Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (198)

Search Parameters:
Keywords = shuttle radar topography mission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 23317 KiB  
Article
Land Use and Land Cover (LULC) Mapping Accuracy Using Single-Date Sentinel-2 MSI Imagery with Random Forest and Classification and Regression Tree Classifiers
by Sercan Gülci, Michael Wing and Abdullah Emin Akay
Geomatics 2025, 5(3), 29; https://doi.org/10.3390/geomatics5030029 - 1 Jul 2025
Viewed by 592
Abstract
The use of Google Earth Engine (GEE), a cloud-based computing platform, in spatio-temporal evaluation studies has increased rapidly in natural sciences such as forestry. In this study, Sentinel-2 satellite imagery and Shuttle Radar Topography Mission (SRTM) elevation data and image classification algorithms based [...] Read more.
The use of Google Earth Engine (GEE), a cloud-based computing platform, in spatio-temporal evaluation studies has increased rapidly in natural sciences such as forestry. In this study, Sentinel-2 satellite imagery and Shuttle Radar Topography Mission (SRTM) elevation data and image classification algorithms based on two machine learning techniques were examined. Random Forest (RF) and Classification and Regression Trees (CART) were used to classify land use and land cover (LULC) in western Oregon (USA). To classify the LULC from the spectral bands of satellite images, a composition consisting of vegetation difference indices NDVI, NDWI, EVI, and BSI, and a digital elevation model (DEM) were used. The study area was selected due to a diversity of land cover types including research forest, botanical gardens, recreation area, and agricultural lands covered with diverse plant species. Five land classes (forest, agriculture, soil, water, and settlement) were delineated for LULC classification testing. Different spatial points (totaling 75, 150, 300, and 2500) were used as training and test data. The most successful model performance was RF, with an accuracy of 98% and a kappa value of 0.97, while the accuracy and kappa values for CART were 95% and 0.94, respectively. The accuracy of the generated LULC maps was evaluated using 500 independent reference points, in addition to the training and testing datasets. Based on this assessment, the RF classifier that included elevation data achieved an overall accuracy of 92% and a kappa coefficient of 0.90. The combination of vegetation difference indices with elevation data was successful in determining the areas where clear-cutting occurred in the forest. Our results present a promising technique for the detection of forests and forest openings, which was helpful in identifying clear-cut sites. In addition, the GEE and RF classifier can help identify and map storm damage, wind damage, insect defoliation, fire, and management activities in forest areas. Full article
Show Figures

Figure 1

21 pages, 9386 KiB  
Article
Comparative Analysis of Non-Negative Matrix Factorization in Fire Susceptibility Mapping: A Case Study of Semi-Mediterranean and Semi-Arid Regions
by Iraj Rahimi, Lia Duarte, Wafa Barkhoda and Ana Cláudia Teodoro
Land 2025, 14(7), 1334; https://doi.org/10.3390/land14071334 - 23 Jun 2025
Viewed by 458
Abstract
Semi-Mediterranean (SM) and semi-arid (SA) regions, exemplified by the Kurdo-Zagrosian forests in western Iran and northern Iraq, have experienced frequent wildfires in recent years. This study proposes a modified Non-Negative Matrix Factorization (NMF) method for detecting fire-prone areas using satellite-derived data in SM [...] Read more.
Semi-Mediterranean (SM) and semi-arid (SA) regions, exemplified by the Kurdo-Zagrosian forests in western Iran and northern Iraq, have experienced frequent wildfires in recent years. This study proposes a modified Non-Negative Matrix Factorization (NMF) method for detecting fire-prone areas using satellite-derived data in SM and SA forests. The performance of the proposed method was then compared with three other already proposed NMF methods: principal component analysis (PCA), K-means, and IsoData. NMF is a factorization method renowned for performing dimensionality reduction and feature extraction. It imposes non-negativity constraints on factor matrices, enhancing interpretability and suitability for analyzing real-world datasets. Sentinel-2 imagery, the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and the Zagros Grass Index (ZGI) from 2020 were employed as inputs and validated against a post-2020 burned area derived from the Normalized Burned Ratio (NBR) index. The results demonstrate NMF’s effectiveness in identifying fire-prone areas across large geographic extents typical of SM and SA regions. The results also revealed that when the elevation was included, NMF_L1/2-Sparsity offered the best outcome among the used NMF methods. In contrast, the proposed NMF method provided the best results when only Sentinel-2 bands and ZGI were used. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

