Flooding Hazard Vulnerability Assessment Using Remote Sensing Data and Geospatial Techniques: A Case Study from Mekkah Province, Saudi Arabia
Abstract
:1. Introduction
2. Study Province Description
3. Materials and Methods
3.1. Basin Class Method
3.2. Ranked Method
3.3. Integrated Approach
3.4. Morphmetric Indices
Morphometric Indices | Indices Formula | References |
---|---|---|
Area (A) | It defines the total area from drainage divide to basin boundary | [41,42] |
Perimeter (P) | It defines the horizontal projection of its water divide | [21] |
Basin length (Lb) | It measures the maximum basin length parallel to the main basin river | [25,43] |
Stream number (Ns) | Ns = N1 + N2 + N3 + ………Nn | [43] |
Stream length (Ls) | Ls = L1 + L2 + L3 + ………Ln | [28] |
Stream order (Os) | Hierarchical rank equation | [26] |
Bifurcation ratio (Rb) | Rb = Ns/Ns + 1, where Ns is the streaming number value of any order and Ns + 1 is the streaming number value for the next highest order | [42] |
Stream frequency (Fs) | Fs = Ns/A | [44] |
Form factor (F) | F = A/Lb2 | [40] |
Texture ratio (Rt) | Rt = Ns/P | [45] |
Drainage density (Dd) | Dd = Ld/A | [43] |
Infiltration number (If) | If = Fs/Dd | [46] |
Basin relief (Br) | Br = Hmax. − Hmin., where Hmax. is the highest elevation point in the basin and Hmin. is the lowest one. | [42] |
Ruggedness number (Nr) | Nr = Dd × (Br/1000) | [47] |
Elevation relief ratio (Rr) | Rr = Br/Lb | [43] |
Topographic Index | Index Formula | References |
---|---|---|
Topographic position index (TPI) | , where M0 is elevation of the model point, Mn is the elevation of the grid, and n is the total number of surrounding points applied in these topographic processes. | [48] |
3.5. Validation Analysis of Morphmetric Indices
4. Results and Discussion
4.1. Morphmetric Indices
4.1.1. Stream Number Index (Ns)
4.1.2. Stream Order Index (Os)
4.1.3. Stream Length Index (Ls)
4.1.4. Bifurcation Ratio Index (Rb)
4.1.5. Stream Frequency Index (Fs)
4.1.6. Form Factor (F)
4.1.7. Texture Ratio Index (Rt)
4.1.8. Drainage Density Index (Dd)
4.1.9. Infiltration Number Index (If)
4.1.10. Basin Relief Index (Br)
4.1.11. Ruggedness Number Index (Nr)
4.1.12. Elevation Relief Ratio Index (Rr)
4.2. Flooding Hazard Due to Watershed Level Method
4.3. Flooding Hazard Due to Ranked Method
4.4. Topographic Position Index (TPI)
4.5. Flash Flooding Hazard Vulnerability Classes
5. Conclusions and Suggestions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alarifi, S.S.; Abdelkareem, M.; Abdalla, F.; Alotaibi, M. Flash Flood Hazard Mapping Using Remote Sensing and GIS Techniques in Southwestern Saudi Arabia. Sustainability 2022, 14, 14145. [Google Scholar] [CrossRef]
- Elkhrachy, I. Flash Flood Hazard Mapping Using Satellite Images and GIS Tools: A case study of Najran City, Kingdom of Saudi Arabia (KSA). Egypt. J. Remote Sens. Space Sci. 2015, 18, 261–278. [Google Scholar] [CrossRef]
- Abdalla, F.; El Shamy, I.; Bamousa, A.O.; Mansour, A.; Mohamed, A.; Tahoon, M. Flash Floods and Groundwater Recharge Potentials in Arid Land Alluvial Basins, Southern Red Sea Coast, Egypt. Int. J. Geosci. 2014, 5, 971–982. [Google Scholar] [CrossRef]
- Şen, Z.; Khiyami, H.A.; Al-Harthy, S.G.; Al-Ammawi, F.A.; Al-Balkhi, A.B.; Al-Zahrani, M.I.; Al-Hawsawy, H.M. Flash flood inundation map preparation for wadis in arid regions. Arab. J. Geosci. 2013, 6, 3563–3572. [Google Scholar] [CrossRef]
- Abdelkareem, M. Targeting flash flood potential areas using remotely sensed data and GIS techniques. Nat. Hazards 2017, 85, 19–37. [Google Scholar] [CrossRef]
