Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = sheep erythrocytes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1879 KiB  
Article
New Quipazine Derivatives Active Against Drug-Resistant Oncogenic Helicobacter pylori Strains with Biofilm
by Katarzyna Grychowska, Karolina Klesiewicz, Joanna Pęgiel, Agata Kuziak, Iwona Skiba-Kurek, Vittorio Canale, Gracjana Krzysiek-Mączka, Agata Ptak-Belowska, Kamil Piska, Paulina Koczurkiewicz-Adamczyk, Paweł Krzyżek, Tomasz Brzozowski, Paweł Zajdel and Elżbieta Karczewska
Int. J. Mol. Sci. 2025, 26(13), 5997; https://doi.org/10.3390/ijms26135997 - 22 Jun 2025
Viewed by 446
Abstract
Helicobacter pylori (H. pylori) is regarded as a significant risk factor for gastritis, peptic ulcer disease, and gastric cancer. However, the increasing resistance of H. pylori strains has resulted in low eradication rates and ineffective treatments. Herein, we report on identification [...] Read more.
Helicobacter pylori (H. pylori) is regarded as a significant risk factor for gastritis, peptic ulcer disease, and gastric cancer. However, the increasing resistance of H. pylori strains has resulted in low eradication rates and ineffective treatments. Herein, we report on identification of a new quipazine derivative—compound 9c (N-(3-chlorobenzyl)-2-(piperazin-1-yl)quinolin-4-amine), which displayed antibacterial properties (MIC range 2–4 µg/mL) against H. pylori CagA-positive reference strains associated with an increased risk of gastric cancer, including metronidazole-resistant ATCC 43504, clarithromycin-resistant ATCC 700684 and susceptible J99 strain, as well as clinical, multidrug-resistant isolate (3CML, resistant to clarithromycin, metronidazole and levofloxacin). Compound 9c showed bacteriostatic activity (MBC/MIC ratio > 4), demonstrated antibiofilm-forming properties and prevented auto-aggregation of microbial cells. It also displayed an additive effect in ½ MIC (2 µg/mL) when administered with clarithromycin and/or metronidazole. Compound 9c had no impact on gut microbiota reference strains of S. aureus, E. coli, E. faecalis and L. paracasei as well as no hemolytic activity against sheep erythrocytes. Finally, by reducing the viability of the SNU-1 human gastric cancer cell line (IC50 = 3.28 μg/mL), compound 9c might offer important implications regarding the oncogenic characteristics of cagA+ H. pylori strains. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Graphical abstract

21 pages, 1339 KiB  
Article
Toxicity Assessment and Antifungal Potential of Copper(II) and Silver(I) Complexes with 1,10-Phenanthroline-5,6-dione Against Drug-Resistant Clinical Isolates of Cryptococcus gattii and Cryptococcus neoformans
by Lucas Giovanini, Ana Lucia Casemiro, Larissa S. Corrêa, Matheus Mendes, Thaís P. Mello, Lucieri O. P. Souza, Luis Gabriel Wagner, Christiane Fernandes, Matheus M. Pereira, Lais C. S. V. de Souza, Andrea R. S. Baptista, Josué de Moraes, Malachy McCann, Marta H. Branquinha and André L. S. Santos
J. Fungi 2025, 11(6), 436; https://doi.org/10.3390/jof11060436 - 6 Jun 2025
Viewed by 1539
Abstract
The World Health Organization included Cryptococcus neoformans and Cryptococcus gattii in its priority fungal pathogen list due to their high mortality rates and frequent treatment failures. These facts have driven research toward the discovery of new compounds for the treatment of cryptococcosis. In [...] Read more.
The World Health Organization included Cryptococcus neoformans and Cryptococcus gattii in its priority fungal pathogen list due to their high mortality rates and frequent treatment failures. These facts have driven research toward the discovery of new compounds for the treatment of cryptococcosis. In this study, we investigated the therapeutic potential of two complexes, [Cu(phendione)3](ClO4)2·4H2O (Cu-phendione) and [Ag(phendione)2]ClO4 (Ag-phendione), against drug-resistant clinical isolates of C. gattii and C. neoformans. Both complexes demonstrated anti-Cryptococcus activity, with Cu-phendione exhibiting minimum inhibitory concentration (MIC) values of 6.25 μM for C. gattii and 3.125 μM for C. neoformans, while Ag-phendione showed an MIC of 1.56 μM for both Cryptococcus species. Notably, both Cu-phendione and Ag-phendione complexes exhibited enhanced antifungal activity against reference strains of C. neoformans and C. gattii. In silico analysis identified both complexes as highly promising, exhibiting good oral bioavailability, high gastrointestinal absorption, and moderate skin permeability. Moreover, neither complex demonstrated toxicity toward sheep erythrocytes at concentrations up to 62.5 μM, with a selectivity index (SI) exceeding 10 for Cu-phendione and 40 for Ag-phendione. In vivo testing using the Galleria mellonella model demonstrated that both complexes were non-toxic, with 100% larval survival at concentrations up to 1000 μM and SI exceeding 160 following a single administration. Interestingly, larvae exposed to Cu-phendione at concentrations of 15.6–31.25 μM exhibited a significant increase in the density of hemocytes, the immune cells responsible for defense in invertebrates. Furthermore, multiple treatments with 62.5 μM of complexes caused either no larval mortality, hemocyte alterations, or changes in silk production or coloration, indicating a lack of toxicity. These findings suggest that Cu-phendione and Ag-phendione may serve as promising antifungal alternatives against Cryptococcus, with minimal host toxicity. Full article
(This article belongs to the Special Issue Fungal Infections: Immune Defenses and New Therapeutic Strategies)
Show Figures

