Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (971)

Search Parameters:
Keywords = shifted orientations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 7526 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

25 pages, 19905 KiB  
Article
Assessing Urban Park Accessibility via Population Projections: Planning for Green Equity in Shanghai
by Leiting Cen and Yang Xiao
Land 2025, 14(8), 1580; https://doi.org/10.3390/land14081580 - 2 Aug 2025
Viewed by 174
Abstract
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics [...] Read more.
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics into urban park planning by developing a dynamic evaluation framework for park accessibility. Building on the Gaussian-based two-step floating catchment area (Ga2SFCA) method, we propose the human-population-projection-Ga2SFCA (HPP-Ga2SFCA) model, which integrates population forecasts to assess park service efficiency under future demographic pressures. Using neighborhood-committee-level census data from 2000 to 2020 and detailed park spatial data, we identified five types of population change and forecast demographic distributions for both short- and long-term scenarios. Our findings indicate population decline in the urban core and outer suburbs, with growth concentrated in the transitional inner-suburban zones. Long-term projections suggest that 66% of communities will experience population growth, whereas short-term forecasts indicate a decline in 52%. Static models overestimate park accessibility by approximately 40%. In contrast, our dynamic model reveals that accessibility is overestimated in 71% and underestimated in 7% of the city, highlighting a potential mismatch between future population demand and current park supply. This study offers a forward-looking planning framework that enhances the responsiveness of park systems to demographic change and supports the development of more equitable, adaptive green space strategies. Full article
(This article belongs to the Special Issue Spatial Justice in Urban Planning (Second Edition))
Show Figures

Figure 1

26 pages, 1103 KiB  
Article
How to Compensate Forest Ecosystem Services Through Restorative Justice: An Analysis Based on Typical Cases in China
by Haoran Gao and Tenglong Lin
Forests 2025, 16(8), 1254; https://doi.org/10.3390/f16081254 - 1 Aug 2025
Viewed by 185
Abstract
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice [...] Read more.
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice of environmental public interest litigation. Since 2015, China has actively explored and institutionalized the application of the concept of restorative justice in its environmental justice reform. This concept emphasizes compensating environmental damages through actual ecological restoration acts rather than relying solely on financial compensation. This shift reflects a deep understanding of the limitations of traditional environmental justice and an institutional response to China’s ecological civilization construction, providing critical support for forest ecosystem restoration and enabling ecological restoration activities, such as replanting and re-greening, habitat reconstruction, etc., to be enforced through judicial decisions. This study conducts a qualitative analysis of judicial rulings in forest restoration cases to systematically evaluate the effectiveness of restorative justice in compensating for losses in forest ecosystem service functions. The findings reveal the following: (1) restoration measures in judicial practice are disconnected from the types of ecosystem services available; (2) non-market values and long-term cumulative damages are systematically underestimated, with monitoring mechanisms exhibiting fragmented implementation and insufficient effectiveness; (3) management cycles are set in violation of ecological restoration principles, and acceptance standards lack function-oriented indicators; (4) participation of key stakeholders is severely lacking, and local knowledge and professional expertise have not been integrated. In response, this study proposes a restorative judicial framework oriented toward forest ecosystem services, utilizing four mechanisms: independent recognition of legal interests, function-matched restoration, application of scientific assessment tools, and multi-stakeholder collaboration. This framework aims to drive a paradigm shift from formal restoration to substantive functional recovery, providing theoretical support and practical pathways for environmental judicial reform and global forest governance. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

