Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = sialidase inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8344 KB  
Article
Discovery of Influenza Neuraminidase Inhibitors: Structure-Based Virtual Screening and Biological Evaluation of Novel Chemotypes
by Rosaria Gitto, Lisa Lombardo, Angela Ravenda, Francesco Broccolo, Antonio Mastino, Laura De Luca and Francesca Marino-Merlo
Molecules 2025, 30(23), 4636; https://doi.org/10.3390/molecules30234636 - 2 Dec 2025
Viewed by 840
Abstract
Neuraminidase (NA) decorates the surface of the influenza virus, exerting a sialidase activity that enables the viral particle to be released in the host cell. Numerous sialic-based antiviral agents competitively bind to the NA cavity and are marketed worldwide for the treatment of [...] Read more.
Neuraminidase (NA) decorates the surface of the influenza virus, exerting a sialidase activity that enables the viral particle to be released in the host cell. Numerous sialic-based antiviral agents competitively bind to the NA cavity and are marketed worldwide for the treatment of Influenza A infection. We designed and validated a structure-based pharmacophore model for influenza neuraminidase (NA), which guided a virtual screening campaign against an in-house library of compounds already available for testing. This fast and cost-effective in silico strategy resulted in the identification of seven candidates possessing indole or isoquinoline chemical core. In vitro assays confirmed their favorable cytotoxicity profiles and identified only one, the 1-(1H-indol-3-ylcarbonyl)-3-piperidinecarboxylic acid (1), with reproducible inhibitory activity toward NA at non-cytotoxic concentrations. This work suggested a validated workflow for the discovery of novel NA inhibitors and highlighted an indole-based hit compound as a starting point for further optimization. Full article
Show Figures

Graphical abstract

25 pages, 1098 KB  
Review
Sialidases as Potential Therapeutic Targets for Treatment of a Number of Human Diseases
by Cara-Lynne Schengrund
Int. J. Mol. Sci. 2025, 26(17), 8733; https://doi.org/10.3390/ijms26178733 - 8 Sep 2025
Viewed by 1672
Abstract
Four human sialidases (hNEUs, E.C 3.2.1.18) have been identified. Each is an exosialidase identified as either NEU1, NEU2, NEU3, or NEU4. They exhibit differences in structure, subcellular distribution, substrate specificity, and the diseases with which they are associated. Similarly, microbial sialidases (NAs) may [...] Read more.
Four human sialidases (hNEUs, E.C 3.2.1.18) have been identified. Each is an exosialidase identified as either NEU1, NEU2, NEU3, or NEU4. They exhibit differences in structure, subcellular distribution, substrate specificity, and the diseases with which they are associated. Similarly, microbial sialidases (NAs) may catalyze the release of sialyl residues from the same sialoglycoconjugates as hNEUs, even though they have low sequence homology with human NEUs. Use of sequence homology, plus the crystalline structure of human NEU2, has provided researchers with the basis for developing inhibitors that may differentiate between them. While microbial-induced diseases that use sialidase to complete their infectious cycle have been the driving force behind interrogation of possible NA inhibitors, errors affecting expression of functional hNEUs and their correlation with clinical problems has led to study of the sialidases per se. Information gained about sialidase structure, function, mechanism of action, mutations affecting expression, and their role(s) in disease, has provided the information about the different sialidases needed for development of specific therapies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