Figure 1

19 pages, 2805 KiB  
Article
Evaluation of Antibacterial, Antifungal, Antiviral, and Anticancer Potential of Extract from the Fern Dryopteris erythrosora
by Kamila Górka, Marcin Koleśnik, Kinga Salwa, Mateusz Kwaśnik and Konrad Kubiński
Int. J. Mol. Sci. 2025, 26(11), 5182; https://doi.org/10.3390/ijms26115182 - 28 May 2025
Viewed by 1106
Abstract
Plant extracts are increasingly being investigated due to their high content of pharmacologically active substances. The primary focus is placed on angiosperms, while pteridophytes are less popular, although their medicinal properties have been recognized for centuries. In this study, we uncover some biological [...] Read more.
Plant extracts are increasingly being investigated due to their high content of pharmacologically active substances. The primary focus is placed on angiosperms, while pteridophytes are less popular, although their medicinal properties have been recognized for centuries. In this study, we uncover some biological properties of the extract from Dryopteris erythrosora (DEE), a fern traditionally used for liver treatment in Asia, which has not been widely explored in this context before. This study involved the determination of the total content of polyphenols and flavonoids as well as the evaluation of the antioxidant potential of DEE. Its antimicrobial activity was tested against selected bacteria. The MIC values ranged from 1.25 to 0.375 mg/mL. DEE showed no inhibitory effect against a representative fungus, Candida albicans. Additionally, this study demonstrated its excellent anticancer activity against AGS, MCF-7, and SW-480 cancer cells, with IC50 values of 19.44, 76.90, and 24.97 μg/mL, respectively. A study on human herpesvirus type 1 (HHV-1) revealed that the DEE had no antiviral activity. The safety of DEE was confirmed with the use of sheep erythrocytes and VERO cells. Since D. erythrosora is a rich source of compounds with antibacterial and anticancer properties, it can complement the arsenal of natural therapeutics. Full article
Show Figures

Figure 1

9 pages, 2144 KiB  
Communication
A Method for Demonstrating the Cytolysin/Hemolysin of Enterococcus faecalis Isolates of Poultry Origin
by Donald L. Reynolds, E. Barry Simpson and Matthew M. Hille
Poultry 2025, 4(1), 11; https://doi.org/10.3390/poultry4010011 - 26 Feb 2025
Cited by 1 | Viewed by 965
Abstract
Enterococcus faecalis (E. faecalis) is a ubiquitous microbe occurring in the environment and in the intestinal tract of poultry. E. faecalis has been identified in cases of egg infertility and/or decreased hatchability and can cause amyloid arthropathy in older laying chickens. [...] Read more.
Enterococcus faecalis (E. faecalis) is a ubiquitous microbe occurring in the environment and in the intestinal tract of poultry. E. faecalis has been identified in cases of egg infertility and/or decreased hatchability and can cause amyloid arthropathy in older laying chickens. E. faecalis produces cytolysin, a bacterial exotoxin that can cause lysis of erythrocytes. It has been difficult to demonstrate this virulence trait using conventional culture methods with sheep blood agar. A 96-well microplate hemolysis assay, along with a culture method incorporating glucose and L-arginine into the culture media, is described that demonstrates the production of cytolysin in E. faecalis isolates of avian origin. Additionally, the results show that horse and sheep erythrocytes were susceptible to lysis by the E. faecalis cytolysin, but cow and chicken erythrocytes were less susceptible. Full article
Show Figures