- Collier, C.G. Flash flood forecasting: What are the limits of predictability? Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 3–23. [Google Scholar] [CrossRef]
- Carpenter, T.M.; Sperfslage, J.A.; Georgakakos, K.P.; Sweeney, T.; Fread, D.L. National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. J. Hydrol. 1999, 224, 21–44. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Naik, S.P.; Nappi, R. Remotely Sensed Data, Morpho-Metric Analysis, and Integrated Method Approach for Flood Risk Assessment: Case Study of Wadi Al-Arish Landscape, Sinai, Egypt. Water 2023, 15, 1797. [Google Scholar] [CrossRef]
- Wilford, D.J.; Sakals, M.E.; Innes, J.L.; Sidle, R.C.; Bergerud, W.A. Recognition of debris flow, debris flood and flood hazard through watershed morphometrics. Landslides 2004, 1, 61–66. [Google Scholar] [CrossRef]
- Charlton, R.; Fealy, R.; Moore, S.; Sweeney, J.; Murphy, C. Assessing the impact of climate change on water supply and flood hazard in Ireland using statistical downscaling and hydrological modelling techniques. Clim. Chang. 2006, 74, 475–491. [Google Scholar] [CrossRef]
- Khosravi, K.; Pourghasemi, H.R.; Chapi, K.; Bahri, M. Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environ. Monit. Assess. 2016, 188, 656. [Google Scholar] [CrossRef] [PubMed]
- Ullah, K.; Zhang, J. GIS-based flood hazard mapping using relative frequency ratio method: A case study of panjkora river basin, eastern Hindu Kush, Pakistan. PLoS ONE 2020, 15, e0229153. [Google Scholar] [CrossRef]
- Papaioannou, G.; Efstratiadis, A.; Vasiliades, L.; Loukas, A.; Papalexiou, S.M.; Koukouvinos, A.; Tsoukalas, I.; Kossieris, P. An operational method for Flood Directive implementation in ungauged urban areas. Hydrology 2018, 5, 24. [Google Scholar] [CrossRef]
- Abdulrazzak, M.; Elfeki, A.; Kamis, A.S.; Kassab, M.; Alamri, N.; Noor, K.; Chaabani, A. The impact of rainfall distribution patterns on hydrological and hydraulic response in arid regions: Case study Medina, Saudi Arabia. Arab. J. Geosci. 2018, 11, 679. [Google Scholar] [CrossRef]
- Ewea, H.A.; Elfeki, A.M.M.; Bahrawi, J.A.; Al-Amri, N.S. Sensitivity analysis of runoff hydrographs due to temporal rainfall patterns in Makkah Al-Mukkramah region, Saudi Arabia. Arab. J. Geosci. 2016, 9, 424. [Google Scholar] [CrossRef]
- Elfeki, A.; Bahrawi, J. Application of the random walk theory for simulation of flood hazards: Jeddah flood 25 November 2009. Int. J. Emerg. Manag. 2017, 13, 169. [Google Scholar] [CrossRef]
- Azeez, O.; Elfeki, A.; Kamis, A.S.; Chaabani, A. Dam break analysis and flood disaster simulation in arid urban environment: The Um Al-Khair dam case study, Jeddah, Saudi Arabia. Nat. Hazards 2020, 100, 995–1011. [Google Scholar] [CrossRef]
- Farran, M.M.; Elfeki, A.M. Evaluation and validity of the antecedent moisture condition (AMC) of Natural Resources Conservation Service-Curve Number (NRCS-CN) procedure in undeveloped arid basins. Arab. J. Geosci. 2020, 13, 275. [Google Scholar] [CrossRef]
- Al-Wagdany, A.; Elfeki, A.; Kamis, A.S.; Bamufleh, S.; Chaabani, A. Effect of the stream extraction threshold on the morphological characteristics of arid basins, fractal dimensions, and the hydrologic response. J. Afr. Earth Sci. 2020, 172, 103968. [Google Scholar] [CrossRef]
- Bathrellos, G.D.; Karymbalis, E.; Skilodimou, H.D.; Gaki-Papanastassiou, K.; Baltas, E.A. Urban flood hazard assessment in the basin of Athens Metropolitan city, Greece. Environ. Earth Sci. 2016, 75, 319. [Google Scholar] [CrossRef]