35 pages, 2933 KB  
Review
NEU1-Mediated Extracellular Vesicle Glycosylation in Alzheimer’s Disease: Mechanistic Insights into Intercellular Communication and Therapeutic Targeting
by Mohd Adnan, Arif Jamal Siddiqui, Fevzi Bardakci, Malvi Surti, Riadh Badraoui and Mitesh Patel
Pharmaceuticals 2025, 18(6), 921; https://doi.org/10.3390/ph18060921 - 19 Jun 2025
Cited by 2 | Viewed by 2258
Abstract
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is marked by the pathological accumulation of amyloid-β plaques and tau neurofibrillary tangles, both of which disrupt neuronal communication and function. Emerging evidence highlights the role of extracellular vesicles (EVs) as key mediators of intercellular communication, [...] Read more.
Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is marked by the pathological accumulation of amyloid-β plaques and tau neurofibrillary tangles, both of which disrupt neuronal communication and function. Emerging evidence highlights the role of extracellular vesicles (EVs) as key mediators of intercellular communication, particularly in the propagation of pathological proteins in AD. Among the regulatory factors influencing EV composition and function, neuraminidase 1 (NEU1), a lysosomal sialidase responsible for desialylating glycoproteins has gained attention for its involvement in EV glycosylation. This review explores the role of NEU1 in modulating EV glycosylation, with particular emphasis on its influence on immune modulation and intracellular trafficking pathways and the subsequent impact on intercellular signaling and neurodegenerative progression. Altered NEU1 activity has been associated with abnormal glycan profiles on EVs, which may facilitate the enhanced spread of amyloid-β and tau proteins across neural networks. By regulating glycosylation, NEU1 influences EV stability, targeting and uptake by recipient cells, primarily through the desialylation of surface glycoproteins and glycolipids, which alters the EV charge, recognition and receptor-mediated interactions. Targeting NEU1 offers a promising therapeutic avenue to restore EV homeostasis and reduces pathological protein dissemination. However, challenges persist in developing selective NEU1 inhibitors and effective delivery methods to the brain. Furthermore, altered EV glycosylation patterns may serve as potential biomarkers for early AD diagnosis and monitoring. Overall, this review highlights the importance of NEU1 in AD pathogenesis and advocates for deeper investigation into its regulatory functions, with the aim of advancing therapeutic strategies and biomarker development for AD and related neurological disabilities. Full article
(This article belongs to the Special Issue Pharmacotherapy for Alzheimer’s Disease)
Show Figures

Graphical abstract

16 pages, 1517 KB  
Review
Glycoscience in Advancing PD-1/PD-L1-Axis-Targeted Tumor Immunotherapy
by Qiyue Sun and Senlian Hong
Int. J. Mol. Sci. 2025, 26(3), 1238; https://doi.org/10.3390/ijms26031238 - 31 Jan 2025
Cited by 6 | Viewed by 6029
Abstract
Immune checkpoint blockade therapy, represented by anti-PD-1/PD-L1 monoclonal antibodies, has significantly changed the immunotherapy landscape. However, the treatment is still limited by unsatisfactory response rates, immune-related adverse effects, and drug resistance. Current studies have established that glycosylation, a common post-translational modification, is crucial [...] Read more.
Immune checkpoint blockade therapy, represented by anti-PD-1/PD-L1 monoclonal antibodies, has significantly changed the immunotherapy landscape. However, the treatment is still limited by unsatisfactory response rates, immune-related adverse effects, and drug resistance. Current studies have established that glycosylation, a common post-translational modification, is crucial in promoting cancer progression and immune invasion. Targeting aberrant glycosylation in cancers presents precision medicine regimens for monitoring cancer progression and developing personalized medicine. Notably, the immune checkpoints PD-1 and PD-L1 are highly glycosylated, which affects PD-1/PD-L1 interaction and the binding of anti-PD-1/PD-L1 monoclonal antibodies. Recent achievements in glycoscience to enhance patient outcomes, referred to as glycotherapy, have underscored their high potency in advancing PD-1/PD-L1 blockade therapies, i.e., glycoengineered antibodies with improved binding toward PD-1/PD-L1, pharmaceutic inhibitors for core fucosylation and sialylation, and synergistic treatment with the antibody–sialidase conjugate. This review briefly introduces the PD-1/PD-L1 axis and glycosylation and highlights the fundamental and applied advances in glycoscience that improve PD-1/PD-L1 immunoblockade therapies. Full article
(This article belongs to the Special Issue The Role of Glycans in Immune Regulation)
Show Figures

