of the geopolymer with no Pb(II) (26.2 MPa). The leaching behaviour of Pb(II) was evaluated using water and acetic acid, yielding concentrations below 3 mg/L and immobilisation efficiencies of 95% in both scenarios. Analytical techniques including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) elucidated the mineral composition and chemical environment of the geopolymers. These analyses revealed that Pb(II) migrated from diatomite pores, potentially forming soluble hydroxides under sufficient hydroxide, which then participated in condensation with silicon and aluminium monomers, effectively immobilising Pb(II) within amorphous aluminosilicate gels. Furthermore, the formation of the amorphous gels within diatomite pores hindered Pb(II) leaching, encapsulating Pb(II) effectively. This study presents a novel approach to immobilising heavy metals within building materials, enhancing mineral resource utilisation efficiency while addressing environmental contamination concerns. Full article
Show Figures

Figure 1

48 pages, 8568 KB  
Review
Global Occurrence, Geology and Characteristics of Hydrothermal-Origin Kaolin Deposits
by Ömer Işık Ece and Hatice Ünal Ercan
Minerals 2024, 14(4), 353; https://doi.org/10.3390/min14040353 - 28 Mar 2024
Cited by 10 | Viewed by 9347
Abstract
Kaolin-group minerals occur in nature as the result of high-sulfidation acid sulfate, sulfur-poor HCl-, HF- and H2CO3-rich acidic fluid-related hydrothermal alterations and in situ geochemical weathering. These minerals possess different crystallographic and chemical properties that determine their application areas, [...] Read more.
Kaolin-group minerals occur in nature as the result of high-sulfidation acid sulfate, sulfur-poor HCl-, HF- and H2CO3-rich acidic fluid-related hydrothermal alterations and in situ geochemical weathering. These minerals possess different crystallographic and chemical properties that determine their application areas, mainly in the ceramic and paper industries, and as nanocomposite materials. The physicochemical properties of hydrothermal kaolin deposits are the result of the type of parent rock, the effect of the regional tectonism-associated magmatism, and the chemical features of hydrothermal fluids that interact with the deep basement rocks. However, understanding these geothermal systems is one of the most challenging issues due to the rich mineralogical assemblages, complex geochemistry and isotopic data of hydrothermal alteration zones. This study evaluates the formation of hydrothermal-origin kaolin-group minerals by considering their characteristics of hydrothermal alteration, isotopic compositions and differences in characteristic properties of low- and high-sulfidation occurrences; this paper also addresses mineralogical and structural differences between hypogene and supergene kaolin formations, and kaolin–alunite–pyrophyllite association, and it provides examples of worldwide occurrences. The study of the mineralogical assemblages, geochemistry and isotopic data of the hydrothermal alteration zones is one of the most challenging subjects in terms of gaining a detailed understanding of the geothermal systems. Silicification processes are subsequent to late-stage alteration after the completion of kaolinization processes, erasing existing hydrothermal mineralogical and geochemical traces and making interpretation difficult. In the early stages involving magmatic–hydrothermal-origin acidic geothermal fluids, the latter comes from the disproportionation of SO2 (+H2O) and H2S oxidation to H2SO4 in hydrothermal environments. In the later stages, due to spatial and temporal changes over time in the chemistry of geothermal fluids, the system comes to have a more alkali–chloride composition, with neutral pH waters frequently saturated with amorphous silica which characteristically precipitate as siliceous sinter deposits containing large amounts of opal-A. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