21 pages, 6990 KiB  
Article
Machine Learning-Driven Rapid Flood Mapping for Tropical Storm Imelda Using Sentinel-1 SAR Imagery
by Reda Amer
Remote Sens. 2025, 17(11), 1869; https://doi.org/10.3390/rs17111869 - 28 May 2025
Viewed by 695
Abstract
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) [...] Read more.
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) in southeastern Texas. Dual-polarization Sentinel-1 SAR data (VH and VV) were processed by computing the VH/VV backscatter ratio, and the resulting ratio image was classified using a supervised Random Forest classifier to delineate water and land. All Sentinel-1 images underwent radiometric calibration, speckle noise filtering, and terrain correction to ensure precision in flood delineation. The Random Forest classifier achieved an overall flood mapping accuracy exceeding 94%, with Cohen’s kappa coefficients of approximately 0.75–0.80, demonstrating the approach’s reliability in distinguishing transient floodwaters from permanent water bodies. The spatial distribution of flooding was strongly influenced by topography and land cover. Analysis of Shuttle Radar Topography Mission (SRTM) digital elevation data revealed that low-lying, flat terrain was most vulnerable to inundation; correspondingly, the land cover types most affected were hay/pasture, cultivated land, and emergent wetlands. Additionally, urban areas with low-intensity development experienced extensive flooding, attributed to impervious surfaces exacerbating runoff. A strong, statistically significant correlation (R2 = 0.87, p < 0.01) was observed between precipitation and flood extent, indicating that heavier rainfall led to greater inundation; accordingly, the areas with the highest rainfall totals (e.g., Jefferson and Chambers counties) experienced the most extensive flooding, as confirmed by SAR-based change detection. The proposed approach eliminates the need for manual threshold selection, thereby reducing misclassification errors due to speckle noise and land cover heterogeneity. Harnessing globally available Sentinel-1 data with near-real-time processing and a robust classifier, this approach provides a scalable solution for rapid flood monitoring. These findings underscore the potential of SAR-based flood mapping under adverse weather conditions, thereby contributing to improved disaster preparedness and resilience in flood-prone regions. Full article
Show Figures

Figure 1

20 pages, 9191 KiB  
Article
Can Synthetic Aperture Radar Enhance the Quality of Satellite-Based Mangrove Detection? A Focus on the Denpasar Region of Indonesia
by Soohyun Kwon, Hyeon Kwon Ahn and Chul-Hee Lim
Remote Sens. 2025, 17(11), 1812; https://doi.org/10.3390/rs17111812 - 22 May 2025
Viewed by 599
Abstract
Mangrove forests are vital ecosystems with the highest global carbon absorption capacity, playing a crucial role in climate change mitigation. Therefore, their conservation and management are essential. However, as mangroves are primarily found in tropical regions, frequent cloud cover and limited accessibility pose [...] Read more.
Mangrove forests are vital ecosystems with the highest global carbon absorption capacity, playing a crucial role in climate change mitigation. Therefore, their conservation and management are essential. However, as mangroves are primarily found in tropical regions, frequent cloud cover and limited accessibility pose significant challenges to effective monitoring using optical satellite imagery. In addition, many developing countries with extensive mangrove coverage face challenges in conducting precise monitoring due to limited technological infrastructure. To overcome these limitations, this study integrated open-access synthetic aperture radar (SAR) data with optical imagery to enhance the classification accuracy of mangrove forests in the Bali Denpasar–Badung region. The Sentinel-1 and Sentinel-2 datasets were used, and the U-Net deep learning model was employed for training and classification. A digital elevation model (DEM) from the Shuttle Radar Topography Mission (SRTM) was applied to exclude areas higher than 10 m above sea level, thereby improving the classification accuracy. Additionally, a time-series analysis was performed to assess changes in the mangrove distribution over the past decade, revealing a consistent increase in mangrove extent in the study area. The classification performance was evaluated using a confusion matrix, demonstrating that the combined SAR-optical model outperformed single-source models across all key metrics including precision, accuracy, recall, and F1-score. The findings highlight the effectiveness of integrating SAR and optical data for capturing the complex ecological and geographical characteristics of mangrove forests. Notably, SAR imagery, which is resistant to cloud cover, shows considerable potential for independent application in tropical mangrove monitoring, warranting further research to explore its capabilities in greater depth. Full article
(This article belongs to the Special Issue Remote Sensing in Mangroves III)
Show Figures