21 pages, 3203 KiB  
Article
Spatiotemporal Patterns of Tourist Flow in Beijing and Their Influencing Factors: An Investigation Using Digital Footprint
by Xiaoyuan Zhang, Jinlian Shi, Qijun Yang, Xinru Chen, Xiankai Huang, Lei Kong and Dandan Gu
Sustainability 2025, 17(15), 6933; https://doi.org/10.3390/su17156933 - 30 Jul 2025
Viewed by 282
Abstract
Amid ongoing societal development, tourists’ travel behavior patterns have been undergoing substantial transformations, and understanding their evolution has emerged as a key area of scholarly interest. Taking Beijing as a case study, this research aims to uncover the spatiotemporal evolution patterns of tourist [...] Read more.
Amid ongoing societal development, tourists’ travel behavior patterns have been undergoing substantial transformations, and understanding their evolution has emerged as a key area of scholarly interest. Taking Beijing as a case study, this research aims to uncover the spatiotemporal evolution patterns of tourist flows and their underlying driving mechanisms. Based on digital footprint relational data, a dual-perspective analytical framework—“tourist perception–tourist flow network”—is constructed. By integrating the center-of-gravity model, social network analysis, and regression models, the study systematically examines the dynamic spatial structure of tourist flows in Beijing from 2012 to 2024. The findings reveal that in the post-pandemic period, Beijing tourists place greater emphasis on the cultural connotation and experiential aspects of destinations. The gravitational center of tourist flows remains relatively stable, with core historical and cultural blocks retaining strong appeal, though a slight shift has occurred due to policy influences and emerging attractions. The evolution of the spatial network structure reveals that tourism flows have become more dispersed, while the influence of core scenic spots continues to intensify. Government policy orientation, tourism information retrieval, and the agglomeration of tourism resources significantly promote the structure of tourist flows, whereas the general level of tourism resources exerts no notable influence. These findings offer theoretical insights and practical guidance for the sustainable development and regional coordination of tourism in Beijing, and provide a valuable reference for the spatial restructuring of urban tourism in the post-COVID-19 era. Full article
Show Figures

Figure 1

40 pages, 3195 KiB  
Article
A Stress Analysis of a Thin-Walled, Open-Section, Beam Structure: The Combined Flexural Shear, Bending and Torsion of a Cantilever Channel Beam
by David W. A. Rees
Appl. Sci. 2025, 15(15), 8470; https://doi.org/10.3390/app15158470 - 30 Jul 2025
Viewed by 137
Abstract
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. [...] Read more.
Channels with three standard symmetrical sections and one asymmetric section are mounted as cantilever beams with the web oriented vertically. A classical solution to the analysis of stress in each thin-walled cantilever channel is provided using the principle of wall shear flow superposition. The latter is coupled with a further superposition between axial stress arising from bending and from the constraint placed on free warping imposed at the fixed end. Closed solutions for design are tabulated for the net shear stress and the net axial stress at points around any section within the length. Stress distributions thus derived serve as a benchmark structure for alternative numerical solutions and for experimental investigations. The conversion of the transverse free end-loading applied to a thin-walled cantilever channel into the shear and axial stress that it must bear is outlined. It is shown that the point at which this loading is applied within the cross-section is crucial to this stress conversion. When a single force is applied to an arbitrary point at the free-end section, three loading effects arise generally: bending, flexural shear and torsion. The analysis of each effect requires that this force’s components are resolved to align with the section’s principal axes. These forces are then considered in reference to its centroid and to its shear centre. This shows that axial stress arises directly from bending and from the constraint imposed on free warping at the fixed end. Shear stress arises from flexural shear and also from torsion with a load offset from the shear centre. When the three actions are combined, the net stresses of each action are considered within the ability of the structure to resist collapse from plasticity and buckling. The novelty herein refers to the presentation of the shear flow calculations within a thin wall as they arise from an end load offset from the shear centre. It is shown how the principle of superposition can be applied to individual shear flow and axial stress distributions arising from flexural bending, shear and torsion. Therein, the new concept of a ‘trans-moment’ appears from the transfer in moments from their axes through centroid G to parallel axes through shear centre E. The trans-moment complements the static equilibrium condition, in which a shift in transverse force components from G to E is accompanied by torsion and bending about the flexural axis through E. Full article
Show Figures