32 pages, 16140 KB  
Article
Mineralogy and Geochemistry of the Paleocene–Eocene Palana Formation in Western Rajasthan, India: Insights for Sedimentary Paleoenvironmental Conditions and Volcanic Activity
by Mohammed Hail Hakimi, Alok Kumar, Abdullah M. Alqubalee, Alok K. Singh, Mohammed Almobarky, Afikah Rahim, Mohammad Alqudah, Aref Lashin, Khairul Azlan Mustapha and Waqas Naseem
Minerals 2024, 14(2), 126; https://doi.org/10.3390/min14020126 - 24 Jan 2024
Cited by 6 | Viewed by 3730
Abstract
Organic-rich shale rocks from the Paleocene–Eocene Palana Formation in western Rajasthan, India, were systematically investigated based on inorganic and organic geochemistry combined with microscopic examinations to evaluate the sedimentary paleoenvironmental conditions and volcanic activity and their impact on the high organic carbon accumulation. [...] Read more.
Organic-rich shale rocks from the Paleocene–Eocene Palana Formation in western Rajasthan, India, were systematically investigated based on inorganic and organic geochemistry combined with microscopic examinations to evaluate the sedimentary paleoenvironmental conditions and volcanic activity and their impact on the high organic carbon accumulation. The Palana shales are categorized by high organic matter (OM) and sulfur contents, with total values up to 36.23 wt.% and 2.24 wt.%, respectively. The richness of phytoplankton algae (i.e., telalginite and lamalginite) together with redox-sensitive trace elements further suggests a marine setting and anoxic environmental conditions during the Paleocene–Eocene. The significant low oxygen conditions may contribute to enhancing the preservation of organic matter during deposition. The mineralogical and inorganic geochemical indicators demonstrate that the Palana organic-rich shale facies was accumulated in a warm and humid climate with moderate salinity stratification conditions in the water columns, thereby contributing to the high bioproductivity of the phytoplankton algae blooms within the photic zone. The presence of significant contents of zeolite derived from volcanic material together with silica minerals such as apophyllite and tridymite in most of the Palana organic-rich shales indicates a volcanic origin and supports hydrothermal activities during the Paleocene–Eocene period. These volcanic activities in this case are considered the influx of large masses of nutrients into the photic zone due to the ash accumulation, as indicated by the presence of the zeolites in the Palana shales. Therefore, the high bio-productivity associated with effective OM preservation led to the organic carbon accumulation in the Palana Formation during the Paleocene–Eocene. Full article
Show Figures

Figure 1

20 pages, 8934 KB  
Article
The Mechanism of Fluid Exsolution and Sn–W Precipitation: Example from the Hongling Pb–Zn Polymetallic Deposit and the Surrounding Area in Northern China
by Xiaoyu Shan, Yuling Xie, Qingjun Yu, Jiade Chen, Chao Yu, Jiaming Xia and Aixin Liu
Minerals 2023, 13(11), 1357; https://doi.org/10.3390/min13111357 - 24 Oct 2023
Cited by 3 | Viewed by 2386
Abstract
Metal migration and precipitation in hydrothermal fluids are important topics in economic geology. The Hongling polymetallic deposit comprises one of the most important parts of the Huanggangliang–Ganzhuermiao polymetallic metallogenic belt, which is in eastern Inner Mongolia. Except for lead–zinc skarn, minor cassiterite in [...] Read more.
Metal migration and precipitation in hydrothermal fluids are important topics in economic geology. The Hongling polymetallic deposit comprises one of the most important parts of the Huanggangliang–Ganzhuermiao polymetallic metallogenic belt, which is in eastern Inner Mongolia. Except for lead–zinc skarn, minor cassiterite in the skarn and disseminated W–Sn mineralization in granitic rocks have also been found. The dominant Sn–W mineralization is in the northern part of the deposit, occurring as disseminated wolframite and cassiterite in aplite hosted in Mesozoic granite porphyry. The aplite together with pegmatite K-feldspar–quartz comprises vein dikes hosted in the granite porphyry, providing evidence for the transition from melt to fluid. The veins, dikes, and Sn–W mineralization in the aplite provide an opportunity to investigate fluid exsolution and the mechanics of metal precipitation. Based on field observations, the micrographic and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) results of the vein dikes, chronology, and the whole-rock geochemistry of the host rock, together with the fluid inclusion results, this paper discusses the characteristics of the causative magma, the mechanics of fluid exsolution and W–Sn precipitation. Our results show that the causative magma is of highly fractionated A-type granite affinity and has an intrusive age of late Mesozoic (133.3 ± 0.86 Ma). The magmatic evolution during shallow emplacement led to immiscibility between highly volatile, high-silica, and W- and Sn-enriched melts from the parent magma, followed by fluid exsolution from the water-rich melt. The alkaline-rich fluid exsolution led to a change in the redox state of the magma and the chilling of the melt. Fluid boiling occurred soon after the fluid exsolution and was accompanied by the degassing of CO2. The boiling and escape of CO2 from the fluid led to changes in fluid redox and W and Sn precipitation; thus, the W and Sn mineralization are mostly hosted in causative intrusions or peripheral wall rocks, which can be used as indicators for Sn–W exploration in the area. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