Figure 1

23 pages, 7157 KiB  
Article
Identification of Priority Areas for the Control of Soil Erosion and the Influence of Terrain Factors Using RUSLE and GIS in the Caeté River Basin, Brazilian Amazon
by Alessandra dos Santos Santos, João Fernandes da Silva Júnior, Lívia da Silva Santos, Rômulo José Alencar Sobrinho, Eduarda Cavalcante Amorim, Gabriel Siqueira Tavares Fernandes, Elania Freire da Silva, Thieres George Freire da Silva, João L. M. P. de Lima and Alexandre Maniçoba da Rosa Ferraz Jardim
Earth 2025, 6(2), 35; https://doi.org/10.3390/earth6020035 - 8 May 2025
Viewed by 1627
Abstract
Soil erosion poses a significant global environmental challenge, causing land degradation, deforestation, river siltation, and reduced agricultural productivity. Although the Revised Universal Soil Loss Equation (RUSLE) has been widely applied in Brazil, its use in the tropical river basins of the Amazon remains [...] Read more.
Soil erosion poses a significant global environmental challenge, causing land degradation, deforestation, river siltation, and reduced agricultural productivity. Although the Revised Universal Soil Loss Equation (RUSLE) has been widely applied in Brazil, its use in the tropical river basins of the Amazon remains limited. This study aimed to apply a GIS-integrated RUSLE model and compare its soil loss estimates with multiple linear regression (MLR) models based on terrain attributes, aiming to identify priority areas and key geomorphometric drivers of soil erosion in a tropical Amazonian river basin. A digital elevation model based on Shuttle Radar Topography Mission (SRTM) data, land use and land cover (LULC) maps, and rainfall and soil data were applied to the GIS-integrated RUSLE model; we then defined six risk classes—slight (0–2.5 t ha−1 yr−1), slight–moderate (2.5–5), moderate (5–10), moderate–high (10–15), high (15–25), and very high (>25)—and identified priority zones as those in the top two risk classes. The Caeté River Basin (CRB) was classified into six erosion risk categories: low (81.14%), low to moderate (2.97%), moderate (11.88%), moderate to high (0.93%), high (0.03%), and very high (3.05%). The CRB predominantly exhibited a low erosion risk, with higher erosion rates linked to intense rainfall, gentle slopes covered by Arenosols, and human activities. The average annual soil loss was estimated at 2.0 t ha−1 yr−1, with a total loss of 1005.44 t ha−1 yr−1. Additionally, geomorphological and multiple linear regression (MLR) analyses identified seven key variables influencing soil erosion: the convergence index, closed depressions, the topographic wetness index, the channel network distance, and the local curvature, upslope curvature, and local downslope curvature. These variables collectively explained 26% of the variability in soil loss (R2 = 0.26), highlighting the significant role of terrain characteristics in erosion processes. These findings indicate that soil erosion control efforts should focus primarily on areas with Arenosols and regions experiencing increased anthropogenic activity, where the erosion risks are higher. The identification of priority erosion areas enables the development of targeted conservation strategies, particularly for Arenosols and regions under anthropogenic pressure, where the soil losses exceed the tolerance threshold of 10.48 t ha−1 yr−1. These findings directly support the formulation of local environmental policies aimed at mitigating soil degradation by stabilizing vulnerable soils, regulating high-impact land uses, and promoting sustainable practices in critical zones. The GIS-RUSLE framework is supported by consistent rainfall data, as verified by a double mass curve analysis (R2 ranging from 0.64 to 0.77), and offers a replicable methodology for soil conservation planning in tropical basins with similar erosion drivers. This approach offers a science-based foundation to guide soil conservation planning in tropical basins. While effective in identifying erosion-prone areas, it should be complemented in future studies by dynamic models and temporal analyses to better capture the complex erosion processes and land use change impacts in the Amazon. Full article
Show Figures