Figure 1

16 pages, 6097 KB  
Article
Identification of Potential Trypanosoma cruzi Trans-Sialidase Inhibitors by Computational Drug Repositioning Approaches
by Miguel A. Uc-Chuc, Nohemi Cigarroa-Toledo, Karla Y. Acosta-Viana, José I. Chan-Pérez, Juan C. Pineda-Cortes and Hernán de J. Villanueva-Alonzo
Sci. Pharm. 2024, 92(3), 40; https://doi.org/10.3390/scipharm92030040 - 27 Jul 2024
Cited by 1 | Viewed by 2592
Abstract
Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi (T. cruzi), represents a worldwide public health issue. To date, there is no efficient treatment to combat this pathology, and the only drugs available are usually toxic to the patient. Through the [...] Read more.
Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi (T. cruzi), represents a worldwide public health issue. To date, there is no efficient treatment to combat this pathology, and the only drugs available are usually toxic to the patient. Through the enzyme trans-salidase, the parasite invades, infects, and multiplies intracellularly in the host cell. This protein has been considered an attractive target for developing or searching for compounds with potential trypanocidal activity. In this study, an in silico analysis was performed using a Food and Drug Administration-approved computational drug repositioning approach to identify compounds with anti-Chagas potential against two trans-sialidase proteins. Those compounds with potential inhibition were analyzed and selected through a molecular docking-based virtual screening. Forty-nine compounds were identified, of which forty-five are available on the market, and the rest were evaluated in silico. Our predicted results follow that these compounds are safe for human use and could be potential anti-trans-sialidase agents. Full article
Show Figures

Figure 1

22 pages, 8423 KB  
Article
Artificial and Natural Sweeteners Biased T1R2/T1R3 Taste Receptors Transactivate Glycosylated Receptors on Cancer Cells to Induce Epithelial–Mesenchymal Transition of Metastatic Phenotype
by Elizabeth Skapinker, Rashelle Aldbai, Emilyn Aucoin, Elizabeth Clarke, Mira Clark, Daniella Ghokasian, Haley Kombargi, Merlin J. Abraham, Yunfan Li, David A. Bunsick, Leili Baghaie and Myron R. Szewczuk
Nutrients 2024, 16(12), 1840; https://doi.org/10.3390/nu16121840 - 12 Jun 2024
Cited by 7 | Viewed by 5457
Abstract
Understanding the role of biased taste T1R2/T1R3 G protein-coupled receptors (GPCR) agonists on glycosylated receptor signaling may provide insights into the opposing effects mediated by artificial and natural sweeteners, particularly in cancer and metastasis. Sweetener-taste GPCRs can be activated by several active states [...] Read more.
Understanding the role of biased taste T1R2/T1R3 G protein-coupled receptors (GPCR) agonists on glycosylated receptor signaling may provide insights into the opposing effects mediated by artificial and natural sweeteners, particularly in cancer and metastasis. Sweetener-taste GPCRs can be activated by several active states involving either biased agonism, functional selectivity, or ligand-directed signaling. However, there are increasing arrays of sweetener ligands with different degrees of allosteric biased modulation that can vary dramatically in binding- and signaling-specific manners. Here, emerging evidence proposes the involvement of taste GPCRs in a biased GPCR signaling crosstalk involving matrix metalloproteinase-9 (MMP-9) and neuraminidase-1 (Neu-1) activating glycosylated receptors by modifying sialic acids. The findings revealed that most natural and artificial sweeteners significantly activate Neu-1 sialidase in a dose-dependent fashion in RAW-Blue and PANC-1 cells. To confirm this biased GPCR signaling crosstalk, BIM-23127 (neuromedin B receptor inhibitor, MMP-9i (specific MMP-9 inhibitor), and oseltamivir phosphate (specific Neu-1 inhibitor) significantly block sweetener agonist-induced Neu-1 sialidase activity. To assess the effect of artificial and natural sweeteners on the key survival pathways critical for pancreatic cancer progression, we analyzed the expression of epithelial-mesenchymal markers, CD24, ADLH-1, E-cadherin, and N-cadherin in PANC-1 cells, and assess the cellular migration invasiveness in a scratch wound closure assay, and the tunneling nanotubes (TNTs) in staging the migratory intercellular communication. The artificial and natural sweeteners induced metastatic phenotype of PANC-1 pancreatic cancer cells to promote migratory intercellular communication and invasion. The sweeteners also induced the downstream NFκB activation using the secretory alkaline phosphatase (SEAP) assay. These findings elucidate a novel taste T1R2/T1R3 GPCR functional selectivity of a signaling platform in which sweeteners activate downstream signaling, contributing to tumorigenesis and metastasis via a proposed NFκB-induced epigenetic reprogramming modeling. Full article
(This article belongs to the Special Issue Effects of Sugars and Sugar Alternatives on Human Health and Disease)
Show Figures