Figure 1

16 pages, 6834 KiB  
Article
Control of Postharvest Green Mold in Citrus by the Antimicrobial Peptide BP15 and Its Lipopeptides
by Yu Lei, Aiyuan Lyu, Mengjuan Pan, Qingxia Shi, Haowan Xu, Dong Li and Mengsheng Deng
J. Fungi 2024, 10(12), 837; https://doi.org/10.3390/jof10120837 - 3 Dec 2024
Viewed by 1219
Abstract
This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against Penicillium digitatum, the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly [...] Read more.
This study examined the efficacy and mechanisms of action of the antimicrobial peptide BP15 and its lipopeptides, HBP15 and LBP15, against Penicillium digitatum, the primary causative agent of green mold in citrus fruits. The findings revealed that all three antimicrobial peptides markedly inhibited the spore germination and mycelial growth of P. digitatum, with minimum inhibitory concentrations (MICs) of 3.12 μM for BP15, HBP15, and LBP15. The peptides induced morphological alterations in hyphae and elevated intracellular Sytox Green (SG) fluorescence signals, which is indicative of increased cell membrane permeability and disruption. This membrane damage was further supported by the heightened extracellular conductivity and the release of intracellular nucleic acid and protein. A gel retardation assay demonstrated that the peptides showed significant DNA binding and retardation effects. Furthermore, the peptides exhibited significantly lower hemolytic activity (p < 0.05) compared to commercial prochloraz in normal mammalian erythrocytes (sheep erythrocytes) at the tested concentrations. Therefore, BP15 and its lipopeptides, HBP15 and LBP15, show potential as effective agents for preventing green mold in citrus fruits. Full article
Show Figures

Figure 1

28 pages, 15959 KiB  
Article
Box–Behnken Design-Based Optimization of Extraction Parameters of Phenolics, Antioxidant Activity, and In Vitro Bioactive and Cytotoxic Properties of Rhus typhina Fruits
by Maria Denisa Cocîrlea, Natalia Simionescu, Teodora Călin, Florentina Gatea, Georgiana Ileana Badea, Emanuel Vamanu and Simona Oancea
Appl. Sci. 2024, 14(23), 11096; https://doi.org/10.3390/app142311096 - 28 Nov 2024
Cited by 2 | Viewed by 1667
Abstract
Rhus typhina, an invasive plant species, contains valuable compounds that can be utilized in various fields. The main aim of this paper was to find the optimal conditions for extracting high amounts of bioactive compounds from R. typhina fruits using ultrasound-assisted and [...] Read more.
Rhus typhina, an invasive plant species, contains valuable compounds that can be utilized in various fields. The main aim of this paper was to find the optimal conditions for extracting high amounts of bioactive compounds from R. typhina fruits using ultrasound-assisted and bead-beating techniques under different parameters (solvent concentration, solvent/solid ratio, extraction time, bead size, and material). A Box–Behnken design was applied for ultrasound-assisted extraction. The following process parameters were found to be optimal: 20/1 solvent/solid ratio (v/w), 61.51% aqueous ethanol, 10 min extraction time, with a composite desirability of 0.7719. The HPLC profile indicates that p-coumaric acid was the most abundant phenolic compound found in the BBE extract. The BBE extract was subjected to in vitro biological tests. The results indicate a high antimicrobial activity on Streptococcus pyogenes (20 mm inhibition zone) and Salmonella enterica (12 mm inhibition zone). A hemolysis rate of 19.85% was found at an extract concentration of 1000 µg/mL on sheep erythrocytes. We report for the first time the protective role of the extract on cell viability of human gingival fibroblasts, but also a weak antiproliferative effect on the HepG2 human liver cancer cell line. Overall, we conclude that R. typhina fruits are rich in bioactive compounds that can be recovered using proper extraction conditions. Further research is required to understand and valorize their biological potential. Full article
(This article belongs to the Special Issue Research on Organic and Medicinal Chemistry)
Show Figures