- Bashir, B.; Alsalman, A. Morpho-Hydrological Analysis and Preliminary Flash Flood Hazard Mapping of Neom City, Northwestern Saudi Arabia, Using Geospatial Techniques. Sustainability 2024, 16, 23. [Google Scholar] [CrossRef]
- Manzoor, Z.; Ehsan, M.; Khan, M.B.; Manzoor, A.; Akhter, M.M.; Sohail, M.T.; Hussain, A.; Shafi, A.; Abu-Alam, T.; Abioui, M. Floods and flood management and its socio-economic impact on Pakistan: A review of the empirical literature. Front. Environ. Sci. 2022, 10, 1021862. [Google Scholar] [CrossRef]
- Sohail, M.T.; Hussan, A.; Ehsan, M.; Al-Ansari, N.; Akhter, M.M.; Manzoor, Z.; Elbeltagi, A. Groundwater budgeting of Nari and Gaj formations and groundwater mapping of Karachi, Pakistan. Appl. Water Sci. 2022, 12, 267. [Google Scholar] [CrossRef]
- Ahmad, N.; Khan, S.; Ehsan, M.; Rehman, F.U.; Al-Shuhail, A. Estimating the Total Volume of Running Water Bodies Using Geographic Information System (GIS): A Case Study of Peshawar Basin (Pakistan). Sustainability 2022, 14, 3754. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Bachir, H. Morphometric-Hydro Characterization of the Coastal Line between El-Qussier and Marsa-Alam, Egypt: Preliminary Flood Risk Signatures. Appl. Sci. 2022, 12, 6264. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Wang, J.; Ge, W.; Li, W.; Song, H.; Guo, X.; Wang, T.; Jiao, Y. Impact evaluation of geomorphic changes caused by extreme floods on inundation area considering geomorphic variations and land use types. Sci. Total Environ. 2021, 754, 142424. [Google Scholar] [CrossRef]
- Vincent, L.T.; Eaton, B.C.; Leenman, A.S.; Jakob, M. Secondary Geomorphic Processes and Their Influence on Alluvial Fan Morphology, Channel Behavior and Flood Hazards. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006371. [Google Scholar] [CrossRef]
- Patton, P.C.; Baker, V.R. Morphometry and floods in small drainage basins subject to diverse hydrogeomorphic controls. Water Resour. Res. 1976, 12, 941–952. [Google Scholar] [CrossRef]
- Niyazi, B.; Khan, A.A.; Masoud, M.; Elfeki, A.; Basahi, J.; Zaidi, S. Morphological-hydrological relationships and the geomorphological instantaneous unit hydrograph of Makkah Al-Mukarramah watersheds. Arab. J. Geosci. 2021, 14, 751. [Google Scholar] [CrossRef]
- Hamimi, Z.; Fowler, A.R.; Liégeois, J.P.; Collins, A.; Abdelsalam, M.G.; Abd El-Wahed, M. Regional Geology Reviews The Geology of the Arabian-Nubian Shield. [Online]. Available online: http://www.springer.com/series/8643 (accessed on 1 May 2024).
- Angillieri, M.Y.E. Morphometric characterization of the Carrizal basin applied to the evaluation of flash floods hazard, San Juan, Argentina. Quat. Int. 2012, 253, 74–79. [Google Scholar] [CrossRef]
- Pareta, D.R.; Pareta, U. Quantitative geomorphological analysis of a watershed of Ravi River basin, H.P. India. IJRS GIS. 2012, 1, 47–62. [Google Scholar]
- Perucca, L.P.; Angilieri, Y.E. Morphometric characterization of del Molle Basin applied to the evaluation of flash floods hazard, Iglesia Department, San Juan, Argentina. Quat. Int. 2011, 233, 81–86. [Google Scholar] [CrossRef]
- Wani, M.B.; Ali, S.A.; Ali, U. Flood Assessment of Lolab Valley from Watershed Characterization Using Remote Sensing and GIS Techniques. In Hydrologic Modeling: Select Proceedings of ICWEES-2016; Springer: Singapore, 2018; pp. 367–390. [Google Scholar] [CrossRef]
- Ali, A.; Beg, F. Morphometric Toolbox: A New Technique in Basin Morphometric Analysis Using ArcGIS. 2015. [Online]. Available online: http://www.arcgis.com/home/item.html?id=1953627829a64102a7183327b4727 (accessed on 1 May 2024).