Figure 1

22 pages, 9581 KB  
Article
Functional Selectivity of Cannabinoid Type 1 G Protein-Coupled Receptor Agonists in Transactivating Glycosylated Receptors on Cancer Cells to Induce Epithelial–Mesenchymal Transition Metastatic Phenotype
by David A. Bunsick, Jenna Matsukubo, Rashelle Aldbai, Leili Baghaie and Myron R. Szewczuk
Cells 2024, 13(6), 480; https://doi.org/10.3390/cells13060480 - 8 Mar 2024
Cited by 5 | Viewed by 3253
Abstract
Understanding the role of biased G protein-coupled receptor (GPCR) agonism in receptor signaling may provide novel insights into the opposing effects mediated by cannabinoids, particularly in cancer and cancer metastasis. GPCRs can have more than one active state, a phenomenon called either ‘biased [...] Read more.
Understanding the role of biased G protein-coupled receptor (GPCR) agonism in receptor signaling may provide novel insights into the opposing effects mediated by cannabinoids, particularly in cancer and cancer metastasis. GPCRs can have more than one active state, a phenomenon called either ‘biased agonism’, ‘functional selectivity’, or ‘ligand-directed signaling’. However, there are increasing arrays of cannabinoid allosteric ligands with different degrees of modulation, called ‘biased modulation’, that can vary dramatically in a probe- and pathway-specific manner, not from simple differences in orthosteric ligand efficacy or stimulus-response coupling. Here, emerging evidence proposes the involvement of CB1 GPCRs in a novel biased GPCR signaling paradigm involving the crosstalk between neuraminidase-1 (Neu-1) and matrix metalloproteinase-9 (MMP-9) in the activation of glycosylated receptors through the modification of the receptor glycosylation state. The study findings highlighted the role of CB1 agonists AM-404, Aravnil, and Olvanil in significantly inducing Neu-1 sialidase activity in a dose-dependent fashion in RAW-Blue, PANC-1, and SW-620 cells. This approach was further substantiated by findings that the neuromedin B receptor inhibitor, BIM-23127, MMP-9 inhibitor, MMP9i, and Neu-1 inhibitor, oseltamivir phosphate, could specifically block CB1 agonist-induced Neu-1 sialidase activity. Additionally, we found that CB1 receptors exist in a multimeric receptor complex with Neu-1 in naïve, unstimulated RAW-Blue, PANC-1, and SW-620 cells. This complex implies a molecular link that regulates the interaction and signaling mechanism among these molecules present on the cell surface. Moreover, the study results demonstrate that CB1 agonists induce NFκB-dependent secretory alkaline phosphatase (SEAP) activity in influencing the expression of epithelial–mesenchymal markers, E-cadherin, and vimentin in SW-620 cells, albeit the impact on E-cadherin expression is less pronounced compared to vimentin. In essence, this innovative research begins to elucidate an entirely new molecular mechanism involving a GPCR signaling paradigm in which cannabinoids, as epigenetic stimuli, may traverse to influence gene expression and contribute to cancer and cancer metastasis. Full article
Show Figures