Figure 1

25 pages, 2892 KiB  
Article
Ratanjot (Alkanna tinctoria L.) Root Extract, Rich in Antioxidants, Exhibits Strong Antimicrobial Activity against Foodborne Pathogens and Is a Potential Food Preservative
by Annada Das, Subhasish Biswas, Kaushik Satyaprakash, Dipanwita Bhattacharya, Pramod Kumar Nanda, Gopal Patra, Sushmita Moirangthem, Santanu Nath, Pubali Dhar, Arun K. Verma, Olipriya Biswas, Nicole Irizarry Tardi, Arun K. Bhunia and Arun K. Das
Foods 2024, 13(14), 2254; https://doi.org/10.3390/foods13142254 - 17 Jul 2024
Cited by 7 | Viewed by 5863
Abstract
Natural and sustainable plant-based antioxidants and antimicrobials are highly desirable for improving food quality and safety. The present investigation assessed the antimicrobial and antioxidant properties of active components from Alkanna tinctoria L. (herb) roots, also known as Ratanjot root. Two methods were used [...] Read more.
Natural and sustainable plant-based antioxidants and antimicrobials are highly desirable for improving food quality and safety. The present investigation assessed the antimicrobial and antioxidant properties of active components from Alkanna tinctoria L. (herb) roots, also known as Ratanjot root. Two methods were used to extract active components: microwave-assisted hot water (MAHW) and ethanolic extraction. MAHW extract yielded 6.29%, while the ethanol extract yielded 18.27%, suggesting superior Ratanjot root extract powder (RRP) solubility in ethanol over water. The ethanol extract showed significantly higher antioxidant activity than the MAHW extract. Gas Chromatography–Mass Spectrometry analysis revealed three major phenolic compounds: butanoic acid, 3-hydroxy-3-methyl-; arnebin 7, and diisooctyl pthalate. The color attributes (L*, a*, b*, H°ab, C*ab) for the ethanolic and MAHW extracts revealed significant differences (p < 0.05) in all the above parameters for both types of extracts, except for yellowness (b*) and chroma (C*ab) values. The ethanol extract exhibited antimicrobial activity against 14 foodborne bacteria, with a significantly higher inhibitory effect against Gram-positive bacteria (Listeria monocytogenes and Staphylococcus aureus) than the Gram-negative bacteria (Salmonella enterica serovar Typhimurium and Escherichia coli). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were both 25 mg/mL for the Gram-negative bacteria, while the MIC and MBC concentrations varied for Gram-positive bacteria (0.049–0.098 mg/mL and 0.098–0.195 mg/mL) and the antimicrobial effect was bactericidal. The antimicrobial activities of RRP extract remained stable under broad temperature (37–100 °C) and pH (2–6) conditions, as well as during refrigerated storage for 30 days. Application of RRP at 1% (10 mg/g) and 2.5% (25 mg/g) levels in a cooked chicken meatball model system prevented lipid oxidation and improved sensory attributes and retarded microbial growth during refrigerated (4 °C) storage for 20 days. Furthermore, the RRP extract was non-toxic when tested with sheep erythrocytes and did not inhibit the growth of probiotics, Lacticaseibacillus casei, and Lactiplantibacillus plantarum. In conclusion, the study suggests that RRP possesses excellent antimicrobial and antioxidant activities, thus making it suitable for food preservation. Full article
Show Figures