Figure 1

32 pages, 54468 KiB  
Article
Importance of Spectral Information, Seasonality, and Topography on Land Cover Classification of Tropical Land Cover Mapping
by Chansopheaktra Sovann, Stefan Olin, Ali Mansourian, Sakada Sakhoeun, Sovann Prey, Sothea Kok and Torbern Tagesson
Remote Sens. 2025, 17(9), 1551; https://doi.org/10.3390/rs17091551 - 27 Apr 2025
Viewed by 2300
Abstract
Tropical forests provide essential ecosystem services, playing a critical role in climate regulation, biodiversity conservation, and regional hydrological cycles while also supporting livelihoods. However, they are increasingly threatened by deforestation and land-use change. Accurate land cover (LC) mapping is vital to monitor these [...] Read more.
Tropical forests provide essential ecosystem services, playing a critical role in climate regulation, biodiversity conservation, and regional hydrological cycles while also supporting livelihoods. However, they are increasingly threatened by deforestation and land-use change. Accurate land cover (LC) mapping is vital to monitor these changes, but mapping tropical forests is challenging due to complex spatial patterns, spectral similarities, and frequent cloud cover. This study aims to improve LC classification accuracy in such a heterogeneous tropical forest region in Southeast Asia, namely Kulen, Cambodia, which is characterized by natural forests, regrowth forests, and agricultural lands including cashew plantations and croplands, using Sentinel-2 imagery, recursive feature elimination (RFE), and Random Forest. We generated 65 variables of spectral bands, indices, bi-seasonal differences, and topographic data from Sentinel-2 Level-2A and Shuttle Radar Topography Mission datasets. These variables were extracted from 1000 random points per 12 LC classes from reference polygons based on observed GPS points, Uncrewed Aerial Vehicle imagery, and high-resolution satellite data. The random forest models were optimized through correlation-based filtering and recursive feature elimination with hyperparameter tuning to improve classification accuracy, validated via confusion matrices and comparisons with global and national-scale products. Our results highlight the significant role of topographic variables such as elevation and slope, along with red-edge spectral bands and spectral indices related to tillage, leaf water content, greenness, chlorophyll, and tasseled cap transformation for tropical land cover mapping. The integration of bi-seasonal datasets improved classification accuracy, particularly for challenging classes like semi-evergreen and deciduous forests. Furthermore, correlation-based filtering and recursive feature elimination reduced the variable set from 65 to 19, improving model efficiency without sacrificing accuracy. Combining these variable selection methods with hyperparameter tuning optimized the classification, providing a more reliable LC product that outperforms existing LC products and proves valuable for deforestation monitoring, forest management, biodiversity conservation, and land use studies. Full article
Show Figures

Figure 1

28 pages, 11121 KiB  
Article
Modeling the Ecological Network in Mountainous Resource-Based Cities: Morphological Spatial Pattern Analysis Approach
by Liyun Zeng, Rita Yi Man Li and Hongzhou Du
Buildings 2025, 15(8), 1388; https://doi.org/10.3390/buildings15081388 - 21 Apr 2025
Viewed by 557
Abstract
Landscape fragmentation in mountainous resource-based cities has become increasingly serious, particularly in blue-green spaces. This study aims to establish a quantitative theoretical foundation for constructing an ecological network using the integrated morphological spatial pattern analysis (MSPA)–Conefor–minimum cumulative resistance (MCR) model. It employs multiple [...] Read more.
Landscape fragmentation in mountainous resource-based cities has become increasingly serious, particularly in blue-green spaces. This study aims to establish a quantitative theoretical foundation for constructing an ecological network using the integrated morphological spatial pattern analysis (MSPA)–Conefor–minimum cumulative resistance (MCR) model. It employs multiple data sets, including land use data, remote sensing images, Shuttle Radar Topography Mission (SRTM) digital elevation, vegetation coverage data, etc., to conduct the quantitative analysis. Five groups of spatial resolution datasets (i.e., 30 m, 60 m, 90 m, 150 m, and 300 m) are employed for comparison and selection through MSPA to identify and analyze core landscape types. Connectivity analysis uses Conefor 2.6 software, and ecological sources are selected accordingly. Subsequently, the MCR model is applied to construct ecological corridors. Moreover, 153 ecological corridors are delineated, comprising 78 primary and 58 secondary corridors. The results show that most ecological core patches are fragmented and dispersed, while ecological corridors are vulnerable to disruption by external interference. This study also identifies 470 ecological breakpoints, mainly concentrated in the northeast, central, and southwestern areas characterized by high corridor density and intense anthropogenic activity. Additionally, 39 biological resting points are primarily located in the central urban area, and peripheral areas show few or no such points. This suggests establishing additional biological resting points to facilitate species migration and diffusion and complement the ecological network. This research addresses a significant gap in ecological network modeling within mountainous resource-based cities by developing a blue-green ecological network model. The findings encourage ecological governance bodies and technical professionals to recognize the interdependent relationship between blue and green spaces. This study supports the formulation of targeted planning strategies and helps maintain the potential connectivity essential for ecological balance. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 14292 KiB  
Article
A Feature-Reinforced Ensemble Learning Framework for Space-Based DEM Correction
by Zidu Ouyang, Cui Zhou, Di Zhang, Zhiwei Liu, Jianjun Zhu and Jian Xie
Remote Sens. 2025, 17(8), 1337; https://doi.org/10.3390/rs17081337 - 9 Apr 2025
Viewed by 486
Abstract
Near-global Digital Elevation Model (DEM) products generated through space-based radar techniques have become a basic data source for a variety range of applications. However, these DEM products often contain typical errors such as vegetation bias and topography-related errors, which impede their practical utility. [...] Read more.
Near-global Digital Elevation Model (DEM) products generated through space-based radar techniques have become a basic data source for a variety range of applications. However, these DEM products often contain typical errors such as vegetation bias and topography-related errors, which impede their practical utility. Despite the development of numerous correction methods based on mathematical fitting and artificial neural networks over recent decades, reliably correcting large-scale spaceborne radar-derived DEMs remains an open challenge due to issues like underfitting or overfitting. This paper introduces a novel framework called Feature-Reinforced Ensemble Learning (FREEL) designed specifically for correcting space-based radar-derived DEMs. Within this FREEL framework, a feature derivation module and a feature reinforcement module are integrated to enhance the original input features. Subsequently, an adaptive weighting variant of the DeepForest algorithm is proposed to emphasize critical features and improve training robustness, even with limited training data. The Shuttle Radar Topographic Mission (SRTM) DEMs of Hunan Province, China, characterized by diverse surface terrain and vegetation coverage, were selected to evaluate the FREEL framework. The results indicate that the accuracy of the SRTM DEM corrected using the FREEL framework improved by 40%, surpassing several mathematical fitting and machine learning baseline algorithms by an average of 45% and 23%, respectively. This method provides a more robust solution for correcting near-global space-based radar-derived DEM products. Full article
(This article belongs to the Special Issue Remote Sensing Data Fusion and Applications (2nd Edition))
Show Figures