Figure 1

10 pages, 965 KB  
Review
Inhibitors of the Sialidase NEU3 as Potential Therapeutics for Fibrosis
by Tejas R. Karhadkar, Wensheng Chen, Darrell Pilling and Richard H. Gomer
Int. J. Mol. Sci. 2023, 24(1), 239; https://doi.org/10.3390/ijms24010239 - 23 Dec 2022
Cited by 9 | Viewed by 3629
Abstract
Fibrosing diseases are a major medical problem, and are associated with more deaths per year than cancer in the US. Sialidases are enzymes that remove the sugar sialic acid from glycoconjugates. In this review, we describe efforts to inhibit fibrosis by inhibiting sialidases, [...] Read more.
Fibrosing diseases are a major medical problem, and are associated with more deaths per year than cancer in the US. Sialidases are enzymes that remove the sugar sialic acid from glycoconjugates. In this review, we describe efforts to inhibit fibrosis by inhibiting sialidases, and describe the following rationale for considering sialidases to be a potential target to inhibit fibrosis. First, sialidases are upregulated in fibrotic lesions in humans and in a mouse model of pulmonary fibrosis. Second, the extracellular sialidase NEU3 appears to be both necessary and sufficient for pulmonary fibrosis in mice. Third, there exist at least three mechanistic ways in which NEU3 potentiates fibrosis, with two of them being positive feedback loops where a profibrotic cytokine upregulates NEU3, and the upregulated NEU3 then upregulates the profibrotic cytokine. Fourth, a variety of NEU3 inhibitors block pulmonary fibrosis in a mouse model. Finally, the high sialidase levels in a fibrotic lesion cause an easily observed desialylation of serum proteins, and in a mouse model, sialidase inhibitors that stop fibrosis reverse the serum protein desialylation. This then indicates that serum protein sialylation is a potential surrogate biomarker for the effect of sialidase inhibitors, which would facilitate clinical trials to test the exciting possibility that sialidase inhibitors could be used as therapeutics for fibrosis. Full article
Show Figures

Figure 1

12 pages, 1490 KB  
Article
A Possible Inhibitory Role of Sialic Acid on MUC1 in Peritoneal Dissemination of Clear Cell-Type Ovarian Cancer Cells
by Yutaka Tamada, Hiroyuki Nomura, Daisuke Aoki and Tatsuro Irimura
Molecules 2021, 26(19), 5962; https://doi.org/10.3390/molecules26195962 - 1 Oct 2021
Cited by 9 | Viewed by 2878
Abstract
The role of sialic acids on MUC1 in peritoneal dissemination of ovarian cancer cells was investigated. A human ovarian carcinoma cell line, ES-2, was transfected with full-length MUC1 containing 22 or 42 tandem repeats. These transfectants were less adherent to monolayers of patient-derived [...] Read more.
The role of sialic acids on MUC1 in peritoneal dissemination of ovarian cancer cells was investigated. A human ovarian carcinoma cell line, ES-2, was transfected with full-length MUC1 containing 22 or 42 tandem repeats. These transfectants were less adherent to monolayers of patient-derived mesothelial cells than ES-2/mock transfectants. When these cells were inoculated into the abdominal cavity of female nude mice, mice that had received the transfectants showed better survival. When the transfectants were mixed with sialidase and injected, the survival was poorer, whereas when they were mixed with N-acetyl-2,3-dehydro-2-deoxyneuraminic acid, a sialidase inhibitor, the survival was significantly prolonged. These behaviors, concerned with peritoneal implantation and dissemination observed in vitro and in vivo, were dependent on the expression of MUC1. Therefore, sialic acid linked to MUC1 in the form, at least in part, of sialyl-T, as shown to be recognized by monoclonal antibody MY.1E12, is responsible for the suppression of adhesion of these cells to mesothelial cells and the suppression of peritoneal implantation and dissemination. Full article
(This article belongs to the Special Issue New Insights into Protein Glycosylation)
Show Figures