13 pages, 2622 KB  
Article
Effect of Hydrothermal Curing on the Hydration and Strength Development of Belite Cement Mortar Containing Industrial Wastes
by Dovile Rubinaite, Tadas Dambrauskas, Kestutis Baltakys and Raimundas Siauciunas
Sustainability 2023, 15(12), 9802; https://doi.org/10.3390/su15129802 - 19 Jun 2023
Cited by 2 | Viewed by 2593
Abstract
This paper describes the impact of hydrothermal conditions on the strength properties and hydration processes of belite cement mortar samples. The belite-rich binder was synthesized by sintering the initial mixture of raw materials (granite cutting waste, the silica-gel waste from AlF3 production, [...] Read more.
This paper describes the impact of hydrothermal conditions on the strength properties and hydration processes of belite cement mortar samples. The belite-rich binder was synthesized by sintering the initial mixture of raw materials (granite cutting waste, the silica-gel waste from AlF3 production, and natural materials) in a high-temperature furnace at a temperature of 1150 °C for 2 h. The prepared clinker consists of larnite, mayenite, srebrodolskite, ye’elimite, and gehlenite. To control hydration kinetics and optimize the hardening of belite cement mortar, the produced clinker was blended with 7.5% of gypsum. The mechanical properties were assessed by curing the standard prisms (following the EN 196-1 standard, cement/sand = 1:3, W/C= 0.67) under water-saturated conditions in a stainless steel autoclave. The curing process was performed in a temperature range of 90 °C to 200 °C at various hydrothermal curing durations (6–48 h). The results indicated that the curing conditions highly influence the compressive strength evolution of belite cement mortar and the formed mineralogy of hydrates. The highest compressive strength value (exceeded 20 MPa) was obtained at 200 °C, i.e., when the main belite cement mineral was entirely hydrated and recrystallized into 1.13 nm tobermorite. The microstructural evolution and the phase assemblage during the hydrothermal curing were determined by X-ray diffraction analysis and differential scanning calorimetry. Full article
(This article belongs to the Special Issue The Production of Environmentally Friendly Cement and Concrete)
Show Figures

Figure 1

18 pages, 2205 KB  
Article
Role of Silica on Clay-Catalyzed Ozonation for Total Mineralization of Bisphenol-A
by Farida Boudissa, Vasilica-Alisa Arus, Eric-Noel Foka-Wembe, Meriem Zekkari, Rachida Ouargli-Saker, David Dewez, René Roy and Abdelkrim Azzouz
Molecules 2023, 28(9), 3825; https://doi.org/10.3390/molecules28093825 - 30 Apr 2023
Cited by 6 | Viewed by 2370
Abstract
Catalytic ozonation for the total mineralization of bisphenol-A (BPA) from aqueous solution was investigated in the presence of various silica-based catalysts such as mesoporous silica, acid-activated bentonite (HMt) and montmorillonite-rich materials (Mt) ion-exchanged with Na+ and Fe2+ cations (NaMt and Fe(II)Mt). [...] Read more.
Catalytic ozonation for the total mineralization of bisphenol-A (BPA) from aqueous solution was investigated in the presence of various silica-based catalysts such as mesoporous silica, acid-activated bentonite (HMt) and montmorillonite-rich materials (Mt) ion-exchanged with Na+ and Fe2+ cations (NaMt and Fe(II)Mt). The effects of the catalyst surface were studied by correlating the hydrophilic character and catalyst dispersion in the aqueous media to the silica content and BPA conversion. To the best of our knowledge, this approach has barely been tackled so far. Acid-activated and iron-free clay catalysts produced complete BPA degradation in short ozonation times. The catalytic activity was found to strongly depend on the hydrophilic character, which, in turn, depends on the Si content. Catalyst interactions with water and BPA appear to promote hydrophobic adsorption in high Si catalysts. These findings are of great importance because they allow tailoring silica-containing catalyst properties for specific features of the waters to be treated. Full article
Show Figures