- El Hamdouni, R.; Irigaray, C.; Fernández, T.; Chacón, J.; Keller, E.A. Assessment of relative active tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 2008, 96, 150–173. [Google Scholar] [CrossRef]
- Khalifa, A.; Çakir, Z.; Owen, L.A.; Kaya, Ş. Morphotectonic analysis of the East Anatolian Fault, Turkey. Turk. J. Earth Sci. 2018, 27, 110–126. [Google Scholar] [CrossRef]
- Bajabaa, S.; Masoud, M.; Al-Amri, N. Flash flood hazard mapping based on quantitative hydrology, geomorphology and GIS techniques (case study of Wadi Al Lith, Saudi Arabia). Arab. J. Geosci. 2014, 7, 2469–2481. [Google Scholar] [CrossRef]
- Davis, J.C. Statistics and Data Analysis in Geology, 3rd ed.; Wiley: New York, NY, USA, 2014. [Google Scholar]
- Horton, R.E. Erosional development of streams and their drainage basins; Hydrophysical approach to quantitative morphology. Bull. Geol. Soc. Am. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Khalifa, A.; Bashir, B.; Alsalman, A.; Öğretmen, N. Morpho-tectonic assessment of the abu-dabbab area, eastern desert, egypt: Insights from remote sensing and geospatial analysis. ISPRS Int. J. Geoinf. 2021, 10, 784. [Google Scholar] [CrossRef]
- Schumm, S.A. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Bull. Geol. Soc. Am. 1956, 67, 597–646. [Google Scholar] [CrossRef]
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topography. Bull. Geol. Soc. Am. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Chorley, R. “Horton, R.E. 1945: Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Bulletin of the Geological Society of America 56, 275–370.”. Prog. Phys. Geogr. 1995, 19, 533–554. [Google Scholar] [CrossRef]
- Smith, K.G. Standards for grading texture of erosional topography. Am. J. Sci. 1950, 248, 655–668. [Google Scholar] [CrossRef]
- Saha, S.; Das, J.; Mandal, T. Investigation of the watershed hydro-morphologic characteristics through the morphometric analysis: A study on Rayeng basin in Darjeeling Himalaya. Environ. Chall. 2022, 7, 100463. [Google Scholar] [CrossRef]
- Melton, F.A. Aerial Photographs and Structural Geomorphology. J. Geol. 1959, 67, 351–370. [Google Scholar] [CrossRef]
- Weiss, A. Topographic position and landforms analysis. In Proceedings of the Poster Presentation, ESRI User Conference, San Diego Convention Center, San Diego, CA, USA, 9–13 July 2001; Volume 64. [Google Scholar]
- Tariq, M.A.U.R.; Van De Giesen, N. Giesen Floods and flood management in Pakistan. Phys. Chem. Earth 2012, 47–48, 11–20. [Google Scholar] [CrossRef]
- Bhatt, S.; Ahmed, S.A. Morphometric analysis to determine floods in the Upper Krishna basin using Cartosat DEM. Geocarto Int. 2014, 29, 878–894. [Google Scholar] [CrossRef]
- Khalifa, A. Preliminary Active Tectonic Assessment Of Wadi Ghoweiba Catchment, Gulf of Suez Rift, Egypt, Integration of Remote Sensing, Tectonic Geomorphology, and Gis Techniques. 2020. [Online]. Available online: https://absb.journals.ekb (accessed on 1 May 2024).
- Bharadwaj, A.K.; Thirumalaivasan, D.; Shankar, C.P.; Madhavan, N. Morphometric Analysis of Adyar Watershed. [Online]. Available online: www.iosrjournals.org (accessed on 1 May 2024).