Figure 1

19 pages, 13924 KiB  
Article
Purinergic Receptor Antagonists Inhibit Hemolysis Induced by Clostridium perfringens Alpha Toxin
by Zishuo Guo, Nan Yue, Ming Chen, Jiaxin Li, Ruomei Lv, Jing Wang, Tingting Liu, Jing Huang, Shan Gao, Yanwei Li, Bing Yuan, Jinglin Wang, Lin Kang, Bin Ji and Wenwen Xin
Pathogens 2024, 13(6), 454; https://doi.org/10.3390/pathogens13060454 - 27 May 2024
Cited by 1 | Viewed by 1427
Abstract
Clostridium perfringens alpha toxin (CPA), which causes yellow lamb disease in sheep and gas gangrene and food poisoning in humans, is produced by all types of C. perfringens and is the major virulence determinant of C. perfringens type A. CPA induces hemolysis in [...] Read more.
Clostridium perfringens alpha toxin (CPA), which causes yellow lamb disease in sheep and gas gangrene and food poisoning in humans, is produced by all types of C. perfringens and is the major virulence determinant of C. perfringens type A. CPA induces hemolysis in many species, including humans, murines, sheep and rabbits, through its enzymatic activity, which dissolves the cell membrane. Recent studies have shown that some pore-forming toxins cause hemolysis, which is achieved by the activation of purinergic receptors (P2). However, the relationship between P2 receptors and non-pore-forming toxin hemolysis has not been investigated. In the present study, we examined the function of P2 receptors in CPA toxin hemolysis and found that CPA-induced hemolysis was dependent on P2 receptor activation, and this was also true for Staphylococcus aureus β-Hemolysin, another non-pore-forming toxin. Furthermore, we use selective P2 receptor antagonists to demonstrate that P2X1 and P2X7 play important roles in the hemolysis of human and murine erythrocytes. In addition, we found that redox metabolism was mainly involved in CPA-induced hemolysis using metabolomic analysis. We further demonstrate that CPA activates P2 receptors and then activates NADPH oxidase through the PI3K/Akt and MEK1/ERK1 pathways, followed by the production of active oxygen to induce hemolysis. These findings contribute to our understanding of the pathological effects of CPA, clarify the relationship between P2 activation and non-pore-forming toxin-induced hemolysis, and provide new insights into CPA-induced hemolysis. Full article
Show Figures

Figure 1

8 pages, 762 KiB  
Article
Growth of White Leghorn Chicken Immune Organs after Long-Term Divergent Selection for High or Low Antibody Response to Sheep Red Blood Cells
by Christa F. Honaker, Robert L. Taylor, Frank W. Edens and Paul B. Siegel
Animals 2024, 14(10), 1487; https://doi.org/10.3390/ani14101487 - 17 May 2024
Viewed by 1356
Abstract
Long-term divergent selection from a common founder population for a single trait—antibody response to sheep erythrocytes 5 days post-injection—has resulted in two distinct lines of White Leghorn chickens with a well-documented difference in antibody titers: high (HAS)- and low (LAS)-antibody selected lines. Subpopulations—high [...] Read more.
Long-term divergent selection from a common founder population for a single trait—antibody response to sheep erythrocytes 5 days post-injection—has resulted in two distinct lines of White Leghorn chickens with a well-documented difference in antibody titers: high (HAS)- and low (LAS)-antibody selected lines. Subpopulations—high (HAR)- and low (LAR)-antibody relaxed—were developed from generation 24 of the selected lines to relax selection. The objective of the current experiment was to determine if this long-term selection and relaxation of selection impacted the growth of two organs important to chicken immunity: the spleen and the bursa of Fabricius. Spleens and bursae were obtained from ten chickens per line at nine timepoints (E18, D0, D6, D13, D20, D35, D49, D63, and D91) throughout their rapid growth phase and presented as a percent of body weight. Significance was set at p ≤ 0.05. For the spleen, all lines consistently increased in size relative to body weight to D49, followed by a consistent decline. All lines had a similar growth pattern, but HAS spleens grew faster than LAS spleens. For the bursa, LAS was smaller than the other three lines as an embryo and also smaller than HAS through D63. In the selected lines, bursa weight peaked at D35, whereas the relaxed lines peaked at D49. By D91, there was no difference between lines. Artificial and natural selection, represented by the long-term selected and relaxed antibody lines, resulted in differences in the growth patterns and relative weights of the spleen and bursa of Fabricius. Full article
(This article belongs to the Special Issue Genetics and Breeding Advances in Poultry Health and Production)
Show Figures