Figure 1

28 pages, 13676 KB  
Article
Palaeoenvironmental Evolution Based on Elemental Geochemistry of the Wufeng-Longmaxi Shales in Western Hubei, Middle Yangtze, China
by Lulu Xu, Saipeng Huang, Mengdi Sun, Yaru Wen, Wei Chen, Yanling Zhang, Fan Luo and Hao Zhang
Minerals 2023, 13(4), 502; https://doi.org/10.3390/min13040502 - 31 Mar 2023
Cited by 8 | Viewed by 2739
Abstract
The organic-rich shales found in the Wufeng–Longmaxi Formation are typically deposited in oxygen-deficient reducing environments. One of the primary sources of debate revolves around the question of whether the anoxic bottom water found in these shales is either euxinic or ferruginous, and this [...] Read more.
The organic-rich shales found in the Wufeng–Longmaxi Formation are typically deposited in oxygen-deficient reducing environments. One of the primary sources of debate revolves around the question of whether the anoxic bottom water found in these shales is either euxinic or ferruginous, and this matter remains unresolved. Previous studies have mostly focused on the Wufeng–Longmaxi Formation as a whole in order to understand the key factors that control organic matter accumulation (OMA). However, research on OMA for each member, including the Wufeng Formation (WF), the lower Longmaxi Formation (LLM), and the upper Longmaxi Formation (ULM), has been insufficient. This paper aims to investigate the palaeoenvironmental conditions and OMA mechanisms of the Wufeng–Longmaxi shales in western Hubei by integrating data on total organic carbon (TOC) content, mineral compositions, major and trace elements, and iron speciation. The results indicate that the Wufeng–Longmaxi shales were deposited under highly restricted hydrographic conditions, except for relatively open and upwelling conditions in the upper WF. Silica in the upper WF was primarily biogenic origin and not hydrothermal. Ferruginous conditions were the primary redox conditions for organic-rich shales except for minor formations in the lower LLM that were deposited under euxinic conditions. Due to the tectonic uplift caused by the Kwangsian Orogeny in the upper LLM, the palaeoenvironment was characterized by a warmer and wetter climate, high terrigenous influx, oxic conditions, and low productivity as the result of the insufficient nutrients caused by the weak upwelling, leading to the turnover of graptolite biozones from LM5 to LM6. The factors influencing OMA changed vertically. TOC contents have a highly positive correlation with Al content, indicating that terrigenous influx was the main factor affecting OMA in the WF, which significantly differed from patterns found in other regions. This suggests that the sedimentation rate of organic matter was higher than the terrigenous dilution rate during the WF stage. The combination of redox conditions and productivity were the main factors affecting OMA in the LLM, while terrigenous influx was the key factor controlling OMA in the ULM, resulting in the dilution of organic matter. Regions in the eastern Yiling block, which are close to the Qinling Ocean, show better prospects for shale gas exploration. This research will further facilitate the development of shale gas in this area. Full article
Show Figures