Figure 1

15 pages, 1866 KB  
Article
Identification and Evaluation of New Potential Inhibitors of Human Neuraminidase 1 Extracted from Olyra latifolia L.: A Preliminary Study
by Camille Albrecht, Zachée Louis Evariste Akissi, Philomène Akoua Yao-Kouassi, Abdulmagid Alabdul Magid, Pascal Maurice, Laurent Duca, Laurence Voutquenne-Nazabadioko and Amar Bennasroune
Biomedicines 2021, 9(4), 411; https://doi.org/10.3390/biomedicines9040411 - 11 Apr 2021
Cited by 9 | Viewed by 3285
Abstract
Sialidases, also called neuraminidases, are involved in several human pathologies such as neurodegenerative disorders, cancers, as well as infectious and cardiovascular diseases. Several studies have shown that neuraminidases, such as neuraminidase 1 (NEU-1), may be promising pharmacological targets. Therefore, the discovery of new [...] Read more.
Sialidases, also called neuraminidases, are involved in several human pathologies such as neurodegenerative disorders, cancers, as well as infectious and cardiovascular diseases. Several studies have shown that neuraminidases, such as neuraminidase 1 (NEU-1), may be promising pharmacological targets. Therefore, the discovery of new selective inhibitors of NEU-1 are necessary to better understand the biological functions of this sialidase. In the present study, we describe the isolation and characterization of nine known compounds from Olyra latifolia L. leaves. This plant, known to have several therapeutic properties, belongs to the family of Poaceae and is found in the neotropics and in tropical Africa and Madagascar. Among the purified compounds, feddeiketone B, 2,3-dihydroxy-1-(4-hydroxy-3,5-diméthoxyphényl)-l-propanone, and syringylglycerol were shown to present structural analogy with DANA, and their effects on membrane NEU-1 sialidase activity were evaluated. Our results show that they possess inhibitory effects against NEU-1-mediated sialidase activity at the plasma membrane. In conclusion, we identified new natural bioactive molecules extracted from Olyra latifolia as inhibitors of human NEU-1 of strong interest to elucidate the biological functions of this sialidase and to target this protein involved in several pathophysiological contexts. Full article
(This article belongs to the Special Issue Interfacial Phenomena on Biomedicines)
Show Figures

Figure 1

13 pages, 1311 KB  
Review
The Function of Sialidase Revealed by Sialidase Activity Imaging Probe
by Akira Minami, Yuuki Kurebayashi, Tadanobu Takahashi, Tadamune Otsubo, Kiyoshi Ikeda and Takashi Suzuki
Int. J. Mol. Sci. 2021, 22(6), 3187; https://doi.org/10.3390/ijms22063187 - 20 Mar 2021
Cited by 12 | Viewed by 6452
Abstract
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme [...] Read more.
Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues. Sialidase activity in the rat hippocampus detected with BTP3-Neu5Ac increases rapidly by neuronal depolarization. It is presumed that an increased sialidase activity in conjunction with neural excitation is involved in the formation of the neural circuit for memory. Since sialidase inhibits the exocytosis of the excitatory neurotransmitter glutamate, the increased sialidase activity by neural excitation might play a role in the negative feedback mechanism against the glutamate release. Mammalian tissues other than the brain have also been stained with BTP3-Neu5Ac. On the basis of information on the sialidase activity imaging in the pancreas, it was found that sialidase inhibitor can be used as an anti-diabetic drug that can avoid hypoglycemia, a serious side effect of insulin secretagogues. In this review, we discuss the role of sialidase in the brain as well as in the pancreas and skin, as revealed by using a sialidase activity imaging probe. We also present the detection of influenza virus with BTP3-Neu5Ac and modification of BTP3-Neu5Ac. Full article
(This article belongs to the Special Issue Function and Expression of Neural Glycans)
Show Figures

Figure 1

10 pages, 1301 KB  
Article
Targeting Human Parainfluenza Virus Type-1 Haemagglutinin-Neuraminidase with Mechanism-Based Inhibitors
by Tanguy Eveno, Larissa Dirr, Ibrahim M. El-Deeb, Patrice Guillon and Mark von Itzstein
Viruses 2019, 11(5), 417; https://doi.org/10.3390/v11050417 - 5 May 2019
Cited by 7 | Viewed by 4619
Abstract
Human parainfluenza virus (hPIV) infections are a major cause of respiratory tract illnesses in children, with currently no available vaccine or drug treatment. The surface glycoprotein haemagglutinin-neuraminidase (HN) of hPIV has a central role in the viral life cycle, including neuraminic acid-recognising receptor [...] Read more.
Human parainfluenza virus (hPIV) infections are a major cause of respiratory tract illnesses in children, with currently no available vaccine or drug treatment. The surface glycoprotein haemagglutinin-neuraminidase (HN) of hPIV has a central role in the viral life cycle, including neuraminic acid-recognising receptor binding activity (early stage) and receptor-destroying activity (late stage), which makes it an ideal target for antiviral drug disovery. In this study, we showed that targeting the catalytic mechanism of hPIV-1 HN by a 2α,3β-difluoro derivative of the known hPIV-1 inhibitor, BCX 2798, produced more potent inhibition of the neuraminidase function which is reflected by a stronger inhibition of viral replication. The difluorosialic acid-based inhibitor efficiently blocked the neuraminidase activity of HN for a prolonged period of time relative to its unsaturated neuraminic acid (Neu2en) analogue, BCX 2798 and produced a more efficient inhibition of the HN neuraminidase activity as well as in vitro viral replication. This prolonged inhibition of the hPIV-1 HN protein suggests covalent binding of the inhibitor to a key catalytic amino acid, making this compound a new lead for a novel class of more potent hPIV-1 mechanism-based inhibitors. Full article
(This article belongs to the Special Issue The Glycobiology of Viral Infections)
Show Figures