Figure 1

31 pages, 9251 KiB  
Article
Seasonal Land Use and Land Cover Mapping in South American Agricultural Watersheds Using Multisource Remote Sensing: The Case of Cuenca Laguna Merín, Uruguay
by Giancarlo Alciaturi, Shimon Wdowinski, María del Pilar García-Rodríguez and Virginia Fernández
Sensors 2025, 25(1), 228; https://doi.org/10.3390/s25010228 - 3 Jan 2025
Cited by 2 | Viewed by 1584
Abstract
Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers to extract insights from Multisource Remote Sensing. This study aims to use these technologies for mapping summer and winter Land Use/Land Cover [...] Read more.
Recent advancements in Earth Observation sensors, improved accessibility to imagery and the development of corresponding processing tools have significantly empowered researchers to extract insights from Multisource Remote Sensing. This study aims to use these technologies for mapping summer and winter Land Use/Land Cover features in Cuenca de la Laguna Merín, Uruguay, while comparing the performance of Random Forests, Support Vector Machines, and Gradient-Boosting Tree classifiers. The materials include Sentinel-2, Sentinel-1 and Shuttle Radar Topography Mission imagery, Google Earth Engine, training and validation datasets and quoted classifiers. The methods involve creating a multisource database, conducting feature importance analysis, developing models, supervised classification and performing accuracy assessments. Results indicate a low significance of microwave inputs relative to optical features. Short-wave infrared bands and transformations such as the Normalised Vegetation Index, Land Surface Water Index and Enhanced Vegetation Index demonstrate the highest importance. Accuracy assessments indicate that performance in mapping various classes is optimal, particularly for rice paddies, which play a vital role in the country’s economy and highlight significant environmental concerns. However, challenges persist in reducing confusion between classes, particularly regarding natural vegetation features versus seasonally flooded vegetation, as well as post-agricultural fields/bare land and herbaceous areas. Random Forests and Gradient-Boosting Trees exhibited superior performance compared to Support Vector Machines. Future research should explore approaches such as Deep Learning and pixel-based and object-based classification integration to address the identified challenges. These initiatives should consider various data combinations, including additional indices and texture metrics derived from the Grey-Level Co-Occurrence Matrix. Full article
(This article belongs to the Special Issue Feature Papers in Remote Sensors 2024–2025)
Show Figures