Figure 1

14 pages, 3797 KB  
Article
Dopamine-Assisted Modification of Polypropylene Film to Attain Hydrophilic Mineral-Rich Surfaces
by Alenka Ojstršek, Angela Chemelli, Azra Osmić and Selestina Gorgieva
Polymers 2023, 15(4), 902; https://doi.org/10.3390/polym15040902 - 11 Feb 2023
Cited by 9 | Viewed by 3124
Abstract
The presented study focuses on the modification of polypropylene (PP) film with tetraethyl orthosilicate (TEOS) under heterogeneous conditions via polydopamine/polyethylene imine (PDA/PEI) chemistry using a facile dip-coating procedure to attain hydrophilic mineral-rich surfaces. Thus, the resulting PP-based films were further immersed in ion-rich [...] Read more.
The presented study focuses on the modification of polypropylene (PP) film with tetraethyl orthosilicate (TEOS) under heterogeneous conditions via polydopamine/polyethylene imine (PDA/PEI) chemistry using a facile dip-coating procedure to attain hydrophilic mineral-rich surfaces. Thus, the resulting PP-based films were further immersed in ion-rich simulated body fluid (SBF) to deposit Ca-based minerals onto the film’s surfaces efficiently. In addition, the chemical reaction mechanism on PP film was proposed, and mineralisation potential inspected by determination of functional groups of deposits, zeta potential, hydrophilicity and surface morphology/topography using Fourier transform infrared (FTIR) spectroscopy, streaming potential, water contact angle (WCA), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The obtained results show the improved wettability of samples on account of PDA inclusion (WCA was reduced from 103° for pure PP film to 28° for PDA-modified film), as well as the presence of functional groups, due to the PDA/PEI/TEOS surface functionalisation, increased the ability of minerals to nucleate on the PP film’s surface when it was exposed to an SBF medium. Moreover, the higher surface roughness due to the silica coatings influenced the enhanced anchoring and attachment of calcium phosphate (CaP), revealing the potential of such a facile approach to modify the chemically inert PP films, being of particular interest in different fields, including regenerative medicine. Full article
(This article belongs to the Special Issue Feature Papers in Polymer Membranes and Films II)
Show Figures