Figure 1

23 pages, 6315 KiB  
Article
A Kansei-Oriented Morphological Design Method for Industrial Cleaning Robots Integrating Extenics-Based Semantic Quantification and Eye-Tracking Analysis
by Qingchen Li, Yiqian Zhao, Yajun Li and Tianyu Wu
Appl. Sci. 2025, 15(15), 8459; https://doi.org/10.3390/app15158459 - 30 Jul 2025
Viewed by 137
Abstract
In the context of Industry 4.0, user demands for industrial robots have shifted toward diversification and experience-orientation. Effectively integrating users’ affective imagery requirements into industrial-robot form design remains a critical challenge. Traditional methods rely heavily on designers’ subjective judgments and lack objective data [...] Read more.
In the context of Industry 4.0, user demands for industrial robots have shifted toward diversification and experience-orientation. Effectively integrating users’ affective imagery requirements into industrial-robot form design remains a critical challenge. Traditional methods rely heavily on designers’ subjective judgments and lack objective data on user cognition. To address these limitations, this study develops a comprehensive methodology grounded in Kansei engineering that combines Extenics-based semantic analysis, eye-tracking experiments, and user imagery evaluation. First, we used web crawlers to harvest user-generated descriptors for industrial floor-cleaning robots and applied Extenics theory to quantify and filter key perceptual imagery features. Second, eye-tracking experiments captured users’ visual-attention patterns during robot observation, allowing us to identify pivotal design elements and assemble a sample repository. Finally, the semantic differential method collected users’ evaluations of these design elements, and correlation analysis mapped emotional needs onto stylistic features. Our findings reveal strong positive correlations between four core imagery preferences—“dignified,” “technological,” “agile,” and “minimalist”—and their corresponding styling elements. By integrating qualitative semantic data with quantitative eye-tracking metrics, this research provides a scientific foundation and novel insights for emotion-driven design in industrial floor-cleaning robots. Full article
(This article belongs to the Special Issue Intelligent Robotics in the Era of Industry 5.0)
Show Figures

Figure 1

42 pages, 1202 KiB  
Article
Exploring Key Factors Influencing the Processual Experience of Visitors in Metaverse Museum Exhibitions: An Approach Based on the Experience Economy and the SOR Model
by Ronghui Wu, Lin Gao, Jiaxin Li, Anxin Xie and Xiao Zhang
Electronics 2025, 14(15), 3045; https://doi.org/10.3390/electronics14153045 - 30 Jul 2025
Viewed by 157
Abstract
With the advancement of immersive technologies, metaverse museum exhibitions have become an increasingly important medium through which audiences access cultural content and experience artistic works. This study aims to identify the key factors influencing visitors’ processual experiences in metaverse museum exhibitions and to [...] Read more.
With the advancement of immersive technologies, metaverse museum exhibitions have become an increasingly important medium through which audiences access cultural content and experience artistic works. This study aims to identify the key factors influencing visitors’ processual experiences in metaverse museum exhibitions and to explore how these factors collectively contribute to the formation of satisfaction with the visiting experience. Adopting an interdisciplinary theoretical perspective, the study integrates the Experience Economy theory with the Stimulus–Organism–Response (SOR) model to construct a systematic theoretical framework. This framework reveals how exhibition-related stimuli affect visitors’ behavioral intentions through psychological response pathways. Specifically, perceived educational appeal, interactive entertainment, escapist experience, and perceived visual aesthetics are defined as stimulus variables, while psychological immersion, emotional trigger, and cognitive engagement are introduced as organismic variables to explain their effects on satisfaction with the visiting experience and social sharing intention as response variables. Based on 507 valid responses, Partial Least Squares Structural Equation Modeling (PLS-SEM) was employed for empirical analysis. The results indicate that interactive entertainment and escapist experience have significant positive effects on psychological responses, serving as key drivers of deep visitor engagement. Emotional Trigger acts as a significant mediator between exhibition stimuli and satisfaction with the visiting experience, which in turn significantly predicts social sharing intention. In contrast, perceived educational appeal and perceived visual aesthetics exhibit weaker impacts at the cognitive and behavioral levels. This study not only identifies these weakened pathways but also proposes optimization strategies grounded in experiential construction and cognitive synergy, offering guidance for enhancing the educational function and deep experiential design of metaverse exhibitions. The findings validate the applicability of the Experience Economy theory and the SOR model in metaverse cultural contexts and deepen our understanding of the psychological mechanisms underlying immersive cultural experiences. This study further provides a pathway for shifting exhibition design from a “content-oriented” to an “experience-driven” approach, offering theoretical and practical insights into enhancing audience engagement and cultural communication effectiveness in metaverse museums. Full article
(This article belongs to the Special Issue Metaverse, Digital Twins and AI, 3rd Edition)
Show Figures