Figure 1

20 pages, 3605 KiB  
Article
Climate Change Effects on Land Use and Land Cover Suitability in the Southern Brazilian Semiarid Region
by Lucas Augusto Pereira da Silva, Edson Eyji Sano, Taya Cristo Parreiras, Édson Luis Bolfe, Mário Marcos Espírito-Santo, Roberto Filgueiras, Cristiano Marcelo Pereira de Souza, Claudionor Ribeiro da Silva and Marcos Esdras Leite
Land 2024, 13(12), 2008; https://doi.org/10.3390/land13122008 - 25 Nov 2024
Cited by 6 | Viewed by 2391
Abstract
Climate change is expected to alter the environmental suitability of land use and land cover (LULC) classes globally. In this study, we investigated the potential impacts of climate change on the environmental suitability of the most representative LULC classes in the southern Brazilian [...] Read more.
Climate change is expected to alter the environmental suitability of land use and land cover (LULC) classes globally. In this study, we investigated the potential impacts of climate change on the environmental suitability of the most representative LULC classes in the southern Brazilian semiarid region. We employed the Random Forest algorithm trained with climatic, soil, and topographic data to project future LULC suitability under the Representative Concentration Pathway RCP 2.6 (optimistic) and 8.5 (pessimistic) scenarios. The climate data included the mean annual air temperature and precipitation from the WorldClim2 platform for historical (1970–2000) and future (2061–2080) scenarios. Soil data were obtained from the SoilGrids 2.1 digital soil mapping platform, while topographic data were produced by NASA’s Shuttle Radar Topography Mission (SRTM). Our model achieved an overall accuracy of 60%. Under the worst-case scenario (RCP 8.5), croplands may lose approximately 8% of their suitable area, while pastures are expected to expand by up to 30%. Areas suitable for savannas are expected to increase under both RCP scenarios, potentially expanding into lands historically occupied by forests, grasslands, and eucalyptus plantations. These projected changes may lead to biodiversity loss and socioeconomic disruptions in the study area. Full article
(This article belongs to the Special Issue Global Savanna Variation in Form and Function: Theory & Practice)
Show Figures

Figure 1

15 pages, 9270 KiB  
Communication
Effect of DEM Used for Terrain Correction on Forest Windthrow Detection Using COSMO SkyMed Data
by Michele Dalponte, Daniele Marinelli and Yady Tatiana Solano-Correa
Remote Sens. 2024, 16(22), 4309; https://doi.org/10.3390/rs16224309 - 19 Nov 2024
Viewed by 1068
Abstract
Preprocessing Synthetic Aperture Radar (SAR) data is a crucial initial stage in leveraging SAR data for remote sensing applications. Terrain correction, both radiometric and geometric, and the detection of layover/shadow areas hold significant importance when SAR data are collected over mountainous regions. This [...] Read more.
Preprocessing Synthetic Aperture Radar (SAR) data is a crucial initial stage in leveraging SAR data for remote sensing applications. Terrain correction, both radiometric and geometric, and the detection of layover/shadow areas hold significant importance when SAR data are collected over mountainous regions. This study aims at investigating the impact of the Digital Elevation Model (DEM) used for terrain correction (radiometric and geometric) and for mapping layover/shadow areas on windthrow detection using COSMO SkyMed SAR images. The terrain correction was done using a radiometric and geometric terrain correction algorithm. Specifically, we evaluated five different DEMs: (i–ii) a digital terrain model and a digital surface model derived from airborne LiDAR flights; (iii) the ALOS Global Digital Surface Model; (iv) the Copernicus global DEM; and (v) the Shuttle Radar Topography Mission (SRTM) DEM. All five DEMs were resampled at 2 m and 30 m pixel spacing, obtaining a total of 10 DEMs. The terrain-corrected COSMO SkyMed SAR images were employed for windthrow detection in a forested area in the north of Italy. The findings revealed significant variations in windthrow detection across the ten corrections. The detailed LiDAR-derived terrain model (i.e., DTM at 2 m pixel spacing) emerged as the optimal choice for both pixel spacings considered. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