Graphical abstract

22 pages, 9278 KB  
Article
Development of Novel Microcomposite Materials from Coal Fly Ash and Incense Sticks Ash Waste and Their Application for Remediation of Malachite Green Dye from Aqueous Solutions
by Virendra Kumar Yadav, Bijendra Singh, Amel Gacem, Krishna Kumar Yadav, Govindhan Gnanamoorthy, Taghreed Alsufyani, Hany S. Hussein, Nasser S. Awwad, Rajesh Verma, Gajendra Kumar Inwati, Krishna Swain and Nisha Choudhary
Water 2022, 14(23), 3871; https://doi.org/10.3390/w14233871 - 27 Nov 2022
Cited by 12 | Viewed by 3754
Abstract
Coal fly ash (CFA) is one of the major pollutants around the whole world. At the same time, incense stick ash (ISA) is another waste that is generated in huge amounts in Southeast Asia. Both of these wastes are rich in different types [...] Read more.
Coal fly ash (CFA) is one of the major pollutants around the whole world. At the same time, incense stick ash (ISA) is another waste that is generated in huge amounts in Southeast Asia. Both of these wastes are rich in different types of minerals; for instance, CFA is rich in alumina, silica, and ferrous, while incense sticks ash is rich in calcium and silica. ISA has intermediate to trace amounts of ferrous, alumina, and magnesium. The addition of alkali-rich materials with high Al and Si-containing CFA helps in the formation of zeolites or geopolymers. So, in the current research work, the authors have prepared a CFA: ISA mixture in the ratio of 1:1, followed by mixing them with NaOH, CaOH2, and KOH in a dry state in a crucible. Further, all these mixtures were then calcined at 600 °C for six hours in a muffle furnace. Further, the developed products were analyzed by various sophisticated instruments for detailed information. Finally, the developed material’s potential was assessed for the remediation of malachite green from the aqueous solution by batch adsorption study. The developed adsorbents efficiently removed the dye from the aqueous solutions within one hour. The kinetic study revealed that the dye removal followed a pseudo-second-order reaction. Finally, the developed material was also assessed for its suitability as an adsorbent by observing the effect of leaching of potassium, aluminum, and silica from the adsorbent surface into the water systems. Such approaches will solve the problem of solid waste disposal arising from both the ashes. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 11449 KB  
Article
Assessment of Alkali–Silica Reaction Potential in Aggregates from Iran and Australia Using Thin-Section Petrography and Expansion Testing
by Pezhman Kazemi, Mohammad Reza Nikudel, Mashalah Khamehchiyan, Paritosh Giri, Shima Taheri and Simon Martin Clark
Materials 2022, 15(12), 4289; https://doi.org/10.3390/ma15124289 - 17 Jun 2022
Cited by 6 | Viewed by 3535
Abstract
The alkali–silica reaction can shorten concrete life due to expansive pressure build-up caused by reaction by-products, resulting in cracking. Understanding the role of the aggregate, as the main reactive component, is essential for understanding the underlying mechanisms of the alkali–silica reaction and thereby [...] Read more.
The alkali–silica reaction can shorten concrete life due to expansive pressure build-up caused by reaction by-products, resulting in cracking. Understanding the role of the aggregate, as the main reactive component, is essential for understanding the underlying mechanisms of the alkali–silica reaction and thereby reducing, or even preventing, any potential damage. The present study aims to investigate the role of petrographic studies along with accelerated tests in predicting and determining the potential reactivity of aggregates, including granite, rhyodacite, limestone, and dolomite, with different geological characteristics in concrete. This study was performed under accelerated conditions in accordance with the ASTM C1260 and ASTM C1293 test methods. The extent of the alkali–silica reaction was assessed using a range of microanalysis techniques including optical microscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray powder diffraction. The results showed that a calcium-rich aggregate with only a small quantity of siliceous component but with a higher porosity and water adsorption rate can lead to degradation due to the alkali–silica reaction, while dolomite aggregate, which is commonly considered a reactive aggregate, showed no considerable expansion during the conducted tests. The results also showed that rhyodacite samples, due to their glassy texture, the existence of strained quartz and quartz with undulatory extinction, as well as the presence of weathering minerals, have a higher alkali-reactivity potential than granite samples. Full article
Show Figures

Figure 1

26 pages, 5555 KB  
Article
The Origin of Synchysite-(Ce) and Sources of Rare Earth Elements in the Rožná Uranium Deposit, Czech Republic
by Bohdan Kříbek, Ilja Knésl, Petr Dobeš, František Veselovský, Přemysl Pořádek, Radek Škoda, Renata Čopjaková, Jaromír Leichmann and Filip Košek
Minerals 2022, 12(6), 690; https://doi.org/10.3390/min12060690 - 29 May 2022
Cited by 5 | Viewed by 3875
Abstract
Synchysite was identified in the Rožná uranium deposit in a quartz–carbonate–sulfide vein, which is a part of the late (post-uranium and, post-Variscan) stage of the development of the hydrothermal system. The synchysite forms needles or lamellae, which are almost exclusively bound to the [...] Read more.
Synchysite was identified in the Rožná uranium deposit in a quartz–carbonate–sulfide vein, which is a part of the late (post-uranium and, post-Variscan) stage of the development of the hydrothermal system. The synchysite forms needles or lamellae, which are almost exclusively bound to the quartz filling of the veins. The structure of the quartz vein-filling, i.e., the preserved tubular syneresis crack pattern, Liesegang bands formed by hematite, chaotic grain size distribution of quartz grains, and ribbons of fibrous SiO2 grains, indicate that the synchysite crystallized in a silica gel. Its formation may be explained by the reaction of hydrothermal acid fluids rich in Fe2+ and rare earth elements (REEs) with alkaline Ca2+ HCO3 and F-rich fluids expelled from the gel during syneresis, or by its ageing. The subsequent recrystallization of the gel to form euhedral quartz grains was accompanied by the deformation of previously formed Liesegang rings, and the development of quartz rosettes. The study of fluid inclusions indicated that the silica gel originated at a very low temperature. The temperatures of the homogenization of two-phase inclusions in carbonate and quartz vein-filling varied between 38 and 74 °C, and the salinity ranged between 4 and 10 wt.% NaCl equiv. The δ13C carbonate values (from −4.65 to −5.21‰, PDB) indicate the deep-seated source of CO2, and δ18O values (from 14.76 to 18.22‰, SMOW) show that the source of the hydrothermal fluids was mainly surface water, with a possible admixture of fossil saline brines. The main sources of REEs are thought to have predominantly been uranium minerals (coffinitized uraninite and coffinite) that form a part of the breccia fragments embedded in the vein filling. The results illustrate the significant mobility of REEs in the late, low-temperature hydrothermal system, and they indicate the multiple remobilizations of REEs in the uranium deposits in general. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