Figure 1

16 pages, 9563 KiB  
Article
Antimicrobial and Antibiofilm Potential of Green-Synthesized Graphene–Silver Nanocomposite against Multidrug-Resistant Nosocomial Pathogens
by Preeti Negi, Jatin Chadha, Kusum Harjai, Vijay Singh Gondil, Seema Kumari and Khem Raj
Biomedicines 2024, 12(5), 1104; https://doi.org/10.3390/biomedicines12051104 - 16 May 2024
Cited by 7 | Viewed by 2432
Abstract
Hospital-acquired infections (HAIs) pose a significant risk to global health, impacting millions of individuals globally. These infections have increased rates of morbidity and mortality due to the prevalence of widespread antimicrobial resistance (AMR). Graphene-based nanoparticles (GBNs) are known to possess extensive antimicrobial properties [...] Read more.
Hospital-acquired infections (HAIs) pose a significant risk to global health, impacting millions of individuals globally. These infections have increased rates of morbidity and mortality due to the prevalence of widespread antimicrobial resistance (AMR). Graphene-based nanoparticles (GBNs) are known to possess extensive antimicrobial properties by inflicting damage to the cell membrane, suppressing virulence, and inhibiting microbial biofilms. Developing alternative therapies for HAIs and addressing AMR can be made easier and more affordable by combining nanoparticles with medicinal plants harboring antimicrobial properties. Hence, this study was undertaken to develop a novel graphene–silver nanocomposite via green synthesis using Trillium govanianum plant extract as a reducing agent. The resulting nanocomposite comprised silver nanoparticles embedded in graphene sheets. The antibacterial and antifungal properties of graphene–silver nanocomposites were investigated against several nosocomial pathogens, namely, Candida auris, Candida glabrata, Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The nanocomposite displayed broad-range antimicrobial potential against the test pathogens, with minimum inhibitory concentrations (MICs) ranging between 31.25 and 125.0 µg/mL, and biofilm inhibition up to 80–96%. Moreover, nanocomposite-functionalized urinary catheters demonstrated hemocompatibility towards sheep erythrocytes and imparted anti-fouling activity to the biomaterial, while also displaying biocompatibility towards HEK 293 cells. Collectively, this investigation highlights the possible application of green-synthesized GBNs as an effective alternative to conventional antibiotics for combating multidrug-resistant pathogens. Full article
(This article belongs to the Special Issue Drug-Resistant Bacterial Infections and Alternative Therapies)
Show Figures

Figure 1

17 pages, 5782 KiB  
Article
Potential Mechanisms for Organoprotective Effects of Exogenous Nitric Oxide in an Experimental Study
by Nikolay O. Kamenshchikov, Mariia L. Diakova, Yuri K. Podoksenov, Elena A. Churilina, Tatiana Yu. Rebrova, Shamil D. Akhmedov, Leonid N. Maslov, Alexander V. Mukhomedzyanov, Elena B. Kim, Ekaterina S. Tokareva, Igor V. Kravchenko, Alexander M. Boiko, Maxim S. Kozulin and Boris N. Kozlov
Biomedicines 2024, 12(4), 719; https://doi.org/10.3390/biomedicines12040719 - 23 Mar 2024
Cited by 9 | Viewed by 1632
Abstract
Performing cardiac surgery under cardiopulmonary bypass (CPB) and circulatory arrest (CA) provokes the development of complications caused by tissue metabolism, microcirculatory disorders, and endogenous nitric oxide (NO) deficiency. This study aimed to investigate the potential mechanisms for systemic organoprotective effects of exogenous NO [...] Read more.
Performing cardiac surgery under cardiopulmonary bypass (CPB) and circulatory arrest (CA) provokes the development of complications caused by tissue metabolism, microcirculatory disorders, and endogenous nitric oxide (NO) deficiency. This study aimed to investigate the potential mechanisms for systemic organoprotective effects of exogenous NO during CPB and CA based on the assessment of dynamic changes in glycocalyx degradation markers, deformation properties of erythrocytes, and tissue metabolism in the experiment. A single-center prospective randomized controlled study was conducted on sheep, n = 24, comprising four groups of six in each. In two groups, NO was delivered at a dose of 80 ppm during CPB (“CPB + NO” group) or CPB and CA (“CPB + CA + NO”). In the “CPB” and “CPB + CA” groups, NO supply was not carried out. NO therapy prevented the deterioration of erythrocyte deformability. It was associated with improved tissue metabolism, lower lactate levels, and higher ATP levels in myocardial and lung tissues. The degree of glycocalyx degradation and endothelial dysfunction, assessed by the concentration of heparan sulfate proteoglycan and asymmetric dimethylarginine, did not change when exogenous NO was supplied. Intraoperative delivery of NO provides systemic organoprotection, which results in reducing the damaging effects of CPB on erythrocyte deformability and maintaining normal functioning of tissue metabolism. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