30 pages, 11775 KiB  
Article
Predictive Modelling of Land Cover Changes in the Greater Amanzule Peatlands Using Multi-Source Remote Sensing and Machine Learning Techniques
by Alex Owusu Amoakoh, Paul Aplin, Pedro Rodríguez-Veiga, Cherith Moses, Carolina Peña Alonso, Joaquín A. Cortés, Irene Delgado-Fernandez, Stephen Kankam, Justice Camillus Mensah and Daniel Doku Nii Nortey
Remote Sens. 2024, 16(21), 4013; https://doi.org/10.3390/rs16214013 - 29 Oct 2024
Cited by 2 | Viewed by 2767
Abstract
The Greater Amanzule Peatlands (GAP) in Ghana is an important biodiversity hotspot facing increasing pressure from anthropogenic land-use activities driven by rapid agricultural plantation expansion, urbanisation, and the burgeoning oil and gas industry. Accurate measurement of how these pressures alter land cover over [...] Read more.
The Greater Amanzule Peatlands (GAP) in Ghana is an important biodiversity hotspot facing increasing pressure from anthropogenic land-use activities driven by rapid agricultural plantation expansion, urbanisation, and the burgeoning oil and gas industry. Accurate measurement of how these pressures alter land cover over time, along with the projection of future changes, is crucial for sustainable management. This study aims to analyse these changes from 2010 to 2020 and predict future scenarios up to 2040 using multi-source remote sensing and machine learning techniques. Optical, radar, and topographical remote sensing data from Landsat-7, Landsat-8, ALOS/PALSAR, and Shuttle Radar Topography Mission derived digital elevation models (DEMs) were integrated to perform land cover change analysis using Random Forest (RF), while Cellular Automata Artificial Neural Networks (CA-ANNs) were employed for predictive modelling. The classification model achieved overall accuracies of 93% in 2010 and 94% in both 2015 and 2020, with weighted F1 scores of 80.0%, 75.8%, and 75.7%, respectively. Validation of the predictive model yielded a Kappa value of 0.70, with an overall accuracy rate of 80%, ensuring reliable spatial predictions of future land cover dynamics. Findings reveal a 12% expansion in peatland cover, equivalent to approximately 6570 ± 308.59 hectares, despite declines in specific peatland types. Concurrently, anthropogenic land uses have increased, evidenced by an 85% rise in rubber plantations (from 30,530 ± 110.96 hectares to 56,617 ± 220.90 hectares) and a 6% reduction in natural forest cover (5965 ± 353.72 hectares). Sparse vegetation, including smallholder farms, decreased by 35% from 45,064 ± 163.79 hectares to 29,424 ± 114.81 hectares. Projections for 2030 and 2040 indicate minimal changes based on current trends; however, they do not consider potential impacts from climate change, large-scale development projects, and demographic shifts, necessitating cautious interpretation. The results highlight areas of stability and vulnerability within the understudied GAP region, offering critical insights for developing targeted conservation strategies. Additionally, the methodological framework, which combines optical, radar, and topographical data with machine learning, provides a robust approach for accurate and detailed landscape-scale monitoring of tropical peatlands that is applicable to other regions facing similar environmental challenges. Full article
Show Figures

Figure 1

24 pages, 89993 KiB  
Article
Flooding Hazard Vulnerability Assessment Using Remote Sensing Data and Geospatial Techniques: A Case Study from Mekkah Province, Saudi Arabia
by Bashar Bashir and Abdullah Alsalman
Water 2024, 16(19), 2714; https://doi.org/10.3390/w16192714 - 24 Sep 2024
Cited by 2 | Viewed by 1851
Abstract
Flash floods are catastrophic phenomena that pose a serious risk to coastal infrastructures, towns, villages, and cities. This study assesses the risk of flash floods in the ungauged Mekkah province region based on specific and effective morphometric and topographic features characterizing the study [...] Read more.
Flash floods are catastrophic phenomena that pose a serious risk to coastal infrastructures, towns, villages, and cities. This study assesses the risk of flash floods in the ungauged Mekkah province region based on specific and effective morphometric and topographic features characterizing the study region. Shuttle Radar Topography Mission (SRTM) data were employed to construct a digital elevation model (DEM) for a detailed analysis, and the geographical information systems software 10.4 (GIS) was utilized to assess the linear, area, and relief aspects of the morphometric parameters. The ArcHydro tool was used to prepare the primary parameters, including the watershed border, flow accumulation, flow direction, flow length, and stream ordering. The study region’s flash flood hazard degrees were assessed using several morphometric characteristics that were measured, computed, and connected. Two different and effective methods were used to independently develop two models of flood vulnerability behaviors. The integrated method analysis revealed that most of the eastern and western parts of the studied province provide high levels of flood vulnerability. Due to it being one of the most helpful topographic indices, the integrated flood vulnerability final map was overlayed with the topographic position index (TPI). The integrated results aided in understanding the link between the general basins’ morphometric characteristics and their topographical features for mapping the different flood susceptibility locations over the entire studied province. Thus, this can be applied to investigate a surface-specific reduction plan against the impacts of flood hazards in the studied landscape. Full article
(This article belongs to the Special Issue Research on Watershed Ecology, Hydrology and Climate)
Show Figures