19 pages, 4056 KB  
Article
Depositional Paleo-Environments of Lower Cambrian Qiongzhusi Formation in the Western Middle Yangtze Block and Its Controlling Effect on the Organic Matter Enrichment
by Zhengkai Lan and Junjun Shen
Energies 2022, 15(10), 3761; https://doi.org/10.3390/en15103761 - 20 May 2022
Cited by 7 | Viewed by 2226
Abstract
No systematic comparative study has been conducted on the factors controlling organic matter enrichment in the different depositional environments of the Lower Cambrian Qiongzhusi Formation in the western Middle Yangtze Block, leading to a large discrepancy in our understanding. Based on organic geochemical [...] Read more.
No systematic comparative study has been conducted on the factors controlling organic matter enrichment in the different depositional environments of the Lower Cambrian Qiongzhusi Formation in the western Middle Yangtze Block, leading to a large discrepancy in our understanding. Based on organic geochemical and elemental analyses of core, outcrop, rock, and mineral samples from the slope, deep-water shelf, and shallow-water shelf, in this study, comparative analysis of the organic matter content, sedimentological characteristics, and depositional paleoenvironments of the Lower Cambrian Qiongzhusi Formation in the western Middle Yangtze Block was conducted, and the main controlling factors and models of the organic matter enrichment were investigated. The results revealed that the organic matter enrichment in the Qiongzhusi Formation was jointly controlled by redox conditions, water restriction, upwelling currents, terrigenous inputs, and paleo-productivity, but the main factors controlling the enrichment during the different periods were significantly different. (1) During the deposition of the Qiong 1 Member, the extensional rifting was strong, and the sea level was always high. The low degree of terrigenous dilution and anoxic conditions favored organic matter preservation. In this period, the upwelling currents were the main factor controlling organic matter enrichment. The paleo-productivity decreased as the intensity of the upwelling currents gradually weakened from the slope to the shelf, leading to a decrease in the total organic carbon (TOC) content and thereby a gradual decrease in the biogenic silica content of the shale. (2) During the deposition of the Qiong 2 Member, the extensional rifting weakened, and the sea level continued to drop. The upwelling currents, terrigenous input, and redox conditions were all important factors controlling the organic matter enrichment in the region. From the slope to the shelves, the conditions favorable for organic matter enrichment gradually worsened, and the TOC content gradually decreased, with the lithofacies gradually transitioning from biogenic siliceous shale to clayey shale or clayey-calcareous shale. (3) During the deposition of the Qiong 3 Member, the Yangzi Platform underwent a filling and leveling-up process, and the redox conditions played a major role in controlling the organic matter enrichment. The entire region was dominated by an oxygen-rich environment, and the conditions were no longer favorable for organic matter preservation, leading to a low average TOC content. Overall, the spatial variability of the TOC content was closely associated with changes in the depositional paleoenvironment caused by sea-level changes. Full article
Show Figures

Figure 1

Back to TopTop