Figure 1

17 pages, 4365 KB  
Article
Benzoic Acid Derivatives with Trypanocidal Activity: Enzymatic Analysis and Molecular Docking Studies toward Trans-Sialidase
by Muhammad Kashif, Antonio Moreno-Herrera, Juan Carlos Villalobos-Rocha, Benjamín Nogueda-Torres, Jaime Pérez-Villanueva, Karen Rodríguez-Villar, José Lius Medina-Franco, Peterson De Andrade, Ivone Carvalho and Gildardo Rivera
Molecules 2017, 22(11), 1863; https://doi.org/10.3390/molecules22111863 - 30 Oct 2017
Cited by 20 | Viewed by 8842
Abstract
Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic [...] Read more.
Chagas, or American trypanosomiasis, remains an important public health problem in developing countries. In the last decade, trans-sialidase has become a pharmacological target for new anti-Chagas drugs. In this work, the aims were to design and find a new series of benzoic acid derivatives as trans-sialidase (TS) inhibitors and anti-trypanosomal agents. Three compounds (14, 18, and 19) sharing a para-aminobenzoic acid moiety showed more potent trypanocidal activity than the commercially available drugs nifurtimox and benznidazole in both strains: the lysis concentration of 50% of the population (LC50) was <0.15 µM on the NINOA strain, and LC50 < 0.22 µM on the INC-5 strain. Additionally, compound 18 showed a moderate inhibition (47%) on the trans-sialidase enzyme and a binding model similar to DANA (pattern A). Full article
(This article belongs to the Special Issue Emerging Drug Discovery Approaches against Infectious Diseases)
Show Figures

Graphical abstract

15 pages, 1671 KB  
Review
Clostridium perfringens Sialidases: Potential Contributors to Intestinal Pathogenesis and Therapeutic Targets
by Jihong Li, Francisco A. Uzal and Bruce A. McClane
Toxins 2016, 8(11), 341; https://doi.org/10.3390/toxins8110341 - 19 Nov 2016
Cited by 55 | Viewed by 13768
Abstract
Clostridium perfringens is a major cause of histotoxic and intestinal infections of humans and other animals. This Gram-positive anaerobic bacterium can produce up to three sialidases named NanH, NanI, and NanJ. The role of sialidases in histotoxic infections, such as gas gangrene (clostridial [...] Read more.
Clostridium perfringens is a major cause of histotoxic and intestinal infections of humans and other animals. This Gram-positive anaerobic bacterium can produce up to three sialidases named NanH, NanI, and NanJ. The role of sialidases in histotoxic infections, such as gas gangrene (clostridial myonecrosis), remains equivocal. However, recent in vitro studies suggest that NanI may contribute to intestinal virulence by upregulating production of some toxins associated with intestinal infection, increasing the binding and activity of some of those toxins, and enhancing adherence of C. perfringens to intestinal cells. Possible contributions of NanI to intestinal colonization are further supported by observations that the C. perfringens strains causing acute food poisoning in humans often lack the nanI gene, while other C. perfringens strains causing chronic intestinal infections in humans usually carry a nanI gene. Certain sialidase inhibitors have been shown to block NanI activity and reduce C. perfringens adherence to cultured enterocyte-like cells, opening the possibility that sialidase inhibitors could be useful therapeutics against C. perfringens intestinal infections. These initial in vitro observations should be tested for their in vivo significance using animal models of intestinal infections. Full article
(This article belongs to the Special Issue Novel Pharmacological Inhibitors for Bacterial Protein Toxins)
Show Figures

Figure 1

Back to TopTop