15 pages, 1175 KiB  
Article
Genetic and Phenotypic Virulence Potential of Non-O1/Non-O139 Vibrio cholerae Isolated from German Retail Seafood
by Quantao Zhang, Thomas Alter, Eckhard Strauch, Jens Andre Hammerl, Keike Schwartz, Maria Borowiak, Carlus Deneke and Susanne Fleischmann
Microorganisms 2023, 11(11), 2751; https://doi.org/10.3390/microorganisms11112751 - 11 Nov 2023
Cited by 5 | Viewed by 2333
Abstract
Non-O1 and non-O139 Vibrio cholerae (NOVC) can cause gastrointestinal infections in humans. Contaminated food, especially seafood, is an important source of human infections. In this study, the virulence potential of 63 NOVC strains isolated from retail seafood were characterized at the genotypic and [...] Read more.
Non-O1 and non-O139 Vibrio cholerae (NOVC) can cause gastrointestinal infections in humans. Contaminated food, especially seafood, is an important source of human infections. In this study, the virulence potential of 63 NOVC strains isolated from retail seafood were characterized at the genotypic and phenotypic levels. Although no strain encoded the cholera toxin (CTX) and the toxin-coregulated pilus (TCP), several virulence factors, including the HlyA hemolysin, the cholix toxin ChxA, the heat-stable enterotoxin Stn, and genes coding for the type 3 and type 6 secretion systems, were detected. All strains showed hemolytic activity against human and sheep erythrocytes: 90% (n = 57) formed a strong biofilm, 52% (n = 33) were highly motile at 37 °C, and only 8% (n = 5) and 14% (n = 9) could resist ≥60% and ≥40% human serum, respectively. Biofilm formation and toxin regulation genes were also detected. cgMLST analysis demonstrated that NOVC strains from seafood cluster with clinical NOVC strains. Antimicrobial susceptibility testing (AST) results in the identification of five strains that developed non-wildtype phenotypes (medium and resistant) against the substances of the classes of beta-lactams (including penicillin, carbapenem, and cephalosporin), polymyxins, and sulphonamides. The phenotypic resistance pattern could be partially attributed to the acquired resistance determinants identified via in silico analysis. Our results showed differences in the virulence potential of the analyzed NOVC isolated from retail seafood products, which may be considered for further pathogenicity evaluation and the risk assessment of NOVC isolates in future seafood monitoring. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics)
Show Figures

Figure 1

13 pages, 1946 KiB  
Article
New Inonotus Polysaccharides: Characterization and Anticomplementary Activity of Inonotus rheades Mycelium Polymers
by Daniil N. Olennikov and Tatyana G. Gornostai
Polymers 2023, 15(5), 1257; https://doi.org/10.3390/polym15051257 - 1 Mar 2023
Cited by 4 | Viewed by 2172
Abstract
Inonotus is a small genus of xylotrophic basidiomycetes and a source of bioactive fungochemicals among which a special place is occupied by polymeric compounds. In this study, polysaccharides that are widespread in Europe, Asia, and North America and a poorly understood fungal species, [...] Read more.
Inonotus is a small genus of xylotrophic basidiomycetes and a source of bioactive fungochemicals among which a special place is occupied by polymeric compounds. In this study, polysaccharides that are widespread in Europe, Asia, and North America and a poorly understood fungal species, I. rheades (Pers.) Karst. (fox polypore), were investigated. Water-soluble polysaccharides of I. rheades mycelium were extracted, purified, and studied using chemical reactions, elemental and monosaccharide analysis, UV–Vis and FTIR spectroscopy, gel permeation chromatography, and linkage analysis. Five homogenic polymers (IRP-1–IRP-5) with molecular weights of 110–1520 kDa were heteropolysaccharides that consist mainly of galactose, glucose, and mannose. The dominant component, IRP-4, was preliminary concluded to be a branched (1→3,6)-linked galactan. Polysaccharides of I. rheades inhibited the hemolysis of sensitized sheep erythrocytes by complement from human serum, signifying anticomplementary activity with the greatest effects for the IRP-4 polymer. These findings suggest that I. rheades mycelium is a new source of fungal polysaccharides with potential immunomodulatory and anti-inflammatory properties. Full article
(This article belongs to the Special Issue Applications of Polysaccharide-Based Materials)
Show Figures