Figure 1

19 pages, 6937 KiB  
Article
Optimal Placement of Distributed Solar PV Adapting to Electricity Real-Time Market Operation
by Xi Chen and Hai Long
Sustainability 2025, 17(15), 6879; https://doi.org/10.3390/su17156879 - 29 Jul 2025
Viewed by 267
Abstract
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning [...] Read more.
Distributed photovoltaic (PV) generation is increasingly important for urban energy systems amid global climate change and the shift to renewable energy. Traditional PV deployment prioritizes maximizing energy output, often neglecting electricity price variability caused by time-of-use tariffs. This study develops a high-resolution planning and economic assessment model for building-integrated PV (BIPV) systems, incorporating hourly electricity real-time market prices, solar geometry, and submeter building spatial data. Wuhan (30.60° N, 114.05° E) serves as the case study to evaluate optimal PV placement and tilt angles on rooftops and façades, focusing on maximizing economic returns rather than energy production alone. The results indicate that adjusting rooftop PV tilt from a maximum generation angle (30°) to a maximum revenue angle (15°) slightly lowers generation but increases revenue, with west-facing orientations further improving returns by aligning output with peak electricity prices. For façades, south-facing panels yielded the highest output, while north-facing panels with tilt angles above 20° also showed significant potential. Façade PV systems demonstrated substantially higher generation potential—about 5 to 15 times that of rooftop PV systems under certain conditions. This model provides a spatially detailed, market-responsive framework supporting sustainable urban energy planning, quantifying economic and environmental benefits, and aligning with integrated approaches to urban sustainability. Full article
(This article belongs to the Special Issue Sustainable Energy Planning and Environmental Assessment)
Show Figures

Figure 1

17 pages, 8024 KiB  
Article
Topic Modeling Analysis of Children’s Food Safety Management Using BigKinds News Big Data: Comparing the Implementation Times of the Comprehensive Plan for Children’s Dietary Safety Management
by Hae Jin Park, Sang Goo Cho, Kyung Won Lee, Seung Jae Lee and Jieun Oh
Foods 2025, 14(15), 2650; https://doi.org/10.3390/foods14152650 - 28 Jul 2025
Viewed by 376
Abstract
As digital technologies and food environments evolve, ensuring children’s food safety has become a pressing public health priority. This study examines how the policy discourse on children’s dietary safety in Korea has shifted over time by applying Latent Dirichlet Allocation (LDA) topic modeling [...] Read more.
As digital technologies and food environments evolve, ensuring children’s food safety has become a pressing public health priority. This study examines how the policy discourse on children’s dietary safety in Korea has shifted over time by applying Latent Dirichlet Allocation (LDA) topic modeling to news articles from 2010 to 2024. Using a large-scale news database (BigKinds), the analysis identifies seven key themes that have emerged across five phases of the national Comprehensive Plans for Safety Management of Children’s Dietary Life. These include experiential education, data-driven policy approaches, safety-focused meal management, healthy dietary environments, nutritional support for children’s growth, customized safety education, and private-sector initiatives. A significant increase in digital keywords—such as “big data” and “artificial intelligence”—highlights a growing emphasis on data-oriented policy tools. By capturing the evolving language and priorities in food safety policy, this study provides new insights into the digital transformation of public health governance and offers practical implications for adaptive and technology-informed policy design. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