- Alam, A.; Ahmed, B.; Sammonds, P. Flash flood susceptibility assessment using the parameters of drainage basin morphometry in SE Bangladesh. Quat. Int. 2021, 575–576, 295–307. [Google Scholar] [CrossRef]
- Mesa, L.M. Morphometric analysis of a subtropical Andean basin (Tucumán, Argentina). Environ. Geol. 2006, 50, 1235–1242. [Google Scholar] [CrossRef]
- Reddy, G.P.O.; Maji, A.K.; Gajbhiye, K.S. Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central India—A remote sensing and GIS approach. Int. J. Appl. Earth Obs. Geoinf. 2004, 6, 1–16. [Google Scholar] [CrossRef]
- Gregory, K.J.; Wallingford, D.E. Drainage Basin Form and Process—A Geomorphological Approach. Soil Sci. Soc. Am. J. 1973, 38, vi. [Google Scholar] [CrossRef]
- Hamid, R.A.H.A. Application of Morphometric Analysis for Geo-Hydrological Studies Using Geo-Spatial Technology—A Case Study of Vishav Drainage Basin. J. Waste Water Treat. Anal. 2013, 4, 1–12. [Google Scholar] [CrossRef]
- Azor, A.; Keller, E.A.; Yeats, R.S. Geomorphic indicators of active fold growth: South Mountain-Oak Ridge anticline, Ventura basin, southern California. Bull. Geol. Soc. Am. 2002, 114, 745–753. [Google Scholar] [CrossRef]
- Pérez-Peña, J.V.; Azor, A.; Azañón, J.M.; Keller, E.A. Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology 2010, 119, 74–87. [Google Scholar] [CrossRef]
- Kabite, G.; Gessesse, B. Hydro-geomorphological characterization of Dhidhessa River Basin, Ethiopia. Int. Soil Water Conserv. Res. 2018, 6, 175–183. [Google Scholar] [CrossRef]
- Hare, P.W.; Gardner, T.W. Geomorphic Indicators of Vertical Neotectonism along Converging Plate Margins, Nicoya Peninsula Costa Rica. In Tectonic Geomorphology: Proceedings of the 15th Annual Binghamton Geomorphology Symposium, 4; Allen and Unwin: Boston, MA, USA, 1985; pp. 123–134. [Google Scholar]
- Costache, R. Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration. Stoch. Environ. Res. Risk Assess. 2019, 33, 1375–1402. [Google Scholar] [CrossRef]
- Arabameri, A.; Saha, S.; Chen, W.; Roy, J.; Pradhan, B.; Bui, D.T. Flash flood susceptibility modelling using functional tree and hybrid ensemble techniques. J. Hydrol. 2020, 587, 125007. [Google Scholar] [CrossRef]
- Pawluszek, K.; Borkowski, A. Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland. Nat. Hazards 2017, 86, 919–952. [Google Scholar] [CrossRef]
- Khalifa, A. Application of Remote sensing techniques in discrimination of rock units and preliminary assessment of tectonic activity using ASTER and ALOSE-PALSAR data at Gabal Delihimmi, Central Eastern Desert, Egypt. Egypt. J. Geol. 2023, 67, 287–298. [Google Scholar] [CrossRef]