Figure 1

19 pages, 2719 KiB  
Article
Antimicrobial Activity of Quercetin, Naringenin and Catechin: Flavonoids Inhibit Staphylococcus aureus-Induced Hemolysis and Modify Membranes of Bacteria and Erythrocytes
by Artem G. Veiko, Ewa Olchowik-Grabarek, Szymon Sekowski, Anna Roszkowska, Elena A. Lapshina, Izabela Dobrzynska, Maria Zamaraeva and Ilya B. Zavodnik
Molecules 2023, 28(3), 1252; https://doi.org/10.3390/molecules28031252 - 27 Jan 2023
Cited by 88 | Viewed by 6823
Abstract
Search for novel antimicrobial agents, including plant-derived flavonoids, and evaluation of the mechanisms of their antibacterial activities are pivotal objectives. The goal of this study was to compare the antihemolytic activity of flavonoids, quercetin, naringenin and catechin against sheep erythrocyte lysis induced by [...] Read more.
Search for novel antimicrobial agents, including plant-derived flavonoids, and evaluation of the mechanisms of their antibacterial activities are pivotal objectives. The goal of this study was to compare the antihemolytic activity of flavonoids, quercetin, naringenin and catechin against sheep erythrocyte lysis induced by α-hemolysin (αHL) produced by the Staphylococcus aureus strain NCTC 5655. We also sought to investigate the membrane-modifying action of the flavonoids. Lipophilic quercetin, but not naringenin or catechin, effectively inhibited the hemolytic activity of αHL at concentrations (IC50 = 65 ± 5 µM) below minimal inhibitory concentration values for S. aureus growth. Quercetin increased the registered bacterial cell diameter, enhanced the fluidity of the inner and surface regions of bacterial cell membranes and raised the rigidity of the hydrophobic region and the fluidity of the surface region of erythrocyte membranes. Our findings provide evidence that the antibacterial activities of the flavonoids resulted from a disorder in the structural organization of bacterial cell membranes, and the antihemolytic effect of quercetin was related to the effect of the flavonoid on the organization of the erythrocyte membrane, which, in turn, increases the resistance of the target cells (erythrocytes) to αHL and inhibits αHL-induced osmotic hemolysis due to prevention of toxin incorporation into the target membrane. We confirmed that cell membrane disorder could be one of the direct modes of antibacterial action of the flavonoids. Full article
(This article belongs to the Special Issue Food Bioactive Compounds: Chemical Challenges and Opportunities)
Show Figures

Figure 1

19 pages, 4478 KiB  
Article
Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes
by Qinhua Zheng, Weijian Tan, Xiaolin Feng, Kexin Feng, Wenting Zhong, Caiyu Liao, Yuntong Liu, Shangjian Li and Wenzhong Hu
Molecules 2022, 27(21), 7625; https://doi.org/10.3390/molecules27217625 - 7 Nov 2022
Cited by 31 | Viewed by 3600
Abstract
To evaluate the antioxidant activity of flavonoids extracted from Chinese herb mulberry leaves (ML), flavonoids from mulberry leaves (FML) were extracted and purified by using ultrasonic-assisted enzymatic extraction and D101 macroporous resin. Using LC-MS/MS-Liquid Chromatography with tandem mass spectrometry analysis, hesperidin, rutoside, hyperoside, [...] Read more.
To evaluate the antioxidant activity of flavonoids extracted from Chinese herb mulberry leaves (ML), flavonoids from mulberry leaves (FML) were extracted and purified by using ultrasonic-assisted enzymatic extraction and D101 macroporous resin. Using LC-MS/MS-Liquid Chromatography with tandem mass spectrometry analysis, hesperidin, rutoside, hyperoside, cyanidin-3-o-glucoside, myricitrin, cyanidin, and quercetin were identified, and NMR and UV were consistent with the verification of IR flavonoid characteristics. The antioxidant activity of FML has also been evaluated as well as the protective effect on 2,2 0-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative stress. The results showed that FML exhibited powerful antioxidant activity. Moreover, FML showed dose-dependent protection against AAPH-induced sheep erythrocytes’ oxidative hemolysis. In the enzymatic antioxidant system, pretreatment with high FML maintained the balance of SOD, CAT, and GSH-Px; in the non-enzymatic antioxidant system, the content of MDA can be effectively reduced after FML treatment. This study provides a research basis for the development of natural products from mulberry leaves. Full article
Show Figures

Figure 1

Back to TopTop