21 pages, 1758 KiB  
Article
The Effect of Different Tillage Methods on Spring Barley Productivity and Grain Quality Indicators
by Aušra Sinkevičienė, Kęstutis Romaneckas, Edita Meškinytė and Rasa Kimbirauskienė
Agronomy 2025, 15(8), 1823; https://doi.org/10.3390/agronomy15081823 - 28 Jul 2025
Viewed by 205
Abstract
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required [...] Read more.
The production of winter wheat, spring barley, spring oilseed rape, and field beans requires detailed experimental data studies to analyze the quality and productivity of spring barley grain under different cultivation and tillage conditions. As the world’s population grows, more food is required to maintain a stable food supply chain. For many years, intensive farming systems have been used to meet this need. Today, intensive climate change events and other global environmental challenges are driving a shift towards sustainable use of natural resources and simplified cultivation methods that produce high-quality and productive food. It is important to study different tillage systems in order to understand how these methods can affect the chemical composition and nutritional value of the grain. Both agronomic and economic aspects contribute to the complexity of this field and their analysis will undoubtedly contribute to the development of more efficient agricultural practice models and the promotion of more conscious consumption. An appropriate tillage system should be oriented towards local climatic characteristics and people’s needs. The impact of reduced tillage on these indicators in spring barley production is still insufficiently investigated and requires further analysis at a global level. This study was carried out at Vytautas Magnus University Agriculture Academy (Lithuania) in 2022–2024. Treatments were arranged using a split-plot design. Based on a long-term tillage experiment, five tillage systems were tested: deep and shallow plowing, deep cultivation–chiseling, shallow cultivation–disking, and no-tillage. The results show that in 2022–2024, the hectoliter weight and moisture content of spring barley grains increased, but protein content and germination decreased in shallowly plowed fields. In deep cultivation–chiseling fields, the protein content (0.1–1.1%) of spring barley grains decreased, and in shallow cultivation–disking fields, the moisture content (0.2–0.3%) decreased. In all fields, the simplified tillage systems applied reduced spring barley germination (0.4–16.7%). Tillage systems and meteorological conditions are the two main forces shaping the quality indicators of spring barley grains. Properly selected tillage systems and favorable climatic conditions undoubtedly contribute to better grain properties and higher yields, while reducing the risk of disease spread. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

21 pages, 3448 KiB  
Article
A Welding Defect Detection Model Based on Hybrid-Enhanced Multi-Granularity Spatiotemporal Representation Learning
by Chenbo Shi, Shaojia Yan, Lei Wang, Changsheng Zhu, Yue Yu, Xiangteng Zang, Aiping Liu, Chun Zhang and Xiaobing Feng
Sensors 2025, 25(15), 4656; https://doi.org/10.3390/s25154656 - 27 Jul 2025
Viewed by 375
Abstract
Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability [...] Read more.
Real-time quality monitoring using molten pool images is a critical focus in researching high-quality, intelligent automated welding. To address interference problems in molten pool images under complex welding scenarios (e.g., reflected laser spots from spatter misclassified as porosity defects) and the limited interpretability of deep learning models, this paper proposes a multi-granularity spatiotemporal representation learning algorithm based on the hybrid enhancement of handcrafted and deep learning features. A MobileNetV2 backbone network integrated with a Temporal Shift Module (TSM) is designed to progressively capture the short-term dynamic features of the molten pool and integrate temporal information across both low-level and high-level features. A multi-granularity attention-based feature aggregation module is developed to select key interference-free frames using cross-frame attention, generate multi-granularity features via grouped pooling, and apply the Convolutional Block Attention Module (CBAM) at each granularity level. Finally, these multi-granularity spatiotemporal features are adaptively fused. Meanwhile, an independent branch utilizes the Histogram of Oriented Gradient (HOG) and Scale-Invariant Feature Transform (SIFT) features to extract long-term spatial structural information from historical edge images, enhancing the model’s interpretability. The proposed method achieves an accuracy of 99.187% on a self-constructed dataset. Additionally, it attains a real-time inference speed of 20.983 ms per sample on a hardware platform equipped with an Intel i9-12900H CPU and an RTX 3060 GPU, thus effectively balancing accuracy, speed, and interpretability. Full article
(This article belongs to the Topic Applied Computing and Machine Intelligence (ACMI))
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Synthesis and Properties of Bi1.8Mn0.5Ni0.5Ta2O9-Δ Pyrochlore
by Sergey V. Nekipelov, Olga V. Petrova, Alexandra V. Koroleva, Mariya G. Krzhizhanovskaya, Kristina N. Parshukova, Nikolay A. Sekushin, Boris A. Makeev and Nadezhda A. Zhuk
Chemistry 2025, 7(4), 119; https://doi.org/10.3390/chemistry7040119 - 25 Jul 2025
Viewed by 172
Abstract
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a [...] Read more.
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a porous microstructure formed by randomly oriented oblong grains. The average crystallite size determined by X-ray diffraction is 65 nm. The charge state of transition element cations in the pyrochlore was analyzed by soft X-ray spectroscopy using synchrotron radiation. For mixed pyrochlore, a characteristic shift of Bi4f and Ta4f and Ta5p spectra to the region of lower energies by 0.25 and 0.90 eV is observed compared to the binding energy in Bi2O3 and Ta2O5 oxides. XPS Mn2p spectrum of pyrochlore has an intermediate energy position compared to the binding energy in MnO and Mn2O3, which indicates a mixed charge state of manganese (II, III) cations. Judging by the nature of the Ni2p spectrum of the complex oxide, nickel ions are in the charge state of +(2+ζ). The relative permittivity of the sample in a wide temperature (up to 350 °C) and frequency range (25–106 Hz) does not depend on the frequency and exhibits a constant low value of 25. The minimum value of 4 × 10−3 dielectric loss tangent is exhibited by the sample at a frequency of 106 Hz. The activation energy of conductivity is 0.7 eV. The electrical behavior of the sample is modeled by an equivalent circuit containing a Warburg diffusion element. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