- Görüm, T. Tectonic, topographic and rock-type influences on large landslides at the northern margin of the Anatolian Plateau. Landslides 2019, 16, 333–346. [Google Scholar] [CrossRef]
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Woods, R.A.; Sivapalan, M. A connection between topographically driven runoff generation and channel network structure. In Water Resources Research; Blackwell Publishing Ltd.: Oxford, UK, 1997; pp. 2939–2950. [Google Scholar] [CrossRef]
Basins | Ns | Ls | Rb | Fs | F | Rt | Dd | If | Br | Nr | Rr |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 26 | 39.59 | 4.5 | 0.05 | 0.28 | 0.18 | 72.53 | 0.66 | 1104 | 0.80 | 25.16 |
2 | 9 | 10.4 | 8 | 0.04 | 0.18 | 0.06 | 45.48 | 0.86 | 338 | 0.15 | 9.44 |
3 | 25 | 49.07 | 3.83 | 0.04 | 0.43 | 0.18 | 88.23 | 0.51 | 482 | 0.43 | 13.35 |
4 | 3 | 2.9 | 2 | 0.02 | 0.13 | 0.02 | 17.63 | 1.03 | 317 | 0.06 | 8.76 |
5 | 22 | 46.17 | 2.43 | 0.04 | 0.54 | 0.16 | 84.91 | 0.48 | 2690 | 2.28 | 84.75 |
6 | 65 | 81.61 | 8.46 | 0.04 | 0.19 | 0.19 | 44.45 | 0.80 | 2218 | 0.99 | 22.33 |
7 | 34 | 61.17 | 3.23 | 0.04 | 0.29 | 0.18 | 78.38 | 0.56 | 619 | 0.49 | 11.95 |
8 | 1 | 1.25 | Null | 0.01 | 0.08 | 0.01 | 11.32 | 0.80 | 282 | 0.03 | 7.71 |
9 | 6 | 6.65 | 5 | 0.03 | 0.20 | 0.06 | 37.30 | 0.90 | 162 | 0.06 | 5.37 |
10 | 3 | 2.9 | 2 | 0.05 | 0.12 | 0.04 | 51.99 | 1.03 | 131 | 0.07 | 6.16 |
11 | 6 | 6.65 | 5 | 0.05 | 0.13 | 0.06 | 57.14 | 0.90 | 227 | 0.13 | 7.53 |
12 | 5 | 5.4 | 4 | 0.03 | 0.24 | 0.06 | 33.70 | 0.92 | 193 | 0.07 | 7.49 |
13 | 5 | 5.4 | 4 | 0.05 | 0.15 | 0.05 | 50.32 | 0.92 | 135 | 0.07 | 5.04 |
14 | 11 | 23.37 | 3 | 0.04 | 0.34 | 0.11 | 89.75 | 0.47 | 282 | 0.25 | 10.23 |
15 | 5 | 5.4 | 4 | 0.04 | 0.21 | 0.07 | 44.58 | 0.92 | 276 | 0.12 | 11.42 |
16 | 6 | 6.65 | 5 | 0.05 | 0.18 | 0.08 | 55.45 | 0.90 | 226 | 0.13 | 8.82 |
17 | 5 | 5.4 | 4 | 0.02 | 0.23 | 0.03 | 26.38 | 0.92 | 217 | 0.06 | 7.30 |
18 | 4 | 4.15 | 3 | 0.03 | 0.12 | 0.04 | 32.67 | 0.96 | 214 | 0.07 | 6.44 |
19 | 84 | 135.34 | 3.92 | 0.05 | 0.23 | 0.24 | 76.74 | 0.62 | 2636 | 2.02 | 30.30 |
20 | 10 | 11.65 | 9 | 0.05 | 0.47 | 0.14 | 58.30 | 0.86 | 1040 | 0.61 | 50.63 |
21 | 12 | 24.62 | 3.25 | 0.03 | 0.27 | 0.09 | 67.16 | 0.49 | 995 | 0.67 | 27.11 |
22 | 43 | 80.36 | 3.11 | 0.05 | 0.37 | 0.19 | 88.05 | 0.54 | 1350 | 1.19 | 27.34 |
23 | 9 | 10.4 | 8 | 0.04 | 0.15 | 0.07 | 43.70 | 0.86 | 1217 | 0.53 | 31.02 |
24 | 54 | 106.26 | 3.7 | 0.04 | 0.30 | 0.23 | 77.52 | 0.51 | 1886 | 1.46 | 27.68 |
25 | 5 | 5.4 | 4 | 0.04 | 0.14 | 0.05 | 38.29 | 0.92 | 602 | 0.23 | 18.75 |
26 | 134 | 239.69 | 3.33 | 0.04 | 0.27 | 0.30 | 74.34 | 0.56 | 2669 | 1.98 | 24.64 |