Figure 1

17 pages, 9708 KiB  
Article
Analysing Temporal Evolution of OpenStreetMap Waterways Completeness in a Mountain Region of Portugal
by Elisabete S. Veiga Monteiro and Glória Rodrigues Patrício
Remote Sens. 2024, 16(17), 3159; https://doi.org/10.3390/rs16173159 - 27 Aug 2024
Viewed by 943
Abstract
In recent decades, the creation and availability of Voluntary Geographic Information (VGI) have changed the paradigm associated with the production of Geospatial Information (GI), since, due to its free access, citizens can view, analyse, process, and validate this type of data. One of [...] Read more.
In recent decades, the creation and availability of Voluntary Geographic Information (VGI) have changed the paradigm associated with the production of Geospatial Information (GI), since, due to its free access, citizens can view, analyse, process, and validate this type of data. One of the most popular examples of VGI is the collaborative OpenStreetMap (OSM) project which covers a wide range of themes or characteristics associated with the real world. One of these themes is the feature “waterway” that represents watercourses. The quality of OSM data characteristics is a topic that has been published by many authors in recent years, particularly on the analysis of the completeness indicator. However, few references are found in the literature about studies that analyse the completeness of OSM watercourses or even watercourses obtained by other sources. All this motivated the authors to develop a study that aims to analyse the completeness of these specific lines that have so much relevance to hydrologists. The study presents an analysis of the variation over time in completeness/coverage of the OSM “waterway” feature in the period between 2014 and 2023 in a mountainous region included in the Mondego River basin, located in the Inland of Portugal. The methodology applied is supported by classical methods of measuring the completeness of lines that may be found in the literature. The total length of the watercourses was calculated and compared in percentage terms with the total length of the reference watercourses for dates under analysis. The watercourses of the military official hydrography of the 1/25,000 scale were used as a reference. The relation of the OSM completeness with some indicators related to terrain surface (altitude, slope, and location/proximity settlements) was also analysed. The choice of these indicators was motivated by the fact that the study area has strong mountain characteristics and is crossed by the main Portuguese river. The analysis was performed using the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) data and satellite image of Geographic Information System software. The results show that the completeness of this OSM feature (waterway) has a slight increase, considering the amplitude of the studied period (nine years) and the fact that, nowadays, digital mobile devices enable easy access to satellite images, allowing the digitalization of geographic entities or objects of the real world remotely. Regarding the indicator altitude, slope, and location/proximity of the settlements, we believe that there is no influence of these indicators on the evolution of the completeness of the OSM waterways in the study area. Full article
Show Figures

Figure 1

22 pages, 21022 KiB  
Article
Forest Fire Detection Based on Spatial Characteristics of Surface Temperature
by Houzhi Yao, Zhigao Yang, Gui Zhang and Feng Liu
Remote Sens. 2024, 16(16), 2945; https://doi.org/10.3390/rs16162945 - 12 Aug 2024
Cited by 2 | Viewed by 2956
Abstract
Amidst the escalating threat of global warming, which manifests in more frequent forest fires, the prompt and accurate detection of forest fires has ascended to paramount importance. The current surveillance algorithms employed for forest fire monitoring—including, but not limited to, fixed threshold algorithms, [...] Read more.
Amidst the escalating threat of global warming, which manifests in more frequent forest fires, the prompt and accurate detection of forest fires has ascended to paramount importance. The current surveillance algorithms employed for forest fire monitoring—including, but not limited to, fixed threshold algorithms, multi-channel threshold algorithms, and contextual algorithms—rely primarily upon the degree of deviation between the pixel temperature and the background temperature to discern pyric events. Notwithstanding, these algorithms typically fail to account for the spatial heterogeneity of the background temperature, precipitating the consequential oversight of low-temperature fire point pixels, thus impeding the expedited detection of fires in their initial stages. For the amelioration of this deficiency, the present study introduces a spatial feature-based (STF) method for forest fire detection, leveraging Himawari-8/9 imagery as the main data source, complemented by the Shuttle Radar Topography Mission (SRTM) DEM data inputs. Our proposed modality reconstructs the surface temperature information via selecting the optimally designated machine learning model, subsequently identifying the fire point through utilizing the difference between the reconstructed surface temperatures and empirical observations, in tandem with the spatial contextual algorithm. The results confirm that the random forest model demonstrates superior efficacy in the reconstruction of the surface temperature. Benchmarking the STF method against both the fire point datasets disseminated by the China Forest and Grassland Fire Prevention and Suppression Network (CFGFPN) and the Wild Land Fire (WLF) fire point product validation datasets from Himawari-8/9 yielded a zero rate of omission errors and a comprehensive evaluative index, predominantly surpassing 0.74. These findings show that the STF method proposed herein significantly augments the identification of lower-temperature fire point pixels, thereby amplifying the sensitivity of forest surveillance. Full article
Show Figures

Figure 1

Back to TopTop