27 pages, 4152 KiB  
Article
Recent Advances in the EAGLE Concept—Monitoring the Earth’s Surface Based on a New Land Characterisation Approach
by Stephan Arnold, Geoffrey Smith, Geir-Harald Strand, Gerard Hazeu, Michael Bock, Barbara Kosztra, Christoph Perger, Gebhard Banko, Tomas Soukup, Nuria Valcarcel Sanz, Stefan Kleeschulte, Julián Delgado Hernández and Emanuele Mancosu
Land 2025, 14(8), 1525; https://doi.org/10.3390/land14081525 - 24 Jul 2025
Viewed by 280
Abstract
The demand for land monitoring information continues to increase, but the range and diversity of the available products to date have made their integrated use challenging and, at times, counterproductive. There has therefore been a growing need to enhance and harmonise the practice [...] Read more.
The demand for land monitoring information continues to increase, but the range and diversity of the available products to date have made their integrated use challenging and, at times, counterproductive. There has therefore been a growing need to enhance and harmonise the practice of land monitoring on a pan-European level with the formulation of a more consistent and standardised set of modelling criteria. The outcome has been a paradigm shift away from a “paper map”-based world where features are given a single, fixed label to one where features have a rich characterisation which is more informative, flexible and powerful. The approach allows the characteristics to be dynamic so that, over time, a feature may only change part of its description (i.e., a forest can be felled, but it may remain as forestry if replanted) or it can have multiple descriptors (i.e., a forest may be used for both timber production and recreation). The concept proposed by the authors has evolved since 2008 from first drafts to a comprehensive and powerful tool adopted by the European Union’s Copernicus programme. It provides for the semantic decomposition of existing nomenclatures, as well as supports a descriptive approach to the mapping of all landscape features in a flexible and object-oriented manner. In this way, the key move away from classification towards the characterisation of the Earth’s surface represents a novel and innovate approach to handling complex land surface information more suited to the age of distributed databases, cloud computing and object-oriented data modelling. In this paper, the motivation for and technical approach of the EAGLE concept with its matrix and UML model implementation are explained. This is followed by an update of the latest developments and the presentation of a number of experimental and operational use cases at national and European levels, and it then concludes with thoughts on the future outlook. Full article
Show Figures