27 | 26 | 40.44 | 4.62 | 0.04 | 0.18 | 0.11 | 57.19 | 0.64 | 1757 | 1.00 | 28.05 |
28 | 29 | 54.07 | 0.75 | 0.04 | 0.33 | 0.17 | 79.23 | 0.54 | 981 | 0.78 | 21.54 |
29 | 6 | 6.65 | 5 | 0.05 | 0.35 | 0.09 | 60.07 | 0.90 | 270 | 0.16 | 15.14 |
30 | 4 | 60.73 | 3.02 | 0.01 | 0.23 | 0.02 | 85.71 | 0.07 | 1575 | 1.35 | 28.52 |
31 | 13 | 25.03 | 3 | 0.06 | 0.17 | 0.11 | 109.26 | 0.52 | 201 | 0.22 | 5.53 |
32 | 74 | 115.74 | 3.9 | 0.04 | 0.17 | 0.21 | 65.85 | 0.64 | 2613 | 1.72 | 25.57 |
33 | 53 | 92.02 | 3.41 | 0.04 | 0.24 | 0.21 | 75.57 | 0.58 | 1506 | 1.14 | 21.01 |
34 | 55 | 94.52 | 3.47 | 0.05 | 0.27 | 0.22 | 83.60 | 0.58 | 633 | 0.53 | 9.76 |
35 | 52 | 81.14 | 3.7 | 0.04 | 0.15 | 0.15 | 66.48 | 0.64 | 2614 | 1.74 | 28.88 |
36 | 5 | 5.4 | 4 | 0.04 | 0.14 | 0.05 | 47.45 | 0.92 | 150 | 0.07 | 5.29 |
37 | 7 | 7.9 | 6 | 0.03 | 0.13 | 0.05 | 35.54 | 0.89 | 223 | 0.08 | 5.39 |
38 | 6 | 6.65 | 5 | 0.04 | 0.07 | 0.04 | 39.61 | 0.90 | 308 | 0.12 | 6.25 |
39 | 102 | 157 | 4.28 | 0.04 | 0.19 | 0.22 | 66.61 | 0.65 | 2614 | 1.74 | 23.61 |
40 | 214 | 329.59 | 3.8 | 0.04 | 0.22 | 0.30 | 60.68 | 0.65 | 2340 | 1.42 | 14.78 |
41 | 14 | 27.12 | 3.75 | 0.05 | 0.29 | 0.11 | 89.40 | 0.52 | 549 | 0.49 | 16.86 |
42 | 9 | 20.87 | 2.5 | 0.05 | 0.26 | 0.10 | 122.96 | 0.43 | 257 | 0.32 | 10.07 |
43 | 15 | 27.53 | 3.33 | 0.04 | 0.34 | 0.09 | 80.57 | 0.54 | 688 | 0.55 | 21.63 |
44 | 32 | 56.98 | 2.8 | 0.04 | 0.99 | 0.18 | 76.21 | 0.56 | 555 | 0.42 | 20.19 |
45 | 106 | 151.54 | 4.55 | 0.04 | 0.16 | 0.19 | 55.64 | 0.70 | 1322 | 0.74 | 10.07 |
46 | 201 | 302.88 | 3.75 | 0.04 | 0.34 | 0.38 | 57.88 | 0.66 | 1625 | 0.94 | 13.10 |
47 | 4 | 4.15 | 3 | 0.03 | 0.10 | 0.03 | 30.56 | 0.96 | 192 | 0.06 | 5.16 |
48 | 84 | 125.72 | 4.11 | 0.04 | 0.19 | 0.23 | 56.55 | 0.67 | 1581 | 0.89 | 14.68 |
49 | 5 | 5.4 | 4 | 0.04 | 0.17 | 0.06 | 44.50 | 0.92 | 189 | 0.08 | 6.99 |
50 | 40 | 66.98 | 3.26 | 0.05 | 0.10 | 0.12 | 76.69 | 0.60 | 1358 | 1.04 | 14.42 |
51 | 9 | 20.87 | 2.5 | 0.06 | 0.18 | 0.08 | 146.04 | 0.43 | 119 | 0.17 | 4.17 |
52 | 26 | 52.01 | 2.91 | 0.03 | 0.51 | 0.14 | 70.00 | 0.50 | 605 | 0.42 | 15.78 |
53 | 140 | 243.82 | 3.3 | 0.04 | 1.68 | 0.29 | 78.18 | 0.57 | 1284 | 1.00 | 29.77 |
54 | 59 | 86.53 | 3.88 | 0.05 | 0.42 | 0.26 | 78.98 | 0.68 | 1392 | 1.10 | 27.21 |
55 | 18 | 31.28 | 3.83 | 0.04 | 0.58 | 0.14 | 69.62 | 0.58 | 905 | 0.63 | 32.62 |
56 | 4 | 4.15 | 3 | 0.04 | 0.24 | 0.06 | 43.48 | 0.96 | 350 | 0.15 | 17.40 |
57 | 9 | 20.03 | 2.33 | 0.08 | 0.19 | 0.11 | 171.13 | 0.45 | 205 | 0.35 | 8.33 |
58 | 15 | 27.53 | 3.33 | 0.04 | 0.16 | 0.10 | 74.23 | 0.54 | 638 | 0.47 | 13.32 |
59 | 13 | 25.87 | 3.5 | 0.04 | 0.11 | 0.08 | 81.49 | 0.50 | 576 | 0.47 | 10.88 |