Figure 1

23 pages, 372 KiB  
Review
What Does Digital Well-Being Mean for School Development? A Theoretical Review with Perspectives on Digital Inequality
by Philipp Michael Weber, Rudolf Kammerl and Mandy Schiefner-Rohs
Educ. Sci. 2025, 15(8), 948; https://doi.org/10.3390/educsci15080948 - 23 Jul 2025
Viewed by 419
Abstract
As digital transformation progresses, schools are increasingly confronted with psychosocial challenges such as technostress, digital overload, and unequal participation in digital (learning) environments. This article investigates the conceptual relevance of digital well-being for school development, particularly in relation to social inequality. Despite growing [...] Read more.
As digital transformation progresses, schools are increasingly confronted with psychosocial challenges such as technostress, digital overload, and unequal participation in digital (learning) environments. This article investigates the conceptual relevance of digital well-being for school development, particularly in relation to social inequality. Despite growing attention, the term remains theoretically underdefined in educational research—a gap addressed through a theory-driven review. Drawing on a systematic search, 25 key studies were analyzed for their conceptual understanding and refinement of digital well-being, with a focus on educational relevance. Findings suggest that digital well-being constitutes a multidimensional state shaped by individual, media-related, and socio-structural factors. It emerges when individuals are able to successfully manage the demands of digital environments and is closely linked to digital inequality—particularly in terms of access, usage practices, and the resulting opportunities for participation and health promotion. Since the institutional role of schools has thus far received limited attention, this article shifts the focus toward schools as key arenas for negotiating digital norms and practices and calls for an equity-sensitive and health-conscious perspective on school development in the context of digitalization. In doing so, digital well-being is repositioned as a pedagogical cross-cutting issue that requires coordinated efforts across all levels of the education system, highlighting that equitable digital transformation in schools depends on a critical reflection of power asymmetries within society and educational institutions. The article concludes by advocating for the systematic integration of digital well-being into school development processes as a way to support inclusive digital participation and to foster a health-oriented digital school culture. Full article
31 pages, 345 KiB  
Article
The Limits of a Success Story: Rethinking the Shenzhen Metro “Rail Plus Property” Model for Planning Sustainable Urban Transit in China
by Congcong Li and Natacha Aveline-Dubach
Land 2025, 14(8), 1508; https://doi.org/10.3390/land14081508 - 22 Jul 2025
Viewed by 473
Abstract
Land Value Capture (LVC) is increasingly being emphasized as a key mechanism for financing mass transit systems, promoted as a sustainability-oriented policy tool amid tightening public budgets. China has adopted a development-led approach to value capture through the “Rail plus Property (R + [...] Read more.
Land Value Capture (LVC) is increasingly being emphasized as a key mechanism for financing mass transit systems, promoted as a sustainability-oriented policy tool amid tightening public budgets. China has adopted a development-led approach to value capture through the “Rail plus Property (R + P)” model, drawing inspiration from the Hong Kong experience. The Shenzhen Metro’s “R + P” strategy has been widely acclaimed as the key to its reputation as “the only profitable transit company in mainland China without subsidies.” This paper questions this assumption and argues that the Shenzhen model is neither sustainable nor replicable, as its past performance depended on two exceptional conditions: an ascending phase of a real-estate cycle and unique institutional concessions from the central state. To substantiate this argument, we contrast Shenzhen’s value capture strategy with that of Nanjing—a provincial capital operating under routine institutional conditions, with governance and spatial structures broadly reflecting the prevailing urban development model in China. Using a comparative framework structured around three key dimensions of LVC—urban governance, risk management, and the transit company’s shift toward real estate—this paper reveals how distinct urban political economies give rise to contrasting value capture approaches: one expansionary, prioritizing short-term profit and rapid scale-up while downplaying risk management (Shenzhen); the other conservative, shaped by institutional constraints and characterized by reactive, incremental adjustments (Nanjing). These findings suggest that while LVC instruments offer valuable potential as a funding source for public transit, their long-term viability depends on early institutional embedding that aligns spatial, fiscal, and political interests, alongside well-developed project planning and capacity support in real estate expertise. Full article
Back to TopTop