60 | 181 | 290.55 | 3.48 | 0.04 | 0.28 | 0.40 | 67.00 | 0.62 | 644 | 0.43 | 5.21 |
61 | 83 | 148.77 | 4.1 | 0.04 | 0.07 | 0.13 | 64.85 | 0.56 | 1708 | 1.11 | 9.60 |
62 | 664 | 1049.4 | 3.62 | 0.04 | 0.80 | 0.65 | 59.96 | 0.63 | 1700 | 1.02 | 11.48 |
63 | 15 | 28.37 | 4 | 0.05 | 1.65 | 0.13 | 99.29 | 0.53 | 448 | 0.44 | 34.02 |
64 | 17 | 29.19 | 3.5 | 0.05 | 0.43 | 0.16 | 92.18 | 0.58 | 483 | 0.45 | 17.72 |
65 | 3 | 2.9 | 2 | 0.03 | 0.24 | 0.04 | 25.12 | 1.03 | 106 | 0.03 | 4.82 |
66 | 11 | 23.37 | 3 | 0.04 | 0.85 | 0.12 | 89.34 | 0.47 | 100 | 0.09 | 5.71 |
67 | 6 | 6.65 | 5 | 0.06 | 0.43 | 0.10 | 63.29 | 0.90 | 76 | 0.05 | 4.84 |
68 | 8 | 19.62 | 2.25 | 0.07 | 0.36 | 0.13 | 181.01 | 0.41 | 75 | 0.14 | 4.32 |
69 | 10 | 22.12 | 2.75 | 0.04 | 0.58 | 0.10 | 85.28 | 0.45 | 143 | 0.12 | 6.75 |
70 | 5 | 5.4 | 4 | 0.05 | 0.35 | 0.08 | 51.37 | 0.92 | 98 | 0.05 | 5.63 |
71 | 6 | 6.65 | 5 | 0.04 | 0.88 | 0.05 | 47.15 | 0.90 | 116 | 0.05 | 9.16 |
72 | 565 | 907.19 | 4.72 | 0.04 | 1.61 | 0.58 | 64.23 | 0.62 | 563 | 0.36 | 6.01 |
73 | 1645 | 4379 | 4.2 | 0.04 | 1.31 | 1.05 | 110.25 | 0.38 | 1842 | 2.03 | 10.56 |
74 | 31 | 56.57 | 2.88 | 0.03 | 0.13 | 0.11 | 62.28 | 0.55 | 313 | 0.19 | 3.76 |
75 | 6 | 6.65 | 5 | 0.05 | 0.23 | 0.08 | 52.20 | 0.90 | 200 | 0.10 | 8.57 |
76 | 26 | 39.59 | 4.5 | 0.04 | 0.42 | 0.17 | 62.28 | 0.66 | 245 | 0.15 | 6.28 |
77 | 15 | 26.68 | 3.25 | 0.05 | 0.31 | 0.13 | 81.77 | 0.56 | 196 | 0.16 | 6.03 |
78 | 9 | 10.4 | 8 | 0.04 | 0.36 | 0.09 | 49.32 | 0.86 | 371 | 0.18 | 15.24 |
79 | 10 | 21.28 | 2.5 | 0.06 | 0.21 | 0.10 | 125.84 | 0.47 | 371 | 0.47 | 13.17 |
80 | 13 | 25.87 | 3.5 | 0.04 | 0.34 | 0.11 | 76.93 | 0.50 | 370 | 0.28 | 11.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, B.; Alsalman, A. Flooding Hazard Vulnerability Assessment Using Remote Sensing Data and Geospatial Techniques: A Case Study from Mekkah Province, Saudi Arabia. Water 2024, 16, 2714. https://doi.org/10.3390/w16192714
Bashir B, Alsalman A. Flooding Hazard Vulnerability Assessment Using Remote Sensing Data and Geospatial Techniques: A Case Study from Mekkah Province, Saudi Arabia. Water. 2024; 16(19):2714. https://doi.org/10.3390/w16192714
Chicago/Turabian StyleBashir, Bashar, and Abdullah Alsalman. 2024. "Flooding Hazard Vulnerability Assessment Using Remote Sensing Data and Geospatial Techniques: A Case Study from Mekkah Province, Saudi Arabia" Water 16, no. 19: 2714. https://doi.org/10.3390/w16192714
APA StyleBashir, B., & Alsalman, A. (2024). Flooding Hazard Vulnerability Assessment Using Remote Sensing Data and Geospatial Techniques: A Case Study from Mekkah Province, Saudi Arabia. Water, 16(19), 2714. https://doi.org/10.3390/w16192714